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Abstract: Pressure in arteries is difficult to measure non-invasively. Although computational fluid 
dynamics (CFD) provides high-precision numerical solutions according to the basic physical equations 
of fluid mechanics, it relies on precise boundary conditions and complex preprocessing, which limits 
its real-time application. Machine learning algorithms have wide applications in hemodynamic 
research due to their powerful learning ability and fast calculation speed. Therefore, we proposed a 
novel method for pressure estimation based on physics-informed neural network (PINN). An ideal 
aortic arch model was established according to the geometric parameters from human aorta, and we 
performed CFD simulation with two-way fluid-solid coupling. The simulation results, including the 
space-time coordinates, the velocity and pressure field, were obtained as the dataset for the training 
and validation of PINN. Nondimensional Navier-Stokes equations and continuity equation were 
employed for the loss function of PINN, to calculate the velocity and relative pressure field. Post-
processing was proposed to fit the absolute pressure of the aorta according to the linear relationship 
between relative pressure, elastic modulus and displacement of the vessel wall. Additionally, we 
explored the sensitivity of the PINN to the vascular elasticity, blood viscosity and blood velocity. 
The velocity and pressure field predicted by PINN yielded good consistency with the simulated 
values. In the interested region of the aorta, the relative errors of maximum and average absolute 
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pressure were 7.33% and 5.71%, respectively. The relative pressure field was found most sensitive to 
blood velocity, followed by blood viscosity and vascular elasticity. This study has proposed a method 
for intra-vascular pressure estimation, which has potential significance in the diagnosis of 
cardiovascular diseases. 

Keywords: hemodynamics; fluid-structure interaction; physics-informed neural network; absolute 
pressure; aorta 
 

1. Introduction  

Abnormal cardiovascular flow is closely related to many cardiovascular diseases [1,2]. For example, 
the hemodynamic parameters in the aorta are of great significance for monitoring, diagnosis and surgical 
planning of aortic dissection, valve malformation and so on. It may reveal the mechanism, provide 
diagnostic indicators and evaluate treatment effects for cardiovascular diseases. 

Direct measurement and computational fluid dynamics (CFD) have been possible methods for 
providing hemodynamic information in the cardiovascular system from different perspectives. For 
example, Swan and Ganz [3] proposed to send the catheters from peripheral arteries to the aorta, the 
end of which was connected to a monitoring manometry system to automatically display blood 
pressure values. Although the method is considered as the gold standard for intra-vascular pressure 
measurement, it is an invasive operation, limiting its application [4]. In recent years, non-invasive 
measurement technology has gradually been widely used in clinical practice, such as color Doppler 
flow imaging, 4D-flow magnetic resonance technology (4D-flow MRI) and so on. Through medical 
image processing [5–7], the non-invasive measurement of blood flow can provide more hemodynamic 
parameters, such as flow patterns, blood velocity, wall shear stress, etc., which can help doctors 
quantitatively diagnose vascular diseases. 

However, non-invasive measurement has some limitations; for example, some key variables, such 
as pressure, are difficult to acquire. Therefore, CFD has received extensive attention in the field of 
hemodynamics. Blood flow in the circulatory system can be described by Navier-Stokes (NS) 
equations, which describe a highly nonlinear system in the form of partial differential equations (PDE). 
CFD makes PDE into algebraic equation groups through approximating the integral and differential 
terms to obtain numerical solutions at discrete time/space points. CFD combined with imaging 
technology can obtain the hemodynamic parameters of the flow in vessels. Recently, CFD has been 
used in the simulation of blood flow in different arteries of the human body [8–11]. However, there 
are some shortcomings, such as cumbersome preprocessing and high computational cost, which limit 
its application in clinical practice. 

Recently, machine learning has shown more and more potential in the study of fluid mechanics. 
The current research on fluid mechanics based on neural networks is mainly divided into two 
categories: data-driven [12–15] and physics-informed [16–20]. Data-driven neural networks receive 
as input geometric features of vessels, and one expects to obtain the flow field solution by training the 
network with CFD simulation data. This method has higher requirements on the volume of dataset. At 
the same time, the training of the network requires a large amount of CFD calculation results as label 
data. The physics-informed neural network (PINN) is another approach to apply machine learning 
techniques to hemodynamic estimation. It integrates the fluid dynamics into the neural network, by 
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adding a set of PDE to the objective function of the optimization process. Similar networks have been 
developed to solve PDE problems not only in fluid mechanics, but also in electrical physics and 
molecular dynamics [21–23]. For example, Samaniego et al. explored deep neural networks as an 
option to approximate the solution of PDE in mechanical problems, by using the energy of a 
mechanical system as the loss function for a machine learning method. This method reduces the 
demand for data volume but increases the interpretability of neural networks. 

The present work proposes a novel framework based on PINN [16,18] for estimating the absolute 
pressure in an ideal model of aorta. First, an ideal finite element model was established according to 
the parameters of the human aorta. The space coordinates, time and 3-dimensional velocity field 
required were obtained through two-way fluid-solid coupling algorithm. We preprocessed the above 
data and input it into the PINN to predict the relative pressure. Finally, the absolute pressure in aorta 
was obtained by fitting the relationship between wall displacement, vascular elastic modulus and 
relative pressure. On this basis, we also explored the sensitivity of the model to physical parameters 
such as blood velocity, vascular elasticity and blood viscosity. Compared with CFD, this method can 
directly use geometric information and flow field to predict absolute pressure. The advantage of the 
framework is agnostic to the geometry or the initial and boundary conditions, independent on the 
imposition of boundary conditions [18,24]. 

The main innovations of this work can be summarized in the following aspects: 
1) As far as we know, this is a novel method to estimate pressure field with flow field and the 

displacement of vessel wall based on PINN. In addition, a post-processing step is added to calculate 
the absolute pressure in the vessel. 

2) This paper explored the sensitivity of the network to physical parameters such as blood velocity, 
vascular elasticity and blood viscosity, revealing the stability of this network for pressure estimation. 

2. Materials and methods 

2.1. Two-way fluid-solid interaction 

In this paper, we established an ideal aortic model based on real human data (Figure 1(a)) and 
performed fluid-solid-interaction (FSI) simulation to provide labeled data for a physically constrained 
machine learning network. The cross-sectional area of the blood vessel was about 2.27 ൈ 10ିସ mଶ. 
The thickness of the vessel wall was assumed to be constant for the solid domain, taking the value 
of 1.2 ൈ 10ିଷ m. The blood was assumed as incompressible laminar Newtonian fluid, while the vessel 
wall was simplified to linear elastic material. The FSI interface of the vessel satisfied the no-slip 
condition. Therefore, the movement of blood flow in the aorta satisfied the continuity equation and 
the 3-dimensional NS equation: 

∇ ∙ 𝐯 ൌ 0                                                                               (2.1) 

డ𝐯

డ௧
൅ ሺ𝐯 ∙ ∇ሻ𝐯 ൌ െ ଵ

ఘ
∇𝑝 ൅ ఓ

ఘ
∇ଶ𝐯                                                     (2.2) 

where v represents the blood flow velocity. In addition, t and p represent the time and the blood flow 
pressure, respectively, while ρ and μ denoted the density and viscosity of the blood, respectively. 
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The energy transfer equation at the FSI interface was as follows: 

 𝑑௦ ൌ 𝑑௙                                                                                (2.3) 

𝝈𝒔 ∙ 𝒏𝒔 ൌ 𝝈𝒇 ∙ 𝒏𝒇                                                                        (2.4) 

where 𝑑௦  was the displacement at the solid boundary, and 𝑑௙  was the displacement at the fluid 

boundary. 𝒏𝒔 and 𝒏𝒇 were the normal vectors at the solid and fluid boundary, respectively. 𝝈𝒔 and 𝝈𝒇 

were the stress tensors at the vessel wall and fluid boundary, respectively. 
The vessel wall satisfied the linear elasticity equation: 

𝝈𝒔 ∙ 𝒏𝒔 ൌ 𝐾 ∙ 𝑑௦                                                                         (2.5) 

where K was the equivalent stiffness of the vessel wall. 

 

Figure 1. The ideal model of the aortic arch: (a) The ideal aortic arch model. (b) The fluid 
domain unit. The number of grids is 322,430. (c) The solid domain unit. The number of 
grids is 269,979. (d) The points selected for the validation of PINN. (e) The sample point 
set (brown points) used to fit the absolute pressure. (f) The test points for the validation of 
absolute pressure estimation. The red points correspond to 1-vessel inlet segment. The 
green points correspond to 2-vessel middle segment. The purple points correspond to 3-
vessel outlet segment. 

The finite element model of the aorta used tetrahedron elements to mesh the model. The fluid and 
solid domains of the model are shown in Figure 1(b),(c). The blood density was set to 1050 kg/mଷ. Blood 
viscosity coefficient was 0.0035 Pa∙s. The elastic modulus of the blood vessel wall was 1.8 MPa. The 
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blood vessel density was 1060 kg/mଷ, and Poisson’s ratio was 0.45. 
The blood in the vessel was a pulsatile flow. Therefore, the inlet of the vessel was set as a pulsatile 

speed function with a cardiac cycle of 0.8 s (Figure 2). The outlet was set as a free flow where the 
pressure was 0 Pa. For the solid domain, the inlet and outlet part of the vessel wall was fixed. The 
simulation was calculated for 4 cardiac cycles (0.8 s per cardiac cycle). The data from the last cycle 
was considered as the final simulation result. The calculation step was set to be 0.005 s. 

 

Figure 2. Velocity waveform of the inlet boundary of the aortic arch: Each cardiac cycle is 0.8 s. 

2.2. Physics-informed neural networks 

The physics-informed neural networks were to add the physical PDE equations describing the 
blood flow (3-dimensional NS equation and continuity equation) to the network framework as residual 
loss function in the network. The solutions of these PDE were obtained by training the network. The 
network defined the following mapping relationship: 

ሾ𝑥, 𝑦, 𝑧, 𝑡ሿ ⟼ ሾ𝑢ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ, 𝑣ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ, 𝑤ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ, 𝑝ሺ𝑥, 𝑦, 𝑧, 𝑡ሻሿ                        (2.6) 

The network loss function included measurement residual term, NS equation residual term and 
continuity equation residual term. The measurement residual term encouraged the output of the neural 
network u, v, and w to match the values of FSI calculation. The measurement loss function was 
expressed as follows: 

𝐿௠௘௔௦௨௥௘௠௘௡௧ ൌ ଵ

ே
∑ ሾሺ𝑢ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ െ 𝑢ොሺ𝑥, 𝑦, 𝑧, 𝑡ሻሻଶ ൅ ሺ𝑣ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ െ 𝑣ොሺ𝑥, 𝑦, 𝑧, 𝑡ሻሻଶ ൅ே

௜ୀଵ

ሺ𝑤ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ െ 𝑤ෝሺ𝑥, 𝑦, 𝑧, 𝑡ሻሻଶሿ                                               (2.7) 

where N was the number of sampling points in the blood vessel. 
The NS equation loss function was as follows: 

𝐿ேௌ ൌ ଵ

ே
∑ ሺே

௡ୀଵ 𝑒ଵ ൅ 𝑒ଶ ൅ 𝑒ଷሻଶ                                                            (2.8) 
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where 

𝑒ଵ ൌ 𝜌 ∙ ቀడ௨

డ௧
൅ 𝑢 ∙  డ௨

డ௫
൅ 𝑣 ∙ డ௨

డ௬
൅  𝑤 ∙ డ௨

డ௭
ቁ ൅ డ௣

డ௫
െ 𝜇 ∙ ቀడమ௨

డ௫మ ൅ డమ௨

డ௬మ ൅ డమ௨

డ௭మቁ, 

𝑒ଶ ൌ 𝜌 ∙ ቀడ௩

డ௧
൅ 𝑢 ∙  డ௩

డ௫
൅ 𝑣 ∙ డ௩

డ௬
൅  𝑤 ∙ డ௩

డ௭
ቁ ൅ డ௣

డ௬
െ 𝜇 ∙ ቀడమ௩

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௩

డ௭మቁ,                            (2.9) 

𝑒ଷ ൌ 𝜌 ∙ ቀడ௪

డ௧
൅ 𝑢 ∙  డ௪

డ௫
൅ 𝑣 ∙ డ௪

డ௬
൅  𝑤 ∙ డ௪

డ௭
ቁ ൅ డ௣

డ௭
െ 𝜇 ∙ ቀడమ௪

డ௫మ ൅ డమ௪

డ௬మ ൅ డమ௪

డ௭మ ቁ. 

The continuity loss function was as follows: 

𝐿௖௢௡௧௜௡௨௢௨௦ ൌ ଵ

ே
∑ ሺ𝑢௫ ൅ 𝑣௬ ൅ 𝑤௭ሻଶே

௜ୀଵ                                                      (2.10) 

Combining all loss function terms, the loss function of our PINN took the following form: 

𝐿𝑜𝑠𝑠 ൌ 𝐿௠௘௔௦௨௥௘௠௘௡௧ ൅ 𝐿ேௌ ൅ 𝐿௖௢௡௧௜௡௨௢௨௦                                          (2.11) 

In order to eliminate the influence of different physical quantity units and numerical values in the 
equation on the convergence speed of the network and speed up the training process, 
nondimensionalization and normalization was performed to the input of the network. Two 
characteristic variables commonly used in multi-scale physical models were introduced here: 
characteristic length L and characteristic velocity U. The diameter of the equilibrium cross-sectional 
area of the blood vessel was chosen as the characteristic length L; while the time-averaged velocity 
at the inlet was the characteristic velocity U. The variable form after becoming dimensionless was 

𝑢෤ ൌ ௨

௎
; 𝑣෤ ൌ ௩

௎
; 𝑤෥ ൌ ௪

௎
; 𝑝෤ ൌ ௣

௣బ
; 𝑥෤ ൌ ௫

௅
; 𝑦෤ ൌ ௬

௅
; 𝑧̃ ൌ ௭

௅
; 𝑡̃ ൌ ௧

்
;                        (2.12) 

where 𝑝଴ ൌ 𝜌𝑈ଶ，𝑇 ൌ ௅

௎
. 

The network input variables x, y, z, t were standardized to the range (0,1) by the Z-Score 
method, namely, 

𝑥∗ ൌ ௫෤ିఓ෥ೣ

ఙ෥ೣ
; 𝑦∗ ൌ

௬෤ିఓ೤෥

ఙ೤෥
; 𝑧∗ ൌ ௭෤ିఓ೥෤

ఙ೥෤
; 𝑡∗ ൌ

௧ሚିఓ೟෨

ఙ೟෨
;                                              (2.13) 

After the variables were nondimensionalized, the hemodynamic parameters estimated by the 
network were also nondimensional, which showed a need to multiply the nondimensionalization 
parameters before the final output, namely,  

𝑢ො ൌ 𝑢෤𝑈; 𝑣ො ൌ 𝑣෤𝑈; 𝑤ෝ ൌ 𝑤෥𝑈; 𝑝̂ ൌ 𝑝෤𝑝଴.                                                   (2.14) 

At the same time, the loss function of the network would also change to the nondimensional form. 
The revised loss function of NS equation was 

𝐿ேௌ ൌ ଵ

ே
∑ ሺ𝑒ଵ

ᇱ ൅𝑒ଵ
ᇱ ൅ 𝑒ଵ

ᇱ ሻଶே
௡ୀଵ                                                            (2.15) 
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where 

𝑒ଵ
ᇱ ൌ  

ଵ

ఙ೟෨
∙

డ௨෥

డ௧∗
൅ 

ଵ

ఙ෥ೣ
∙ 𝑢෤ ∙

డ௨෥

డ௫∗
൅

ଵ

ఙ೤ෝ
∙ 𝑣෤ ∙

డ௨෥

డ௬∗
൅ 

ଵ

ఙ೥ො
∙ 𝑤෥ ∙

డ௨෥

డ௭∗
 ൌ െ

ଵ

ఙ෥ೣ
∙

డ௣෤

డ௫∗
൅ 𝑅𝑒ିଵ ൬

ଵ

డమ
෥ೣ

∙
డమ௨෥

డ௫∗
మ ൅

ଵ

డమ
೤෥

∙
డమ௨෥

డ௬∗
మ ൅

ଵ

డమ
೥෤

∙
డమ௨෥

డ௭∗
మ൰; 

𝑒ଶ
ᇱ ൌ  

ଵ

ఙ೟෨
∙

డ௨෥

డ௧∗
൅ 

ଵ

ఙ෥ೣ
∙ 𝑢෤ ∙

డ௨෥

డ௫∗
൅

ଵ

ఙ೤ෝ
∙ 𝑣෤ ∙

డ௨෥

డ௬∗
൅ 

ଵ

ఙ೥ො
∙ 𝑤෥ ∙

డ௨෥

డ௭∗
 ൌ െ

ଵ

ఙ෥ೣ
∙

డ௣෤

డ௫∗
൅ 𝑅𝑒ିଵ ൬

ଵ

డమ
෥ೣ

∙
డమ௨෥

డ௫∗
మ ൅

ଵ

డమ
೤෥

∙
డమ௨෥

డ௬∗
మ ൅

ଵ

డమ
೥෤

∙
డమ௨෥

డ௭∗
మ൰;(2.16) 

𝑒ଷ
ᇱ ൌ  

ଵ

ఙ೟෨
∙

డ௨෥

డ௧∗
൅ 

ଵ

ఙ෥ೣ
∙ 𝑢෤ ∙

డ௨෥

డ௫∗
൅

ଵ

ఙ೤ෝ
∙ 𝑣෤ ∙

డ௨෥

డ௬∗
൅ 

ଵ

ఙ೥ො
∙ 𝑤෥ ∙

డ௨෥

డ௭∗
 ൌ െ

ଵ

ఙ෥ೣ
∙

డ௣෤

డ௫∗
൅ 𝑅𝑒ିଵ ൬

ଵ

డమ
෥ೣ

∙
డమ௨෥

డ௫∗
మ ൅

ଵ

డమ
೤෥

∙
డమ௨෥

డ௬∗
మ ൅

ଵ

డమ
೥෤

∙
డమ௨෥

డ௭∗
మ൰. 

The modified loss function of continuity equation was 

𝐿௖௢௡௧௜௡௨௢௨௦ ൌ ଵ

ே
∑ ሺ ଵ

ఙ෥ೣ
∙ డ௨෥

డ௫∗

ே
௡ୀଵ ൅  ଵ

ఙ೤෥
∙ డ௩෤

డ௬∗
൅  ଵ

ఙ೥෤
∙ డ௪෥

డ௭∗
ሻଶ                                   (2.17) 

Finally, different weights were assigned to the 3 terms of the loss function: 

𝐿𝑜𝑠𝑠 ൌ 𝑤ଵ𝐿௠௘௔௦௨௥௘௠௘௡௧ ൅ 𝑤ଶ𝐿ேௌ ൅ 𝑤ଷ𝐿௖௢௡௧௜௡௨௢௨௦                                     (2.18) 

where 𝐿ேௌ and 𝐿௖௢௡௧௜௡௨௢௨௦ were defined by Eqs (2.15) and (2.17); w1:w2:w3 was fixed to 1:3:3 in this study. 
The network was trained by the simulation data obtained from the finite element model of aorta. 

The simulated velocity and pressure could be regarded as physical quantities in the 4-dimensional 
space composed of space and time. There were 321 frames of velocity and pressure map in the time 
dimension, because the simulation data was obtained from a cardiac cycle (0.8 s), in which the interval 
between frames was 0.0025 s. The sampling points in the aortic model domain were 64,833, i.e., the total 
sample size was 321 × 64,833. These sample points were randomly divided in space according to the 
ratio of 3:1. The size of the training set was 321 × 48,625 and the size of the test set was 321 × 16,208. 
The network framework included an input layer, 10 hidden layers and an output layer. Each hidden 
layer had 50 neurons for each variable, and the batch size was 10,000. Mathematically, two adjacent 
layers are connected as 

𝑥௟ ൌ 𝜎௟ሺ𝐖𝒍 ∙ 𝑥௟ିଵ ൅ 𝑏௟)                                                       (2.19) 

where Wl and bl represented the weights vector and bias; the subscript l denoted the index of the layer; 
𝜎௟ was the activation function expressed as a swish function: 

swishሺ𝑥ሻ ൌ 𝑥 ∙ sigmoidሺ𝑥ሻ ൌ 𝑥/ሺ1 െ eି௫ሻ                                   (2.20) 

The learning rate 𝜂 ൌ 10ିଷ. The training lasted 30 h, using tensorflow on Intel(R) Xeon(R) GPU E5-2650 
v4 @2.20 GHz training. 

In this paper, the prediction results of the velocity field and pressure field from the network were 
compared with the ground value, which was obtained from the simulation results. In order to further 
evaluate the network performance, 9 points were selected from the inlet to the outlet of the model for 
quantitative evaluation. The 9 points were all located on the centerline of the model (Figure 1(d)). The 
relative 𝐿ଶ  error proposed by Raissi et al. was measured and the root mean square error (RMSE) as 
quantitative evaluation indicators [21]. The relative 𝐿ଶ error was calculated as follows: 

𝜀ሺ𝑓, 𝑔ሻ ൌ ሺଵ

ே
∑ ሾ𝑓ሺ𝑥௜ሻே

௜ୀଵ െ 𝑔ሺ𝑥௜ሻሿଶሻ/ሺଵ

ே
∑ ሾ𝑔ሺ𝑥௜ሻே

௜ୀଵ െ ଵ

ே
∑ 𝑔ሺ𝑥௜ሻሿଶே

௜ୀଵ ሻ                      (2.21) 
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where f was the predicted value; g was the ground value. ሼ𝑥௜: 𝑖 ൌ 1,2,3 … 𝑁ሽ was the spatial sample 
point. The RMSE was calculated as follows: 

𝑅𝑀𝑆𝐸 ൌ ට ଵ

ெ
∑ ሾ𝑓ሺ𝑥௝ሻ െ 𝑔ሺ𝑥௝ሻሿଶெ

௜ୀଵ                                                             (2.22) 

 

Figure 3. Physically constrained neural network framework. 

2.3. Absolute pressure 

The postprocessing of PINN was proposed to calculate absolute pressure from relative pressure 
obtained from PINN (Figure 4). In most cases, the absolute pressure was of more significance in 
clinical diagnosis. The pressure calculated by two-way FSI simulation was absolute pressure, which 
theoretically differed from the relative pressure predicted by the network with a constant term, namely: 

𝑃௔௕௦ ൌ 𝑃௥௘௟ ൅ 𝑏                                                                     (2.23) 

where 𝑃௔௕௦  denoted the absolute pressure value, 𝑃௥௘௟  was the relative pressure value, and b was a 
constant term. The absolute pressure could be calculated with the displacement and the equivalent 
stiffness of the blood vessel wall: 

𝑃௔௕௦ ൌ 𝐾 ∙ 𝑛                                                                        (2.24) 

where K denoted the equivalent stiffness of vessel, which equaled the elastic modulus multiplied by 
a length eigenvalue; and n was the normal displacement of the blood vessel wall. From Eqs (2.23) 
and (2.24), we could get: 

𝑃௥௘௟ ൌ 𝐾 ∙ 𝑛 െ 𝑏                                                                     (2.25) 
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Figure 4. Fitting absolute pressure: the red box is the process of fitting 𝜁; the blue box is 
the process of fitting absolute pressure. 

By fitting the b value of Eq (2.25), the 𝑃௔௕௦ could be calculated according to the 𝑃௥௘௟ predicted 
by the network. 

However, the inlet and outlet of the blood vessel model was fixed during the FSI simulation, and 
the equivalent stiffness 𝐾෡ in Eq (2.26) was larger than the theoretic value K. It was assumed that there 
was a scaling factor between the real elastic modulus E and the equivalent stiffness 𝐾෡. To solve this 
problem, 𝐾෡  was estimated before the absolute pressure calculation. A scaling factor 𝜁 was added, 
making the relationship between the real elastic modulus and equivalent stiffness as follows:  

𝐾෡ ൌ 𝐸 ∗ 𝜁                                                                                 (2.26) 

In order to estimate 𝜁, the data points at the midsection of the vessel were selected to fit 𝜁 from 
Eq (2.26) (Figure 1(e)). The correction coefficient was determined by reducing the gap between the 
theoretical absolute pressure and the simulated absolute pressure gradually. The corresponding steps 
were as follows: 

The relative distance between the absolute pressure and the simulated absolute pressure was 

defined as ൌ |௉ೌ್ೞ෣ ି௉ೌ್ೞ|

௉ೌ್ೞ
. Adjust 𝜁 each time in the direction of reducing ε, until the relative distance 

𝜀 ൏ 10% or ∆𝜀 ൏ 1%. The update formula of 𝜁 was as follows: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝜁 ൌ 𝜁 ∗ ሺ1 േ 0.01ሻ                                                           (2.27) 
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The vessel was divided into 3 parts according to the position, in which the midsection was used to 
fit the correction coefficient and absolute pressure, with the other 2 parts to verify the result. In this paper, 
we used Arabic numerals to mark 3 test sets: 1-vessel inlet segment, 2-vessel middle segment, 3-vessel 
outlet segment. Thirty points were randomly selected in each segment to evaluate the predicted 
absolute pressure (Figure 1(f)). 

2.4. Sensitivity analysis 

In the work, the sensitivity of PINN was tested with 3 parameters, including vascular elasticity, 
blood viscosity and blood velocity, which usually varied greatly between patients. The sensitivity index 
was defined as the ratio of the relative change of the average RMSE to the relative change of the 
physical parameter (Eq (2.28)). The higher the index, the more sensitive PINN was to this parameter. 
Each variable was changed to 5 levels to calculate the sensitivity index (Table 1). The range of the 
parameters referred to published literature, corresponding to the different pathological statuses, such 
as hyperlipidemia and atherosclerosis [25,26]. 

𝜏 ൌ |∆ோெௌா|

ோெௌா
/ |∆௫|

௫
                                                                     (2.28) 

where τ was sensitivity index; 𝑥 were physical parameters such as blood flow velocity, blood viscosity 
or elastic modulus. 

Table 1. Physical parameter settings for sensitivity analysis. 

Group 1 2 3 4 5 
peak blood velocity (m/s) 0.4 0.6 0.8 1.0 1.2
blood viscosity (Pa·s) 0.0025 0.0030 0.0035 0.0040 0.0045
vascular elasticity (Mpa) 1.0 1.4 1.8 2.2 2.7

The method of migration learning was used to reduce the time cost of training. The model with 
the data of Group 3 was used as the pre-training model. The network of remaining groups was fine-
tuned on the basis of the pre-trained model. The process could be defined as: 

𝐷ሺ𝑠ሻ ൌ ሼ𝜒, 𝑃ሺ𝜒ሻሽ, 𝐷ሺ𝑡ሻ ൌ ሼ𝜒, 𝑃ሺ𝜒ሻሽ                                                   (2.29) 

where 𝐷ሺ𝑠ሻ was the source domain; 𝐷ሺ𝑡ሻ was the target domain; 𝜒 was the feature space of domain 
data; 𝑃ሺ𝜒ሻ  was the marginal probability distribution corresponding to the domain data feature 
space (Figure 5). 

The data of group 3 was considered as the source domain 𝐷ሺ𝑠ሻ, and the remaining group data 
was as the target domain 𝐷ሺ𝑡ሻ. In this work, 𝐷ሺ𝑠ሻ ് 𝐷ሺ𝑡ሻ, but the learning tasks of the source domain 
and the target domain were the same. So, the architecture and weight parameters of the pre-training 
model were kept as the learning starting point of the second task model. In order to avoid oscillation 
in the fine-tuning process, a smaller learning rate was used in fine-tuning training. The learning rate 
𝜂 ൌ 10ିହ, and the batchsize was adjusted to 5000. 
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Figure 5. Flow chart of transfer learning. 

Migration learning on the basis of the pre-trained model was performed for 1, 20 and 30 hours, 
respectively. The duration for migration learning was determined by comparing the loss-iteration curve 
of migration learning and the average RMSE of the prediction results of 9 test points.  

3. Results 

3.1. Two-way fluid-solid interaction 

 

Figure 6. The simulation results of two-way fluid-solid interaction at the time of peak 
velocity (t = 2.475 s); (a) velocity cloud (Unit: m/s); (b) displacement cloud (Unit: m); (c) 
pressure cloud (Unit: Pa). 

FSI simulation reached convergence after about 48 hours. Figure 6 shows the velocity contour, 
displacement contour and pressure contour at the peak moment of blood flow velocity in the fourth 
cardiac cycle (t = 2.475 s) of two-way fluid-solid interaction. It could be found that the flow velocity 
calculated by the PINN conformed to the Poiseuille flow. The blood flow velocity at the center was 
relatively high, and the blood flow velocity near the wall was close to 0, which was consistent with the 
no-slip setting of the wall in our simulation. Since the inlet and outlet were set with displacement 
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constraints, the displacement of the vessel was 0 at the inlet and outlet. The pressure basically had a 
gradient distribution from the inlet to the outlet. The pressure near the outlet was 0, which met the 
outlet boundary conditions set during the simulation. The distribution of velocity and pressure and the 
gradient showed good consistency with the pattern reported already [27–29]. 

3.2. Flow field estimated by PINN 

Figure 7 shows the result profile of test set at the peak velocity moment (t = 2.475 s). It showed 
that, comparing with the ground value, the network prediction results and the simulation data showed 
good consistency in light of the velocity amplitude and the pressure gradient distribution. It should be 
noted that the bias between the pressure fields obtained by PINN and simulation was relatively large, 
because NS equations included in the loss function of PINN only revealed the relationship between 
the velocity of flow and the relative pressure, instead of the absolute pressure.  

 

Figure 7. Comparison between velocity and pressure results obtained by PINN and 
simulation at t = 2.475 s. The first line denotes the velocity field (unit: m/s); the second 
denotes the pressure field (unit: Pa). (a)–(e) represent the simulated velocity field, the 
velocity estimated by PINN with the training set, the velocity estimated by PINN with the 
test set, the bias of velocity from the training set, the bias of velocity from the test set, 
respectively. (f)–(j) represent the simulate pressure field, the pressure estimated by PINN 
with the training set, the pressure estimated by PINN with the test set, the bias of pressure 
from the training set, the bias of pressure from the test set, respectively. 

Figure 7 showed the performance of flow field estimation in the whole test set. In order to evaluate 
the results quantitatively, 9 points were selected from the test set (Figure 1(d)). A comparison 
waveform between the predicted value and the ground value in a cardiac cycle is drawn in Figure 8. 
Theoretically, there was a constant difference between the predicted pressure and the simulated 
pressure. In order to better display the results, we normalized the simulated and predicted values of the 
pressure to limit their size in the same range. 



11557 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 11545–11567. 

 

Figure 8. Comparison between velocity and pressure obtained by PINN and FSI 
simulation at 9 test points. (a) The velocity in x, y, z directions, namely u, v, w (m/s). u and 
w are perpendicular to the inlet velocity; v is parallel to the inlet velocity. (b) The 
normalized pressure. The abscissa is time: t (s). 
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It could be seen from Figure 8 that the predicted velocities in x, y, z directions were basically 
consistent with the ground values, where only small errors could be observed at very few moments. 
The result also showed that the normalized pressure value of points 1–6 is consistent with the ground 
value. There was a certain error at t ∈ (2.8 s, 3.2 s), but the relative value of the error was acceptable. 
The waveform of normalized predicted pressure at points 7–9 was similar to the ground value, but 
there was a large phase difference, which might be because the pressure of the points near the outlet 
was greatly affected by the outlet boundary conditions. At the same time, the RMSE of the velocity 
prediction in each direction at 9 points is shown in Table 2. 

Table 2. RMSE of Estimated velocity in x, y, z directions of 9 test points. 

Points u v w Velocity Amplitude 
1 0.0138 0.0415 0.0056 0.0409 
2 0.0088 0.023 0.0055 0.0229 
3 0.0235 0.0772 0.0014 0.0803 
4 0.0825 0.0776 0.0031 0.1112 
5 0.1282 0.0167 0.0025 0.1280 
6 0.0882 0.1381 0.0023 0.1618 
7 0.0169 0.0982 0.0006 0.0983 
8 0.0185 0.0724 0.0006 0.0746 
9 0.0093 0.0352 0.0005 0.0362 
Mean 0.0433  0.0644 0.0025 0.0838 

The average predicted RMSE of the 9 test points in x, y, z directions were 0.0433, 0.0644 and 0.0025 
m/s, respectively. Considering that the velocity amplitudes was about 0.8 m/s, it could be shown that 
the prediction result of the velocity was relatively accurate (mean relative error: 10.5%). In order to 
further evaluate the prediction error relative to the magnitude of the velocity, the relative 𝐿ଶ  error 
calculated by Eq (2.19) within one cardiac cycle is shown in Figure 9. 

 

Figure 9. Average relative 𝐿ଶ error of predicted velocity amplitude and pressure for all test points. 

From Figure 9, it could be seen that the relative 𝐿ଶ error between the velocity amplitude and the 
pressure was small in most of a cycle. The position with a large relative error corresponded to the 
velocity or pressure value close to 0, making it reasonable because 𝐿ଶ measures the relative error of 
the velocity and pressure estimation. 
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3.3. Absolute pressure 

The displacement and absolute pressure of the points in Figure 1(e) was used to fit the correction 
coefficients for each elastic parameter expressed by Eq (2.25). The results were shown in Table 3. The 
mean value of the correction coefficients of the 5 groups was considered as elastic modulus correction 
coefficient of vessel. 

Table 3. The correction coefficients of different elastic modulus models. 

 1.0 MPa 1.4 MPa 1.8 MPa 2.2 MPa 2.7 MPa Mean

𝜁 1.52 1.51 1.50 1.49 1.49 1.50

According to Eq (2.25), the actual elastic modulus coefficients of a vessel in each group could be 
obtained from  𝜁 and the elastic modulus value initially set in the simulation 𝐸. Table 4 presented the 
actual elastic modulus coefficients 𝐾෡  and the estimated constant difference between the absolute 
pressure and the relative pressure 𝑏෠ expressed by Eq (2.23), according to which, the absolute pressure 
was fitted and then verified with the simulation data at the 3-part point sets in Figure 1(f). The 
evaluation results for Bland-Altman consistency between the absolute pressure and the predicted 
pressure were shown in Figure 10, including the maximum and average value over one cardiac cycle. 
It could be found that no matter whether it was the maximum pressure or the average pressure, the 
error of pressure estimation was related to the pressure level. In the segment near the outlet, the 
pressure tended to be overestimated, while in the segment near the entrance, the pressure tended to be 
underestimated. It also showed that only the points located at the middle section of the vessel had a 
mean difference near 0 between the ground value and the fitted value. The difference between the 
mean values of the two groups of pressures at the inlet and outlet was relatively large, because the 
hemodynamic parameters at the inlet and outlet were greatly affected by the boundary conditions of 
the simulation. 

Average relative errors of the absolute pressure predictions at 3 vessel segments are shown in 
Table 5. The average relative error of the outlet was extremely large, which was the same as the 
result of the Bland-Altman consistency analysis, also caused by the influence of boundary conditions 
in simulation. 

Table 4. Equivalent stiffnesses and estimated constants of different models. 

Elastic Modulus 1.0 MPa 1.4 MPa 1.8 MPa 2.2 MPa 2.7 MPa

𝐾෡ሺ𝑀𝑃𝑎/𝑚ሻ 1.50 2.10 2.52 3.30 4.05 

𝑏෠ሺ𝑃𝑎ሻ -974.23 -970.51 -892.04 -972.66 -973.06
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Figure 10. Consistency evaluation (maximum absolute pressure & average absolute 
pressure) between predicted value and ground value at different vessel segment; (a–c) 
represent the consistency evaluation results of maximum absolute pressure at 1-vessel inlet 
segment, 2-vessel middle segment and 3-vessel outlet segment, respectively; (d–f) 
represent the consistency evaluation results of the mean absolute pressure. 

Table 5. Average relative error of absolute pressure prediction for different segment. 

average relative error 1 2 3 

Pmax 24.44% 7.33% 528.23% 
Pmean 21.80% 5.71% 569.83% 

3.4. Transfer learning 

 

Figure 11. The residual curve of transfer learning. loss is the total residual; losse1 is the 
measurement residual of u; losse2 is the measurement residual of v; losse3 is the 
measurement residual of w; losse4 is the residual of the physical equation. The yellow 
dotted line represents 10 hours, while the orange and red dotted lines represent 20 and 30 
hours, respectively. 
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The transfer training residual curve for 10 hours of migration learning is shown in Figure 11, 
and the average RMSE of the prediction results of 9 points were compared between 10, 20, and 30 
hours of migration learning, respectively (Table 6). The loss-iteration curve showed that the model 
had converged after training for 10 hours. The MSE of 10 hours of transfer learning was very close 
to 20 and 30 hours. Considering the time cost of calculation, we chose 10 hours of transfer learning 
in this work. 

Table 6. Prediction results from different durations of transfer learning. 

 u v w 
Velocity 
Amplitude 𝑃ത௡௢௥௠௔௟ 

RMSE (10 h) 0.0614 0.0754 0.0032 0.0960 0.0796 

RMSE (20 h) 0.0612 0.0754 0.0032 0.0958 0.0800 

RMSE (30 h) 0.0612 0.0754 0.0032 0.0958 0.0797 

RMSE (No transfer learning) 0.0604 0.0748 0.0031 0.0948 0.0775 
Note: 𝑃ത௡௢௥௠௔௟ is the average normalized relative pressure. No transfer learning means no training on 

the basis of source domain, but training directly from the initial state for 30 hours. 

3.5. Sensitivity analysis 

In this work, we analyzed the sensitivity of velocity estimation and pressure estimation to the elastic 
modulus, blood viscosity and blood velocity. The sensitivity curves for each variable in Figure 12 display 
that the sensitivity of pressure estimation to vascular elasticity, blood viscosity and blood velocity 
increased in turn, but most of the sensitivity coefficients were within 10%, and only when the change of 
blood velocity exceeded 20% would it causes a large fluctuation in the prediction of networks. 

In addition, the velocity estimation was most sensitive to blood velocity parameters, subsequently 
sensitive to blood viscosity and vascular elasticity equally. The velocity prediction performance of the 
network hardly changed with changes in blood viscosity and vascular elasticity. All the above showed 
that the model had strong stability in speed and pressure estimation within a certain range. 

 

Figure 12. Sensitivity analysis curves of velocity and pressure estimation to vascular 
elasticity, blood viscosity and blood velocity. 
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4. Discussion 

In this work, we established a novel method for the intra-vascular absolute pressure estimation 
based on PINN, by inputting a velocity field of fluid and a deformation field of vessel wall. The 
velocity of blood flow in the vessels can be obtained by some medical imaging technology, as well as 
the vascular deformation, showing the application potentials of our method. For example, the velocity 
field of blood flow can be non-invasively acquired by 4D-flow MRI, while the vascular deformation 
can be measured by time-of-flight MRI. However, we have to admit that the estimation accuracy of 
our method relies on the resolution of imaging, namely, the data points containing the information of 
velocity and deformation field. Nowadays, the resolution of images is not so high as to provide enough 
data points for the PINN training. Therefore, we have used simulation data for the PINN training to 
validate the availability of this method in the present work. We have built an ideal aortic arch model 
and conducted two-way fluid-structure interaction simulation, from which, the velocity field of flow 
and the displacement of vessel are obtained for the estimation of absolute pressure in the aorta. 
Meanwhile, we also explored the sensitivity of the network to the vascular elasticity, blood viscosity 
and blood velocity. The results showed that the network was robust to vascular elasticity and blood 
viscosity. This paper provided a new method for the estimation of intravascular pressure, which could 
provide a reference for the noninvasive diagnosis of diseases that rely on intravascular pressure. 

The PINN provides better interpretability for neural networks and avoids the cumbersome process 
of CFD. Kissas et al. [16] used blood flow velocity and vessel wall displacement to train a PINN to 
calculate pressure waveform propagation of bifurcated vessel. However, this method simplifies the 
bifurcated vessel into a one-dimensional space. Therefore, only one-dimensional hemodynamic 
information along the vessel could be obtained. Raissi et al. [18] constructed a similar network to 
calculate the 3D flow field by using the time-space distribution of the dye concentration at a given 
time-space sampling point. The method could be used in the calculation of the flow field in aneurysm 
models. However, it is difficult to obtain the tracer dye concentration in human vessels in vivo, which 
limits the further application of this method. 

To overcome the shortcomings mentioned above, we have proposed an approach to obtain the 
absolute pressure in aorta from the velocity field and the displacement of vessel wall, which could be 
imaged by medical imaging technology, such as Doppler ultrasound and 4D-flow MRI. Our method 
added post-processing to PINN, mining the hemodynamic information from the interaction between 
the vessel wall and blood flow. In contrary to CFD, the absolute pressure field obtained by our method 
is independent of the boundary conditions. According to the linear relationship between the relative 
pressure and absolute pressure, the absolute pressure is fitted with the relative pressure field from 
PINN, as well as the wall displacement, which could be obtained by non-invasive imaging 
technologies in clinical practice. Although the data used for the training of PINN in this paper are all 
from CFD, it is expected to use 4D-flow MRI or other imaging methods to non-invasively obtain the 
velocity field as label data in the future. 

The comparison between the velocity and pressure field obtained by our method and FSI simulation 
shows a high consistency, indicating that our PINN-based method has a similar performance with CFD 
in revealing the fluid field in large vessels, while the time consumption of our method is less (about 10 
h vs. 48 h). The mean relative error of the velocity estimation is about 10.5%. Furthermore, the relative 
𝐿ଶ error is calculated to describe the error between the predicted hemodynamic factors and the ground 
value. This relative error 𝐿ଶ stays at a very low level at the most over the cardiac cycle, unless the 
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velocity or pressure is near 0, showing a similar result comparing with Raissi’s work [18]. The error 
of pressure estimation was also low (7.33% and 5.71% for the maximum and average absolute pressure 
estimation, respectively), suggesting the potential availability of this method in the diagnosis of 
cardiovascular diseases. The outperformance of the PINN may be attributed to the following 3 aspects: 
First, different from other NN, our PINN added the equations describing the fluid mechanics in the 
loss function, making the network learn the information from not only the training data but also the 
physical theory. Second, FSI simulation provides sufficient and noise-free training data for PINN 
(about 2.1 × 107 data points, 104 times more than the number of neurons in PINN), making the network 
well trained. Third, the sufficient depth and size of network has been proved helpful to reduce the error 
in test dataset [18]. 

The error of absolute pressure prediction by our method displays a heterogeneous distribution. 
This may be attributed to the fact that the boundary conditions in FSI have great influence on the 
accuracy of pressure estimation. At the sampling points near the outlet (points 7–9), there is a large 
phase difference between the predicted pressure and the ground value, which may be due to the fact 
that the pressure is greatly affected by the boundary conditions of the outlet. The accuracy of absolute 
pressure prediction is also correlated with the location of points. The value is more likely to be 
underestimated at the site with high pressure. The relative error is less than 10% in the middle segment 
and 20–25% at inlet. The value is more likely to be overestimated at the segment with low pressure, 
which is likely caused by the boundary of the outlet being a free boundary (P = 0 Pa). 

In addition, we have explored the sensitivity of the method to the vascular elasticity, blood 
viscosity and blood flow velocity. It has been found that the sensitivity of the pressure estimation 
obtained by PINN to the vascular elasticity, blood viscosity and blood flow velocity increases in turn. 
The velocity estimation is most sensitive to the blood flow velocity. The results show that the method 
has strong robustness when vascular elasticity and blood viscosity are within a reasonable range. On 
the other hand, the results also suggest that the accuracy of this method mainly relies on the accuracy 
of the blood flow velocity measurement. 

This work still has some limitations in the following aspects: 
1) The method is applied in the ideal aorta model currently, trained with the simulation data. The 

performance of the absolute pressure estimation by the PINN-based method is highly dependent on 
the amount and quality of training data, like other neural networks. The FSI simulation in our study 
provides sufficient and noise-free data for the training of PINN, ensuring the relative error of pressure 
estimation by our method was lower than 10%. However, there are still some difficulties to apply this 
method in clinical practice, because the low resolution and noise of blood flow imaging limit the 
availability of the data points containing the velocity field in the training of PINN. To realize the 
application of this method in practice, the dimensionality reduction of the network is needed to reduce 
the requirement of this method on the image resolution. 

2) The results of FSI simulation also constrained the accuracy of pressure estimation, because the 
simulation is based on some assumptions; for example, the blood flow is simplified to laminar flow, 
while the outlet is set as a free outflow [21,30]. Compared with Savabi’s research on FSI simulation of 
aortic arch, our results show good consistency in the velocity distribution and pressure gradient [31]. On 
the other hand, the displacement of vessel wall in our results was uniformly less than that shown in 
Savabi’s work, because the elastic modulus of the vessel wall set in our research was larger. Therefore, 
the FSI simulation results should be reliable in our research. Nevertheless, the FSI simulation may 
become more complex when processing the vessels with large tortuosity or bifurcations, because the 
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complicated morphology of the vessel induces more turbulence in the flow, which requires introducing 
turbulence modeling to the fluid mechanics simulation. The PINN-based method for the pressure 
estimation in these vessels with complicated morphology may also need to add the equations of a 
turbulence model, which should be further studied. 

3) We have tried to choose the neural networks’ architectures in a consistent fashion throughout 
the manuscript. However, there might exist some approaches to improve the architecture by hyper-
parameter tuning techniques and more broadly meta-learning. For example, Guo and Zhuang have 
proposed the hyperparameter optimization method to improve the performance of PINN [32,33]. On 
the other hand, the weights for the different terms in the loss function of PINN are fixed in the present 
study. However, the PINN is a multitask learning network. The weight coefficients of each task in 
the loss function need to be adjusted to obtain the optimum results for pressure estimation. Kendall 
et al. [34] have proposed an approach to multitask deep learning network which weighs multiple loss 
functions by considering the homoscedastic uncertainty of each task. This allows them to 
simultaneously learn various quantities with different units or scales in both classification and 
regression settings. It may be an important direction for PINN in future study [35,36]. 

5. Conclusions 

In summary, this work makes it possible to use velocity field information, wall displacement and 
elastic modulus to obtain the absolute pressure. Through the verification of simulation data, this 
method is feasible. The accuracy of pressure estimation mainly depends on the measurement accuracy 
of the velocity field, while it is relatively robust to blood viscosity and vascular elasticity. In the future, 
this method is expected to play an important role in the diagnosis of vascular diseases such as arterial 
hypertension and atherosclerosis. 
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