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Abstract: Consider a simple graph Γ = (V(Γ), E(Γ)) with n vertices and m edges. Let P be a subset of
V(Γ) and B(P) the set of neighbors of P in V(Γ)\P. In the study of graphs, the concept of differential
refers to a measure of how much the number of edges leaving a set of vertices exceeds the size of
that set. Specifically, given a subset P of vertices, the differential of P, denoted by ∂(P), is defined as
|B(P)| − |P|. The differential of Γ, denoted by ∂(Γ), is then defined as the maximum differential over all
possible subsets of V(Γ). Additionally, the subdivision operator S(Γ) is defined as the graph obtained
from Γ by inserting a new vertex on each edge of Γ. In this paper, we present results for the differential
of graphs on the subdivision operator S(Γ) where some of these show exact values of ∂(S(Γ)) if Γ
belongs to a classical family of graphs. We obtain bounds for ∂(S(Γ)) involving invariants of a graph
such as order n, size m and maximum degree ∆, and we study the realizability of the graph Γ for any
value of ∂(S(Γ)) in the interval

[
n − 2, n(n−1)

2 − n + 2
]
. Moreover, we give a characterization for ∂(S(Γ))

using the notion of edge star packing.
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1. Introduction

Parameter studies on graph operators are a relatively new and active area of research in graph theory,
which has attracted the attention of several authors seeking to better understand how the properties of
a graph and its operators can affect certain graph parameters.

If Γ is a graph, Φ(Γ) is a graph parameter of Γ and O(Γ) is a graph operator of Γ, What information
can we obtain about Φ(O(Γ)) when we know certain properties of Γ and Φ(Γ)?

In [1, 2] was studied the total domination number γt(Γ) on the operators S(Γ), R(Γ) and Q(Γ) and
in [3–8] the authors studied some topological indices on operators in graphs. Other works in which at
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least one graph operator O(Γ) has been studied are [9–16].
Throughout this paper, we consider a simple graph Γ = (V(Γ), E(Γ)) with n vertices and m edges,

where n ≥ 2. The vertex set of Γ is denoted as V(Γ) and the edge set is denoted as E(Γ). If P is a
subset of V(Γ), the subgraph of Γ induced by P will be denoted by ⟨P⟩Γ. Consider two graphs, Γ and
Γ′. The graph Γ is said to be Γ′-free if it does not contain any induced subgraph that is isomorphic to
Γ′. A graph is unicyclic if contains exactly one cycle. Let v be a vertex of V(Γ). As usual, NΓ(v) is the
set of neighbors that v has in V(Γ), and NΓ[v] := NΓ(v) ∪ {v}. Let δΓ(v) denote the degree of vertex v
in the graph Γ, which is given by the cardinality of the set of neighbors NΓ(v). Additionally, let δ and
∆ denote the minimum and maximum degree of Γ, respectively. When δΓ(v) = 1 we will say that v
is a leaf of Γ. If P is a subset of V(Γ), then we denote by NP(v) the set of neighbors that v has in P,
NΓ(P) :=

⋃
v∈P NΓ(v) and NΓ[P] := NΓ(P)∪P. If there is no ambiguity which graph is being considered

we will just write δ(v) and N[v] instead δΓ(v) and NΓ[v].
Let BΓ(P) be the set of vertices in V(Γ)\P that have a neighbor in P, it is called the border of P

in Γ and let CΓ(P) be the set V(Γ)\(P ∪ BΓ(P)). Then P, BΓ(P) and CΓ(P) are disjoint sets such that
V(Γ) = P ∪ BΓ(P) ∪ CΓ(P). The differential of a set P is defined as ∂Γ(P) = |BΓ(P)| − |P| and the
differential of a graph Γ is defined as ∂(Γ) = max{∂Γ(P) : P ⊆ V(Γ)}. If there is no ambiguity which
graph is being considered we will just write B(P) and ∂(P) instead BΓ(P) and ∂Γ(P). A subset P of
vertices in a graph Γ is called a differential set, if Γ attains its maximum differential in P. If P has
the smallest or largest possible number of vertices among all differential sets, it is called a minimum
differential set or a maximum differential set, respectively. If Γ is disconnected and is composed of k
connected components Γ1, . . . ,Γk, then

∂(Γ) = ∂(Γ1) + · · · + ∂(Γk),

for this reason we will only work with connected graphs.
In 2006 J. L. Mashburn et al. first introduced the concept of a differential of a graph in their

paper entitled Differentials in graphs [17]. Since then the topic has been extensively studied in several
directions, in [18] is shown that this problem is NP-complete and in [19–21] the authors obtain tight
bounds. In [22–25] the differential has been studied on certain graph operators. In addition, other
versions of the differential have been studied in [26–28]. Other works on the differential of graphs can
be found in [29–34].

In a graph Γwith at least one cycle, the length of the longest cycle is referred to as the circumference
of the graph, and the length of the shortest cycle is known as its girth. The notation LΓ is commonly
used to represent the circumference of Γ, while g(Γ) denotes the girth of Γ.

The subdivision graph S(Γ) is a new graph that is created by taking the original graph Γ and adding
an additional vertex on each edge of Γ (see Figure 1).

Let us enumerate certain fundamental characteristics of S(Γ) that can be inferred from its definition.
Before continuing, we need the following definition: A subset I ⊂ V(Γ) is an independent set of Γ if any
two distinct vertices in I are non-adjacent in Γ. The independence number of Γ refers to the maximum
size of an independent set in Γ, this quantity is denoted by α(Γ). Due to the structure of S(Γ), we can
partition the set V(S(Γ)) into two independent sets.
Remark 1. Suppose Γ is a graph with n vertices and m edges. Then:

(i) the set of vertices of S(Γ) corresponding to the edges of Γ is denoted with U, and the remaining
is V . Hence |V | = |V(Γ)| = n and |U | = |E(Γ)| = m,
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(ii) |V(S(Γ))| = n + m and |E(S(Γ))| = 2m,
(iii) Γ is isomorphic to S(Γ) if and only if Γ is isomorphic to the empty graph En,
(iv) δS(Γ)(e) = 2, for all e ∈ U,
(v) δS(Γ)(v) = δΓ(v), for all v ∈ V ,

(vi) the sets U and V are maximal independent sets,
(vii) g(S(Γ)) ≥ 6,

(viii) S(Γ) is C2k+1-free, for all k ∈ N,
(ix) S(Γ) is not isomorphic to P2k, for all k ∈ N,
(x) S(Γ) is a bipartite graph with bipartition {V,U}.

Figure 1. On the left, there is a simple graph Γ, on the right, the subdivision graph of Γ.

2. The differential on subdivision operator S(Γ)

To start this section, we will begin with a characterization of the differential of graphs on the
subdivision operator S(Γ) when it takes small values (see Proposition 2.2). Additionally, we will
provide the exact values of the differential of graphs on the subdivision operator S(Γ) when Γ belongs
to a classical family of graphs (see Proposition 2.4). Finally, we will present a bound on ∂(S(Γ)) in
relation to LΓ (see Proposition 2.5).

The next result appears in [21].

Lemma 2.1. For any graph Γ with maximum degree ∆, the following statements hold:

(i) ∂(Γ) = 1 if and only if Γ = C3,C4,C5, P3, P4 or P5,
(ii) ∂(Γ) = 2 if and only if Γ is a graph with either:

(a) Γ = C6,C7,C8, P6, P7 or P8 or
(b) ∆ = 3 and, for every vertex v ∈ V(Γ) such that δ(v) = 3, the subgraph induced by V(Γ)\N[v]

has no graph isomorphic to P3, and Γ has no 3 independent subgraphs isomorphic to P3.

A subset M ⊂ E(Γ) is a matching of Γ if each any two distinct edges in M are not incident in Γ. The
matching number of Γ is the cardinality of any largest matching of Γ and it is denoted by β(Γ).

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11568–11584.
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Proposition 2.2. The assertions below are valid for any graph Γ that has a maximum degree of ∆:

(1) ∂(S(Γ)) = 1 if and only if Γ = P2, P3,
(2) ∂(S(Γ)) = 2 if and only if Γ = C3,C4, P4, S 4,
(3) ∂(S(Γ)) = 3 if and only if

(a) Γ = C5, P5, P6, S 5 or
(b) ∆ = 3 and

(i) any two vertices of degree 3 in Γ are adjacent,
(ii) Γ contains at most two vertices of degree 3,

(iii) if v is a vertex of Γ with δ(v) = 3, then β(Γ\{v}) = 1.

Proof. (1) If ∂(S(Γ)) = 1, by Lemma 2.1, the graph S(Γ) needs to have an isomorphism with one of
the graphs : C3, C4, C5, P3, P4 or P5. However, among all of these graphs, the only possible candidates
are P3 and P5 (see Remark 1 (vii), (viii), and (ix)). Thus, Γ is either P2 or P3.

(2) If ∆S(Γ) , 3, once again, by Lemma 2.1, S(Γ) must be one of the following graphs: C6, C7, C8,
P6, P7 or P8. Of all these the only ones that satisfy the condition of being a subdivision graph are C6,
C8, P7 (see again Remark 1 (viii) and (ix)), obtaining Γ = C3, C4 or P4. If ∆S(Γ) = 3 so that ∆Γ = 3 but,
Γ , S 4, then Γ includes a subgraph that is isomorphic to one of those shown in Figure 2. In any case,
by letting P = {v, e} we obtain ∂(P) = 3, so that ∂(S(Γ)) ≥ 3.

Figure 2. Graphs with differential equal to 3 on the subdivision operator.

(3) If ∂(S(Γ)) = 3 and it also happens that ∂(Γ) = 3, then Γ = S 5. In another case, ∂(Γ) = 1 or
∂(Γ) = 2. Once again, using Lemma 2.1 we obtain that Γ = C5, P5 or P6 provided that ∆Γ , 3.
In another case, if ∆Γ = 3, let us show that (i) − (iii) are satisfied.

If there are two vertices of degree three that are non-adjacent, they would produce in S(Γ) two
independent stars whose centers form a set with differential ≥ 4, so (i) must be satisfied.
If Γ contains three vertices of degree three, by (i), these must be adjacent, so Γ contains a subgraph
Γ′ isomorphic to one of those shown in Figure 3. In any case, we can take vertices of S(Γ′) with
differential ≥ 4. This establishes (ii).

If a vertex v has degree three and Γ\{v} contains no edges, then Γ is isomorphic to S 4, and thus,
∂(S(Γ)) = ∂(Γ) = 2, and this yields an absurd. If Γ\{v} contains two independent edges e1 and e2,
then {v, e1, e2} constitute a set of vertices in S(Γ) with a differential ≥ 4. This, once again, leads to
a contradiction. Conversely, (1), (2) and (3) − (a) is a simple verification. If ∆ = 3 and Γ satisfies
(i) − (iii), we have cases to consider:

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11568–11584.
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Figure 3. Graphs with at least three vertices of degree 3.

Case I Within Γ, there exist precisely one vertex of degree three.
By considering (iii) it can be observed that one of the graphs shown in Figure 4 must be
isomorphic to Γ.

Figure 4. Graphs with exactly one vertex of degree 3.

Case II Γ contains exactly two vertices of degree three.
Here, taking into account condition (iii), it can also be observed that Γ can only be isomorphic to
one of the graphs shown in Figure 5.

Figure 5. Graphs with exactly two vertices of degree 3.

In either cases, a simple calculation shows that ∂(S(Γ)) = 3.

Part (i) in the next lemma appears in [17] and part (ii) appears in [21].

Lemma 2.3. For paths Pn with n ≥ 1, cycles Cn with n ≥ 3, and star graphs of order n we have:

(i) ∂(Pn) = ∂(Cn) =
⌊

n
3

⌋
,

(ii) ∂(S n) = n − 2.

Proposition 2.4. Let Pn, Cn, S n, S p,q, Kp,q and Kn be the path, cycle, star, double star, complete
bipartite and complete graphs respectively, then:
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(i) ∂(S(Pn)) =
⌊

2n−1
3

⌋
with n ≥ 2,

(ii) ∂(S(Cn)) =
⌊

2n
3

⌋
with n ≥ 3,

(iii) ∂(S(S n)) = n − 2 with n ≥ 3,
(iv) ∂(S(S p,q)) = n − 3 with p + q = n,
(v) ∂(S(Kp,q)) = pq − p, with p ≤ q,

(vi) ∂(S(Kn)) = n(n−1)
2 + 2 − n.

Proof. Notice that S(Pn) = P2n−1 and S(Cn) = C2n, by Lemma 2.3, we obtain (i) and (ii).

(iii) Let P ⊆ V(S(S n)) and let v be the vertex of S n such that δS(S n)(v) = n−1. If P ⊆ U, then ∂(P) = 1.
If P ⊆ V \ {v}, then ∂(P) = 0. If P = {v}, then ∂(P) = n − 2. Let be P = X ∪ Y such that X ⊂ V
and Y ⊂ U where X and Y are non-empty sets, then ∂(P) ≤ n − 1 − |P| ≤ n − 3. Having analysed
all possible cases for P, it follows that ∂(S(S n)) = n − 2.

(iv) Let P ⊆ V(S(S p,q)) and let v and v′ be vertices of S p,q such that δS(S p,q)(v) = p−1 and δS(S p,q)(v′) =
q− 1. If we consider the different cases for the subsets P of U and V , we can obtain the following
results:

• If P is a subset of U, then it follows that ∂(P) ≤ 2.
• If P is a subset of V\{v, v′}, then ∂(P) = 0.
• If P = {v} or P = {v′}, then ∂(P) = p − 1 or ∂(P) = q − 1, respectively.
• If P = {v, v′}, then ∂(P) = (p − 1) + (q − 1) + 1 − 2 = p + q − 3.

Let P be the union of non-empty sets X and Y , where X is a subset of V and Y is a subset of U,
then ∂(P) ≤ (p − 1) + (q − 1) + 1 − |P| = p + q − 1 − |P| ≤ p + q − 1 − 3 = p + q − 4. We have
finished analysing all the cases for P, and thus we obtain ∂(S(S p,q)) = p + q − 3.

(v) Let P be a subset of V(S(Kp,q)), where V(Kp,q) = X ∪ Y and |X| = p ≤ q = |Y |. If P ⊆ X, then
∂(P) ≤ pq−p. If P ⊆ Y, then ∂(P) ≤ pq−q ≤ pq−p. Suppose that P ⊆ U, then ∂(P) ≤ 2p−p = p.
Therefore, ∂(S(Kp,q)) = pq − p.

(vi) Let Kn be the complete graph with vertex set V(Kn) = {v1, . . . , vn}, and let u ∈ U be the unique
vertex whose neighborhood is {vn−1, vn}. If P = {v1, v2, . . . , vn−2, u}, is not very difficult to verify
that ∂(P) = n(n−1)

2 − n + 2. Now we will show that any non-empty subset P′ ⊂ V(S(Kn)) satisfies
∂(P′) ≤ ∂(P). Suppose that P′ ⊆ U, then ∂(P′) = |B(P′)| − |P′| ≤ n − |P′| ≤ n − 1 ≤ ∂(P).
Now let us suppose that P′ ⊆ V with cardinality |P′| = n− k where 0 ≤ k ≤ n− 1. Calculating the
value of |B(P′)| we obtain

|B(P′)| =
n(n − 1)

2
−

k(k − 1)
2
,

and therefore ∂(P′) = n(n−1)
2 −

k(k−1)
2 − (n − k) < ∂(P).

Suppose X and Y are non-empty and proper subsets of V and U, respectively. Let P′ = X∪Y . We
can examine the following scenarios:

Case 1: |P′| ≤ n − 2. Suppose that |X| ≤ n − 2 − i, and |Y | = i with i = 1, . . . , n − 2, then |B(P′)| ≤
|B(X)| + |B(Y)| ≤ n(n−1)

2 − i, thus ∂(P′) ≤ n(n−1)
2 − n + i < ∂(P).

Case 2: |P′| ≥ n. Suppose that |X| ≥ n − i, and |Y | = i with i = 1, . . . , n − 1, then ∂(P′) ≤ n(n−1)
2 − n <

∂(P).
Case 3: |P′| = n−1. Suppose that |X| ≤ n−2− i, and |Y | = i with i = 1, . . . , n−2, then |B(P′)| ≤ n(n−1)

2 ,
therefore ∂(P′) = n(n−1)

2 − n − 1 < ∂(P).
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We have analysed all cases and therefore conclude that ∂(S(Kn)) = n(n−1)
2 − n + 2.

Proposition 2.5. Suppose that Γ is a graph with a circumference LΓ. Then

∂(S(Γ)) ≥
⌊2LΓ

3

⌋
.

Proof. Let LΓ be the circumference of Γ given by the cycle CΓ = {v1, v2, . . . , vL}, then the
circumference LS(Γ) of S(Γ), given by the cycle CS(Γ) = {v1, e1, v2, e2, . . . , vL, eL}, satisfies that
LS(Γ) ≥ 2LΓ, therefore ∂(S(Γ)) ≥ ∂(CS(Γ)) = ⌊ 2LΓ

3 ⌋.

In this part we study the properties of the independence number since it appears naturally in the
study of differential sets (see Proposition 2.13).

Proposition 2.6. Assuming Γ is a graph with n vertices and m edges, then:

(i) β(S(Γ)) = min{n,m},
(ii) α(S(Γ)) = max{n,m}.

Proof. (i) If Γ is a tree, then we can arbitrarily select a vertex w in V(Γ) as the root of the tree Γ. Since
for each v ∈ V(Γ) \ {w} there is only one unique edge ev ∈ E(Γ) that connects v with its respective
parent vertex, we can define a bijection

f : V(Γ) \ {w} → E(Γ)

as
f (v) = ev.

If Γ has at least one cycle, then let us consider a spanning tree T of Γ. Let e ∈ E(Γ) \ E(T ), and let
x ∈ V(T ) be one of the ends of e. By fixing x as the root of T , we can define a bijection similarly to
how it was done previously

f : V(Γ)→ E(T ) ∪ {e}

as described below:

f (v) =

 e, if v = x

ev, otherwise

where ev is the unique edge in E(T ) that connects v with its respective parent vertex.
(ii) Suppose there is an independent set I in the graph S(Γ) such that |I| > max{m, n}. Let us define

n1 := |I ∩ V |, m1 := |I ∩ U |, n2 = n − n1 and m2 = m − m1. If n ≥ m, then result (i) tells us that there
exists a matching that covers V , and since I is independent, it follows that m2 ≥ n1, therefore

m = m1 + m2 ≥ m1 + n1 = |I| ≥ m + 1.

The other case is similar.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11568–11584.
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A vertex cover of a graph Γ is a subset C ⊆ V(Γ) such that every edge of Γ has at least one end
vertex in C. The vertex cover number of Γ is the cardinality of any smallest vertex cover in Γ and it is
denoted by τ(Γ). An edge cover of Γ is a subset A ⊆ E(Γ) such that every vertex of Γ is incident to at
least one edge of the set A. The edge cover number of Γ is the cardinality of any smallest edge cover
in Γ and it is denoted by ρ(Γ).

The next classical Gallai’s theorems appear in [35].

Lemma 2.7. The equation |V(Γ)| = β(Γ) + ρ(Γ) holds true for any graph Γ.

Lemma 2.8. The equation |V(Γ)| = α(Γ) + τ(Γ) holds true for any graph Γ.

The next corollaries follows from Lemmas 2.7 and 2.8, and Proposition 2.6.

Corollary 2.9. Given a graph Γ with n vertices and m edges, it follows that τ(S(Γ)) = min{n,m}.

Corollary 2.10. For a graph Γ with n vertices and m edges, ρ(S(Γ)) = max{n,m}.

The following propositions characterizes all graphs that have a matching number equal to n, and an
independence number equal to m, on the subdivision operator S(Γ).

Proposition 2.11. Consider a simple graph Γ = (V, E) with n vertices and m edges. The statements
that follow are equivalent:

(i) Γ contains at least one cycle,
(ii) β(S(Γ)) = n,

(iii) ρ(S(Γ)) = m.

Proof. (i)⇒ (ii). Suppose that Γ contains at least one cycle, then n ≤ m. As stated in Proposition 2.6
(i), β(S(Γ)) = n.

(ii) ⇒ (i). Now, suppose that β(S(Γ)) = n. By Proposition 2.6 (i), n ≤ m, therefore Γ contains at
least one cycle.

The implications (ii)⇒ (iii) and (iii)⇒ (ii) follow by Lemma 2.7.

Proposition 2.12. In any graph Γ = (V, E) with n vertices and m edges, the statements that follow are
equivalent:

(i) Γ contains at least one cycle,
(ii) α(S(Γ)) = m,

(iii) τ(S(Γ)) = n.

Proof. (i) ⇒ (ii). If Γ contains at least one cycle, then n ≤ m. According to Proposition 2.6 (ii), we
have that α(S(Γ)) = m.

(ii)⇒ (i). Suppose that α(S(Γ)) = m. Then n ≤ m, therefore Γ contains at least one cycle.
The implications (ii)⇒ (iii) and (iii)⇒ (ii) follow by Lemma 2.8.

Proposition 2.13. Any differential set P of vertices in the subdivision graphS(Γ) is also an independent
set.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11568–11584.
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Proof. Let v, e ∈ P be adjacent vertices. By Remark 1 (iv), there exists another vertex v′ ∈ V adjacent
to e, we note that this vertex is in P or B(P). In both cases, it holds that

∂(P\{e}) = |B(P\{e})| − |P\{e}| ≥ (|B(P)| − 1 + 1) − (|P| − 1) = ∂(P) + 1.

Theorem 2.14. Let Γ be a graph and let P be a differential set of Γ, then

∂(S(Γ)) ≥ ∂(Γ) + |E(⟨P⟩Γ)| + ∂(S(⟨V\P⟩Γ)).

Proof. Let us define M = P ∪ BS(Γ)(P). Notice that ⟨M⟩ ∪ S(⟨V\P⟩Γ) is a subgraph of S(Γ), therefore

∂(S(Γ)) ≥ ∂(⟨M⟩ ∪ S(⟨V\P⟩Γ))
= ∂(⟨M⟩) + ∂(S(⟨V\P⟩Γ))
≥ ∂(P) + |E(⟨P⟩Γ)| + ∂(S(⟨V\P⟩Γ))
= ∂(Γ) + |E(⟨P⟩Γ| + ∂(S(⟨V\P⟩Γ)).

Corollary 2.15. Let Γ be a graph, then ∂(Γ) ≤ ∂(S(Γ)).

Proposition 2.16. For each graph Γ of order n ≥ 3, ∂(Γ) = ∂(S(Γ)) if and only if Γ ≃ S n.

Proof. Let P be a differential set of Γ. If ∂(S(Γ)) = ∂(Γ), then by Theorem 2.14 it follows that
|E(⟨P⟩Γ)| = ∂(S(⟨V\P⟩Γ)) = 0, which means there are no edges in P nor in ⟨V\P⟩Γ, otherwise
∂(S(Γ)) > ∂(Γ), a contradiction. Therefore, Γ is a bipartite graph with bipartition P ∪ BΓ(P).

Now we will prove that |P| = 1.
If |P| ≥ 2, then since Γ is a connected bipartite graph, there must exist vertices u, v,w ∈ V such that

u, v ∈ P and w ∈ N(u) ∩ N(v) ∩ B(P). This implies that ∂S(Γ)(P) = |BS(Γ)(P)| − |P| ≥ |BΓ(P)| + 1 − |P| =
∂(Γ) + 1, which is a contradiction.

A star S k (also known as S k star or S 1,k) is a graph with a single central vertex, denoted by c, and
k neighbors that only connect to c. These neighbors have no additional neighbors other than c. We
denote an S k star by X = {c, v1, . . . , vk} to indicate that the center is c and has k leaves, denoted by
v1, . . . , vk. If k ≥ 2, we call it a big star.

Given a graph Γ, a big star packing is given by a vertex-disjoint collection S = {Xi : 1 ≤ i ≤ k}
of (not necessarily induced) big stars Xi ⊆ V(Γ) i.e, the graph induced by Xi contains some S k with
k = |Xi| − 1 ≥ 2. By using the notation S ∈ S P(Γ), we are indicating that S is a member of the set of
all possible star packings for a graph Γ.

The following lemma was proved in [20].

Lemma 2.17. Given a graph Γ, ∂(Γ) = max{
∑

X∈S(|X| − 2) | S ∈ S P(Γ)}.

One of the main results of the work is Theorem 2.19. In its proof we need the following definition.

Definition 2.18. Given a graph Γ, an edge star packing of Γ is a collection T of stars Y ⊆ V (|Y | ≥ 2)
satisfying the following conditions:
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(1) two different stars in T correspond to different centers,
(2) if Y , Y ′ ∈ T with Y , Y ′, then E(Y) ∩ E(Y ′) = ∅,
(3) the collection of stars in T isomorphic to P2 form a matching of Γ and their vertices are not the

centers of any other star.

We denote by ES P(Γ) the collection of all edge star packings of Γ. If T ∈ ES P(Γ) and T ′ = {Y ∈
T | Y ≃ P2}, let XT ′ : T −→ {0, 1} be the characteristic function on T ′.

Theorem 2.19. Given a graph Γ,

∂(S(Γ)) = max

∑
Y∈T

(|Y | − 2 + XT ′(Y)) | T ∈ ES P(Γ)

 .
Proof. Let T ∈ ES P(Γ) and Y ∈ T . If Y ≃ P2 let us make XY = S(Y); otherwise, if Y = {c, v1, . . . , vk},
let us make XY = {c, e1, . . . , ek}, where each ei is that edge of Y that connects its center c with vi. It can
be verified that the collection ST = {XY | Y ∈ T } is a big star packing of S(Γ) such that∑

Y∈T

(|Y | − 2 + XT ′(Y)) =
∑

XY∈ST

(|XY | − 2),

and hence

max

∑
Y∈T

(|Y | − 2 + XT ′(Y)) | T ∈ ES P(Γ)

 ≤
max

∑
X∈S

(|X| − 2) | S ∈ S P(S(Γ))

 . (2.1)

On the other hand, if S ∈ S P(S(Γ)) and X ∈ S is a star isomorphic to P3 whose center is an edge
e of Γ, let YX be the star of Γ formed precisely by the ends of e. In another case, if X = {c, e1, . . . , ek},
where the center c is a vertex of Γ and each ei is an edge of Γ; if vi is the end vertex of ei that is adjacent
to c in Γ, let us denote YX = {c, v1, . . . , vk}. Thus, it can be verified that TS = {YX | X ∈ S} is an edge
star packing of Γ such that ∑

X∈S

(|X| − 2) =
∑

YX∈TS

(|YX | − 2 + XT ′S(YX)).

The aforementioned analysis indicates that the Inequality (2.1) is in fact an equality. Consequently,
the result follows from Lemma 2.17.

Figure 6 illustrates two edge star packings of Γ defined as T = {Y1,Y2,Y3} and T ′ = {Y4,Y5} where
Y1 = {v1, v2, v3}, Y2 = {v4, v3, v2, v5}, Y3 = {v2, v5}, Y4 = {v2, v1, v4, v5} and Y5 = {v3, v1, v4}. Then
ST = {X1, X2, X3} and ST ′ = {X4, X5} where X1 = {v1, e1, e2}, X2 = {v4, e5, e3, e6}, X3 = {e4, v2, v5},
X4 = {v2, e1, e3, e4} and X5 = {v3, e2, e5} are two big star packings of S(Γ).

Proposition 2.20. Let Γ be a graph of order n, then ∂(S(Γ)) ≤ n(n−1)
2 + 2 − n.
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Proof. Since Γ is a subgraph of Kn, then each edge star packing of Γ is an edge star packing of Kn, thus

∂(S(Γ)) = max

∑
Y∈T

(|Y | − 2 + XT ′(Y)) | T ∈ ES P(Γ)

 ≤
max

∑
Y∈T

(|Y | − 2 + XT ′(Y)) | T ∈ ES P(Kn)

 = ∂(S(Kn)).

By Proposition 2.4 (vi), ∂(S(Γ)) ≤ n(n−1)
2 + 2 − n.

Figure 6. Two examples of distinct edge star packings of Γ that induce two distinct big star
packings of S(Γ).

A subset S ⊆ V(Γ) of vertices in graph Γ is called a dominating set if every vertex in Γ either
belongs to S or is adjacent to at least one vertex in S . The domination number of Γ is the cardinality
of any smallest dominating set in Γ and it is denoted by γ(Γ).

Proposition 2.21. Let Γ be a graph of order n. Then ∂(S(Γ)) = n(n−1)
2 + 2 − n if and only if Γ ≃ Kn.

Proof. If Γ ≃ Kn, by Proposition 2.4 (vi) we obtain ∂(S(Γ)) = n(n−1)
2 + 2 − n.

If Γ is not an isomorphic graph to Kn, then there exist at least two vertices v, v′ ∈ V(Γ) such that
vv′ = e < E(Γ). Let P be a differential set of S(Kn). Since P is a dominating set of S(Kn), then we
consider the following cases:

Case 1: e ∈ P. By Proposition 2.4 (vi), it follows that e is the only element such that e ∈ P ∩ U.
Additionally, there exist vertices v, v′ ∈ V such that v, v′ ∈ N(e). By Proposition 2.13, we know
that v, v′ ∈ B(P). Thus, it follows that

∂(S(Γ)) ≤ |B(P)| − 2 − (|P| − 1) = ∂(S(Kn)) − 1.
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Case 2: e ∈ B(P). There exists v, v′ ∈ V such that v, v′ ∈ N(e). Notice that v, v′ < C(P), because P is a
dominating set. Therefore

∂(S(Γ)) ≤ |B(P)| − 1 − |P| = ∂(S(Kn)) − 1.

Thus, ∂(S(Γ)) and ∂(S(Kn)) are different.

Proposition 2.22. For each n ≥ 3 and n − 2 ≤ r ≤ n(n−1)
2 + 2 − n, there exists a graph Γ of order n such

that ∂(S(Γ)) = r.

Proof. We proceed to prove the proposition using induction on r being the base case when Γ ≃ S n.
Let H be a graph of order n with maximum number of edges such that ∂(S(H)) = r−1. Let v, v′ ∈ V

be non-adjacent vertices in H and let Γ = H ∪ {e} where e has v and v′ as ends. Let P be a differential
set of S(Γ) and let us examine the possible location of v, e and v′ with respect to this set, its border and
its complement.

Notice that e < CS(Γ)(P), otherwise ∂S(H)(P) = ∂S(Γ)(P) and this contradicts the choice of H.
Therefore e ∈ P or e ∈ BS(Γ)(P).

In the first case, by Proposition 2.13, P is an independent set of S(Γ), so v and v′ are in BS(Γ)(P).
The set P′ = P \ {e} has as border to BS(H)(P′) = BS(Γ)(P) \ {v, v′}, otherwise ∂(S(H)) ≥ ∂(S(Γ)),
a contradiction. Thus ∂S(H)(P′) = ∂(S(Γ)) − 1 and it follows that ∂(S(Γ)) = r. Now suppose that
e ∈ BS(Γ)(P). If v and v′ are in P, then BS(H)(P) = BS(Γ)(P) \ {e}, thus ∂S(H)(P) = ∂(S(Γ)) − 1 again, it
follows that ∂(S(Γ)) = r.

Another case occurs when an end of e, say v, is in P and the other end v′ is in BS(Γ)(P). As in
the previous case, it follows that ∂S(H)(P) = ∂(S(Γ)) − 1 and therefore ∂(S(Γ)) = r. Analogously, the
desired equality is also obtained if we assume that v ∈ P and v′ ∈ C(P).

In Figure 7 we show the subdivision of five graphs which satisfy the conditions of the Proposition
2.22, where 3 ≤ r ≤ 7.

Remark 2. Let Γ be a graph with maximum degree ∆ and P be a differential set of S(Γ). We denote the
number of edges of P by EP, the number of connecting vertices between P and B(P) by η, the number
of edges of B(P) by EB(P), the number edges of connecting vertices between B(P) and C(P) by η′ and
the number of edges of C(P) by EC(P). By Remark 1 (ii), we have:

2m = |E(S(Γ))| = EP + η + EB(P) + η
′ + EC(P). (2.2)

By Proposition 2.13, we have that P is an independent set, and hence EP = 0. Notice that 2EB(P) =∑
v∈B(P) δB(P)(v) ≤ |B(P)|(∆ − 1) and η ≤ |P|∆. Additionally, if P is a maximum differential set of S(Γ),

then {P, B(P),C(P)} satisfies that EC(P) = 0 and η′ ≤ |B(P)|.

Before we proceed to estimate a lower bound for ∂(S(Γ)) involving γ(S(Γ)), consider the following
result that appears in [19].

Lemma 2.23. If P is a differential set of a graph Γ, then |P| ≤ γ(Γ).

Proposition 2.24. Let Γ be a graph of size m and maximum degree ∆, then

4m ≤ (∆ + 1)∂(S(Γ)) + (3∆ + 1)γ(S(Γ)).
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Figure 7. These graphs have differential 3, 4, 5, 6 and 7, respectively.

Proof. Let P be a maximum differential set of S(Γ). Using Eq (2.2) it follows that

2m = η + EB(P) + η
′ ≤ |P|∆ +

|B(P)|(∆ − 1)
2

+ |B(P)|,

thus

4m ≤2|P|∆ + |B(P)|(∆ − 1) + 2|B(P)|
=2|P|∆ + |B(P)|∆ + |B(P)|
=|B(P)|(∆ + 1) − |P|(∆ + 1) + (3∆ + 1)|P|
≤(∆ + 1)∂(S(Γ)) + (3∆ + 1)γ(S(Γ)).

For the next two results, we will return to the definition of an edge star packing. To denote that set
P is the set of vertices that are star centers of an edge star packing T , we will use the notation T (P).
We call an edge star packing T ∈ ES P(Γ) a differential edge star packing if it achieves the differential
of the graph, i.e., if ∂(T ) = ∂(Γ). A maximum differential edge star packing is a differential edge star
packing of maximum cardinality, i.e., if it contains the highest possible number of stars among all sets
of vertices in consideration. Let max ES P(Γ) be the collection of all maximum differential edge star
packings of Γ.

Proposition 2.25. Let Γ be a graph of order n, then:

(i) for every edge star packing T (P) ∈ max ES P(Γ) satisfies δC(P)(v) ≤ 1 for every v ∈ B(P),
(ii) there exists an edge star packing T (P) ∈ max ES P(Γ) such that B(P) is a dominating set of Γ.
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Proof. (i) If there exists Y = {c, v1, . . . , vk} ∈ T (P) such that {c1, c2} ⊆ N(v1) ∩ C(P), then we have
the following cases: if k = 1, 2, ∂((P\{c}) ∪ {v1}) > ∂(P), a contradiction. If k ≥ 3, we consider
Y ′ = {c, v2, . . . , vk} and Y ′′ = {v1, c1, c2}, then (T (P)\{Y}) ∪ {Y ′,Y ′′} gives the same differential with an
increased number of stars, a contradiction.

(ii) If there exists a vertex v ∈ C(P) which is not dominated by vertices in B(P), then there must
exists another vertex v′ ∈ C(P) and Y = {c, v1, . . . , vk} ∈ T (P) such that v′ is adjacent to v and v1, so
we have again the following cases: If k = 1, then ∂((P\{c}) ∪ {v1}) > ∂(P), a contradiction. If k = 2
we can take P′ = (P\{c}) ∪ {v1}, Y ′ = {v1, c, v′} and form T (P′) = (T (P)\{Y}) ∪ {Y ′}. Now, the vertex
v is adjacent to an element of B(P′). If k ≥ 3, we consider Y ′ = {c, v2, . . . , vk} and Y ′′ = {v′, v1, v}, then
(T (P)\{Y}) ∪ {Y ′,Y ′′} gives the same differential with a larger number of stars, which contradicts the
assumption that T (P) has the maximum number of stars.

Theorem 2.26. If Γ is a graph with size m ≥ 2 and maximum degree ∆, then⌈ 4m
3∆ + 2

⌉
≤ ∂(S(Γ)) ≤ m − 1.

Proof. If we take an edge star packing T (P) ∈ max ES P(Γ). By Proposition 2.25, we have that
δC(P)(y) ≤ 1 for every y ∈ B(P) and δC(P)(w) ≤ 1 for every w ∈ C(P). Moreover, in the proof of
Proposition 2.25 it was show that there is not any edge in C(P) adjacent to a star Y = {c, v1, . . . , vk}

(k , 2) and, since B(P) is a dominating set, an edge in C(P) adjacent to a star Y ′ = {c′, v′1, v
′
2} would

provide an induced subgraph isomorphic to C5. In consequence, if Γ is a C5-free graph, then we have∑
w∈C(P) δ(w) ≤ |B(P)|, therefore

2m =
∑
x∈P

δ(x) +
∑

y∈B(P)

δ(y) +
∑

w∈C(P)

δ(w)

≤ ∆|P| + ∆|B(P)| + |B(P)|
= ∆|P| + (∆ + 1)|B(P)|
= (2∆ + 1)|P| + (∆ + 1)|B(P)| − (∆ + 1)|P|
= (2∆ + 1)|P| + (∆ + 1)∂(Γ).

Since |P| ≤ ∂(Γ), we can derive that 2m ≤ ∂(Γ)(3∆ + 2), thus ∂(Γ) ≥ 2m
3∆+2 . Now, since g(S(Γ)) ≥ 6,

S(Γ) is a C5-free graph, then ∂(S(Γ)) ≥ 4m
3∆+2 .

For the other inequality, let P ⊆ V(S(Γ)). Being S(Γ) a bipartite graph with bipartition {V,U}, where
|V | = n and |U | = m, and together with the property that δ(e) = 2 for all e ∈ U we conclude that

∂(P) = |B(P)| − |P| ≤ m − |P| ≤ m − 1.

Conclusions

In this paper, we have explored the differential of graphs with respect to the subdivision operator
S(Γ), and we have derived upper and lower bounds for the differential ofS(Γ) based on graph invariants
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such as order, size, and maximum degree. We have also investigated the realizability of graphs for
different values of the differential of S(Γ) within the interval

[
n − 2, n(n−1)

2 − n + 2
]
, and proposed a

closed formula based on the edge star packing notion (Definition 2.18). Our findings include exact
values of the differential of S(Γ) for several families of graphs (Propositions 2.2 and 2.4).

Overall, our study has contributed to a better understanding of the differential of graphs on the
subdivision operator S(Γ), and has provided useful tools for analyzing and characterizing different
graph structures.

Final comments

The concept of differential has been extensively studied in graph theory
( [17, 18, 22, 23, 27, 29, 31, 32, 34]), and our work has contributed new results regarding the differential
of graphs on the subdivision operator S(Γ). Our findings emphasize the importance of investigating
graph operators and their corresponding parameters, which allows us to better understand the
behavior of graphs. Additionally, our results can be used to analyze various graph structures.
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