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Abstract: Electroencephalogram (EEG) signals are widely used in the field of emotion recognition
since it is resistant to camouflage and contains abundant physiological information. However, EEG sig-
nals are non-stationary and have low signal-noise-ratio, making it more difficult to decode in compari-
son with data modalities such as facial expression and text. In this paper, we propose a model termed
semi-supervised regression with adaptive graph learning (SRAGL) for cross-session EEG emotion
recognition, which has two merits. On one hand, the emotional label information of unlabeled samples
is jointly estimated with the other model variables by a semi-supervised regression in SRAGL. On
the other hand, SRAGL adaptively learns a graph to depict the connections among EEG data samples
which further facilitates the emotional label estimation process. From the experimental results on the
SEED-IV data set, we have the following insights. 1) SRAGL achieves superior performance com-
pared to some state-of-the-art algorithms. To be specific, the average accuracies are 78.18%, 80.55%,
and 81.90% in the three cross-session emotion recognition tasks. 2) As the iteration number increases,
SRAGL converges quickly and optimizes the emotion metric of EEG samples gradually, leading to a
reliable similarity matrix finally. 3) Based on the learned regression projection matrix, we obtain the
contribution of each EEG feature, which enables us to automatically identify critical frequency bands
and brain regions in emotion recognition.

Keywords: adaptive graph learning; Electroencephalogram (EEG); emotion recognition; graph label
propagation; semi-supervised regression

1. Introduction

Emotion is a multifaceted psychological state, which includes not only an individual’s psychological
reaction to external environment or self-stimulation, but also the physiological reactions that accom-
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pany this response [1]. In the past period, researchers have studied emotion recognition mainly rely on
data derived from an individual’s physical behaviours such as sounds from microphones, gestures and
expressions from cameras, and text from websites. However, the performance of recognition methods
based on the information from these non-physiological cues may be affected by the users’ intentional-
ity. When users deliberately disguise their true feelings, the accuracy of emotion recognition methods
can be significantly affected [2]. To overcome this limitation, researchers have focused on using EEG
signals, which are resistant to camouflage and commonly utilized in the field of emotion recognition in
recent years. EEG signals are the reflection of the central nervous system activities and have become a
reliable data source for objective emotion recognition [3, 4].

Recent advances in computer technology, biological science, electronic information, modern infor-
matics, and other related fields have led to significant progresses in brain-computer interface (BCI)
technology. In the meantime, affective brain-computer interface (aBCI) systems, which are applicable
to human emotion state recognition, have received increasing attention in both academia and industry
[5]. A typical aBCI system consists of the following several steps including signal acquisition, pre-
processing, feature extraction or learning, and emotional state identification by recognition models [6].
In this paper, the study corresponds mainly to the latter two stages. In recent years, more and more
machine learning models have been proposed for EEG emotion recognition [7]. For example, Li et
al. explored robust EEG features in cross-subject sentiment recognition using support vector machines
combined with the “leave-one-subject-out” strategy [8]. Dan et al. proposed a probabilistic cluster-
promoting semi-supervised learning method which introduces a regularization term on fuzzy entropy
to obtain a more generalized label affiliation function to reduce the effect of EEG noise [9]. Moreover,
the experimental results also confirm its robustness.

However, there are two fundamental problems in the existing studies within the machine learning-
based EEG emotion recognition research. On one hand, it is how to leverage the properties of EEG data
to fit well into the emotion recognition process and improve its effectiveness. Specifically speaking,
the trained model should consider the samples’ local manifold structure, i.e., the high-similar samples
can be grouped into the same cluster and the low-similar samples can be separated. On the other
hand, in addition to improving recognition accuracy, we hope to gain some additional insights related
to emotional effects from the model. In specific, the learned graph similarity matrix can well depict
the information of emotional states of EEG data. However, in some existing graph-based models, the
learned graphs may not have been further investigated. In this paper, we use semi-supervised regression
combined with adaptive graph similarity learning strategy to deal with these two problems.

Least square regression (LSR) has been widely used in pattern classification due to its efficacy and
simplicity [10]. However, LSR is easily influenced by specific labeled samples, which may result in the
selected features not necessarily being optimal [11]. Therefore, to improve the performance of LSR-
based learning models in EEG emotion recognition, we construct a similarity matrix to explore the
manifold structure of EEG data. In graph-based semi-supervised learning models, a two-stage strategy
is commonly used. That is, a similarity graph is firstly constructed based on a certain distance metric
and then, label propagation or other learning tasks is performed on the constructed graph [12, 13].
However, these models have some shortcomings that cannot be ignored. Firstly, it is not appropriate
to construct a graph in the original space where there might be some noises. In addition, the two-stage
strategy breaks the internal connection so that a flawed similarity matrix is learned, which may produce
suboptimal results and accordingly reduce the model performance.
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Therefore, how to effectively construct a high quality graph becomes a common challenge in many
pattern classification tasks. Though the traditional KNN-based methods are simple to implement, they
are not always effective because of the noise in the raw data. To alleviate the existing problems, Kang
et al. proposed a scalable graph learning framework which used the relationship between samples and
anchor points depicted by the bipartite graph to address the challenges of data noise [14]. However,
the number of anchor points is a key factor in determining the quality of the learned graph. Generally,
the best number of anchor points is selected by expert experience or trial-and-error, which is risk and
inefficient. In order to reduce this factor’s effect, it is necessary to construct graphs that are adaptive to
the number of neighboring points.

Adaptive graph learning is a popular approach that combines graph construction and learning tasks
into a unified framework. In recent years, many adaptive graph learning methods have been proposed.
For example, a structured optimal graph based sparse feature extraction model was proposed in [15],
which integrated sparse representation, local structure learning and label propagation into a unified
learning framework. Besides, Lin et al. adopted an automatic learning scheme by taking advantage
of the data properties and structure information to learn a reliable and precise graph [16]. The meth-
ods mentioned above can adaptively learn the similarity matrix, but they may not fully utilize label
information in constructing the similarity matrix, which still has the room to be improved.

Inspired by [17, 18], to enhance the reliability of manifold structures and adaptive graph learning,
we utilize label information in both preserving manifold structures and adapting the graph learning
process. In specific, we use semi-supervised regression to obtain the emotional states of the unla-
beled EEG samples, and then the obtained label information is used to construct the sample similarity
graph. These two processes iterate back and forth towards the optimum. In summary, we propose
a semi-supervised regression with adaptive graph learning (SRAGL) model for EEG-based emotion
recognition. In comparison to previous research, the following aspects are the primary contributions
of this paper.

• A novel semi-supervised regression with adaptive graph learning (SRAGL) model is proposed
for cross-session EEG emotion recognition. It achieves joint optimization of semi-supervised
regression, structured graph learning and label propagation in a unified framework. In addition,
the objective function of SRAGL is optimized using an efficient iterative algorithm.
• SRAGL efficiently captures the underlying data connections of both unlabeled and labeled EEG

samples, and dynamically updates the graph similarity matrix through LSR and label propagation
to make the learned graph more reliable. Intuitively, the graph block diagonals are gradually
apparent, respectively corresponding to the emotional states.
• The performance of SRAGL is verified on the public SEED-IV data set, and the results demon-

strate that it outperforms several other compared methods in terms of emotion recognition accu-
racy. In addition, according to the learned projection matrix in SRAGL, we provide an automatic
and quantitative approach to identify key EEG bands and brain regions in cross-session emotion
recognition.

Notations. The matrices and vectors in this paper are denoted by uppercase letters in bold and
lowercase letters in bold. 1n = (1, 1, . . . , 1)T is a column vector whose elements are all ones and the
subscript n denotes its length. For matrix A, ai and a j stand for the i-th row vector and the j-th column

vector, respectively. The `2,1-norm of matrix A ∈ Rm×n is described as ‖A‖2,1 =
∑m

i=1

√∑n
j=1 A2

i j =
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i=1 ‖ai‖2.

2. The Proposed Method

2.1. Preliminary

Suppose that we have n EEG samples X = [x1, x2, . . . , xl, xl+1, xl+2, . . . , xl+u] ∈ Rd×n, the first l
samples are labeled and the remaining samples are unlabeled. d is the dimensionality of the EEG
feature. We define Y = [Yl; Yu] ∈ Rn×c as the label matrix for all samples, where c represents the
number of emotional states and Yl stands for the known label matrix. In specific, if the sample xi

belongs to the j-th class and the label vector is yi, Yi j = 1 and the rest elements are zeros.
Figure 1 illustrates the general framework of the proposed SRAGL model. It is composed of three

main parts, which are the semi-supervised regression, graph construction, and semi-supervised label
propagation, respectively. Based on SRAGL, our task are two folds. On one hand, we aim to accurately
predict the emotional states of the target session’s EEG data Yu based on the inputs X and Yl. On
the other hand, we need to determine the relative importance of all EEG features, and further the
importance of all frequency bands and channels in a quantitative manner. This will allow us to identify
the most critical features that contribute significantly to the accuracy of our predictions.

EEG data

Preprocessing

&

Feature Extraction

Emotion recognition

Frequency bands

Brain areas

Affective activation patterns

lX

uX

Feature space Label space

P

Joint

Construct graph in subspace Label propagation

Figure 1. The general framework of the SRAGL model.

2.2. Model Formulation

In the traditional classification task, the sample’s feature can be projected into the label space and
the optional transformation matrix is learned by minimizing the fitting error. Accordingly, the model
can be established as

min
P
||XT P − Y||2F + λ||P||2,1, (2.1)

where P ∈ Rd×c is the transformation matrix. The first term is the loss function when projecting
samples’ features into label space and the second term represents the regularization term which controls
the row sparsity of the transformation matrix P.
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According to the graph theory, we use EEG samples as vertices and the connection weights between
samples as edges. We define the sample similarity matrix S ∈ Rn×n to describe the essential relationship
between samples. Different from obtaining the similarity between two samples by calculating the
Euclidean distance of their features, we expect to learn S from data adaptively. Therefore, we can
obtain the similarity matrix S using the following formula

min
S≥0,S1n=1n

n∑
i, j=1

||xi − x j||
2
2S i j, (2.2)

where the constraint S ≥ 0 represents all elements of the similarity matrix are non-negative and S1n =

1n denotes that the sum of degree of similarity between the sample xi and the others is 1. From
equation (2.2), it is realized that if the closer the Euclidean distance of two samples, the more similar
two samples are, and the corresponding weight should be larger.

The local structure preservation method is introduced in order to thoroughly examine the local
structure features of samples so that the proposed model can explore more discriminative information
in EEG data. To be specific, if two samples in the original space are similar, they should maintain a
similar connection when they are projected into the subspace. Therefore, we define W ∈ Rd×m as the
projection matrix and m is dimensionality of the subspace. Moreover, there exists a trivial solution for
problem (2.2); that is, for a certain sample xi, the weight S i j would be 1 if x j is its nearest neighbor.
Above all, in order to avoid such non-ideal case and make data similarities more accurate, we introduce
a term in equation (2.2) to shrink the elements in si. Besides, we use WT xi to replace xi for better
exploring the local structure information. Therefore, we have

min
W,S

n∑
i, j=1

(||WT xi −WT x j||
2
2S i j + αS 2

i j),

s.t. S ≥ 0,S1n = 1n,WT W = Im,

(2.3)

where α is a regularization parameter to balance the impacts of the two terms. The constraint on the
projection matrix W defines an orthogonal subspace.

In problem (2.3), it just evaluates data similarity in feature space and ignores label space consistency.
In other words, if two EEG samples are similar, then their labels should also belong to the same
emotional state as much as possible. Mathematically, the model is represented as

min
Yu≥0,Yu1c=1u

n∑
i, j=1

||yi − y j||22S i j

⇔ min
Yu≥0,Yu1c=1u

Tr(YT LS Y),
(2.4)

where LS ∈ R
n×n is the Laplacian matrix and can be calculated by LS = D − S. D is a diagonal matrix

and the value of the i-th element Dii is calculated by
∑n

j=1 S i j. yi and y j respectively correspond to the
label indicator vectors of samples xi and x j. In equation (2.4), the two constraints require that for each
row in Yu, all its elements are non-negative and their summation is 1. Equivalently, each element of
yi means the probability of the i-th unlabeled sample belongs to a certain emotion. For example, if the
predict label of an EEG sample is [0.12, 0.75, 0.08, 0.05], then this sample has a high probability to
the second emotional state.
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Finally, by combining equations (2.1), (2.3), and (2.4) together, the objective function of SRAGL is
obtained as

min
W,S,P,Yu

||XT P − Y||2F + λ||P||2,1

+ β

n∑
i, j=1

(||WT xi −WT x j||
2
2S i j + αS i j

2) + γtr(YT LS Y),

s.t.WT W = Im,Yu1c = 1u,Yu ≥ 0,S1n = 1n,S ≥ 0,

(2.5)

where λ, β, α, γ are the regularization parameters.

2.3. Optimization

Below the optimization method to objective function (2.5) is introduced; that is, we propose to
update the four variables W, S, P and Yu by solving one variable and fixing others.

• Update P. The objective function with respect to P is

min
P
||XT P − Y||2F + λ||P||2,1. (2.6)

Because the regulation term ||P||2,1 is equal to Tr(PT QP), we can change equation (2.6) as

min
P
||XT P − Y||2F + λTr(PT QP), (2.7)

where Q is a d × d diagonal matrix and the value of its i-th diagonal element is

Qii =
1

2
√
||pi||22 + ε

. (2.8)

Here ε is a small value which is used to prevent the denominator from being 0 due to the row
sparsity of P. By making that function’s partial derivative corresponding to problem (2.7) with
respect to P to 0, we can obtain

P = (XXT + λQ)−1XY. (2.9)

• Update W. The objective function with respect to W is

min
WT W=Im

n∑
i, j=1

||WT xi −WT x j||
2
2S i j. (2.10)

It is equal to
min

WTW=Im

Tr(WT XLS XT W), (2.11)

W is solved by computing the eigenvectors that correspond to the m smallest eigenvalues of
XLS XT .
• Update S. The objective function with respect to S is

min
S

n∑
i, j=1

(||WT xi −WT x j||
2
2S i j + αS i j

2) +
γ

β
tr(YT LS Y).

s.t. S1n = 1n,S ≥ 0

(2.12)
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Because each i of problem (2.12) is independent, we can solve S in row-wise manner. For the i-th
row, i.e., si, we have the following objective function

min
si≥0,si1n=1n

||si +
1

2α
ai||22, (2.13)

where ai ∈ R1×n is a row vector and the j-th value is ai j = ax
i j + ay

i j. Among, we define ax
i j =

||WT xi −WT x j||
2
2 and ay

i j =
γ

β
||yi − y j||22. The Lagrangian function of the problem (2.13) is

L(si, µ, θi) =
1
2
||si +

1
2α

ai||22 − µ(si1n − 1) − siθi, (2.14)

where µ and θi are Lagrangian multipliers. On the basis of the KKT condition [19], we can obtain
the solution of si

S i j = (−
1

2α
ai j + µ)+, (2.15)

where (g(x))+ = max(g(x), 0).
• Update Yu. The objective function with respect to Yu is

min
Yu≥0,Yu1=1

||XT P − Y||2F + γtr(YT LS Y). (2.16)

By completing the squared form for each i|nl+1, the problem (2.16) is changed into

min
yi≥0,yi1c=1u

n∑
i=l+1

(||xi
T P − yi||22 + γ||yi −m||22), (2.17)

where m ,
∑n

j=l+1, j,i y jS i j ∈ R
1×c. Obviously, for each i, the above objective function can be

expressed as
min

yi≥0,yi1c=1u

||xi
T P − yi||22 + γ||yi −m||22

⇔ min
yi≥0,yi1c=1u

(xi
T P − yi)(xi

T P − yi)T
+ γ(yi −m)(yi −m)T

⇔ min
yi≥0,yi1c=1u

(1 + γ)yiyi − 2(xi
T P + γm)yi.

(2.18)

Obviously, the above equation implies the following standard quadratic programming problem

min
vT 1c=1,v≥0

vT Av − vT b, (2.19)

where v , yi ∈ R
c×1, A , (1 + γ)Ic ∈ R

c×c, b , 2(PT xi + γm) ∈ Rc×1. It can be efficiently solved
by the method proposed in [20].

To sum up, the optimization procedure is presented in Algorithm 1. Below, we analyze the time
complexity of our proposed SRAGL by using the big O notation. For each iteration, the time is mainly
consumed in updating the graph adjacency matrix S, the label matrix of the unlabeled samples Yu and
the projection matrix W. To be specific, the complexity of updating si is O(dm) and therefore we need
O(dmn) complexity to update S. Then, we need O(n2d) to update W and O(uc) to obtain Yu. Suppose
that the number of iterations is t, and the total computational complexity of the SRAGL model learning
is O(t(n2d + uc + dmn)).
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11386

Algorithm 1 The overall procedure of SRAGL

Input: The data matrix X ∈ Rd×n, the label matrix Yl ∈ R
l×c, the regularization parameters α, β, γ, λ;

Output: The predicted label Yu ∈ R
u×c;

1: Initialize the label matrix Yu = 1
c Iu×c and Q ∈ Rd×d as the identity matrix;

2: Initialize S ∈ Rn×n and calculate the corresponding Laplace matrix LS = D − S ∈ Rn×n where D is
the degree matrix;

3: while not converge do
4: Update P by updating rule (2.9);
5: Update W by computing the eigenvectors corresponding to the m smallest eigenvalues of

XLS XT ;
6: For i = 1, 2, · · · , n, update the i-th row of S by solving equation (2.15);
7: For i = l + 1, l + 2, · · · , n, update the i-th row of Yu by solving the optimization problem (2.19);
8: end while

3. Experiments

3.1. Data Set

SEED-IV [21] is an emotional EEG data set that was collected in response to 72 movie clips, each
of which intended to induce one of four emotional states (i.e., happiness, sadness, fear, and neutrality).
This data set was developed by Shanghai Jiao Tong University, and each subject participated in three
sessions. In total, there were 15 subjects who contributed EEG data to this data set. During each
session, the participants watched a total of 24 movie clips. Within each session, 6 of the 24 clips
were intended to induce a particular emotional state. In Figure 2, it describes the procedure of each
trial. EEG signals were collected using a 62-channel ESI NeuroScan System while the subjects were
watching the movie clips. Then, the raw EEG data were downsampled to 200 Hz and processed by an 1-
50 Hz bandpass filter. In their experiments, differential entropy features, extracted from five frequency
bands, Delta (1-3 Hz), Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-30 Hz) and Gamma (31-50 Hz), were
used for emotion recognition. Previous works have shown that differential entropy features perform
well for emotion recognition task [22, 23]. Therefore, the dimensionality of the extracted EEG signal
features is 310 (i.e., 62 channels multiplied by 5 frequency bands). Due to the time durations of the
movie clips in each session are slightly different, the numbers of EEG samples in the three sessions are
accordingly different. To be specific, there are 851, 832 and 822 EEG samples in these three sessions.

Figure 2. The experimental setup of each trial in SEED-IV [21].
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3.2. Experimental Setup

In this section, we compare the performance of SRAGL with some related learning models on the
SEED-IV data set, which are listed below.

1) Feature Selection with Orthogonal Regression (FSOR) [24], which can be used for high-
dimensional data feature selection in supervised learning tasks.

2) Discriminative LSR (DLSR) [25] which introduces the ε-dragging technique into LSR and obtains
stronger discriminative power and generalization ability.

3) Efficient Anchor Graph Regularization (EAGR) [26], which optimizes the performance of anchor
graph by introducing anchor points, and leads to more accurate classification results.

4) Rescaled Linear Square Regression (RLSR) [27], which proposes an adaptive weight assignment
strategy to quantitatively learn the contributions of different features and explicitly illustrates the
underlying rationale of applying `2,1-norm for feature selection.

5) RLSR with Orthogonal constraint (ORLSR), which adds orthogonal constraints onto the projec-
tion matrix in RLSR in order to better maintain the structure information of data.

6) Sparse Discriminative Semi-supervised Feature Selection (SDSSFS) [28], which can be consid-
ered as the extension of both RLSR and DLSR. That is, the ε-dragging technique is extended into
semi-supervised paradigm on the basis of the joint emotional state estimation of unlabeled EEG
samples.

7) Semi-supervised Feature Selection via Adaptive Structure Learning and Constrained Graph
Learning (ASLCGLFS) [29], which is a semi-supervised feature selection method based on adap-
tive structure learning and constraint graph learning. Its central idea is to explore the discrimi-
native information of labeled data and the structure information of unlabeled data to improve the
learning performance.

FSOR has no parameters to be adjusted. For DLSR, RLSR, SDSSFS and ORLSR, the involved
regularization parameter is adjusted in {2−20, 2−19, · · · , 220}. For EAGR, the parameters (λ, γ) are
tuned from {10−3, 10−2, · · · , 103} and anchor number is adjusted in {10, 20, . . . , 100}. For ASLCGLFS,
the parameters (α, λ, β) are tuned from {10−3, 10−2, . . . , 103}. In SRAGL, we have four parameters,
i.e., λ, α, β, γ, to be tuned from {10−3, 10−2, · · · , 103} and the subspace dimension m is adjusted in
{30, 50, 70, 100}.

In our experiment, we perform the cross-session EEG emotion recognition. More specifically, for
‘session2→session3’ classification task, the EEG samples from the third session are unlabeled while
those from the second session are labeled. Then, we aim to estimate the emotional states of these
unlabeled EEG samples as accurately as possible, within the transductive semi-supervised learning
framework. For a certain sample, if it is from the unlabeled session, the elements in its label indicator
vector (i.e., the corresponding row in Yu) are all initialized to 1/c, meaning that we have no prior
knowledge to its emotional state. When the criterion ‖obj(i+1)−obj(i)‖2

‖obj(i)‖2
≤ 1e− 4 is satisfied or the maximum

number of iterations (i.e., 30) is reached, we terminate the iteration process. Here, obj(i) indicates the
objective function value in the i-th iteration. It should be noted that the value of 30 for maximum
iterations is typically much larger than the actual number of iterations required to achieve convergence
with the algorithm in this experiment.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11379–11402.
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3.3. Recognition Results and Analysis

In Tables 1, 2, and 3, the recognition results of all comparison models and our SRAGL model for
cross-session EEG emotion classification tasks are shown, where the bolded result(s) in each row in-
dicate the best accuracy among all the compared models. By comparing and analyzing the recognition
accuracy of these eight models, the following points can be realized.

Table 1. Comparison of the recognition results (%) on the ‘session1→ session2’ task.

subject a1 a2 a3 a4 a5 a6 a7 a8

sub1 44.71 55.33 46.15 55.65 58.05 53.61 64.18 65.26
sub2 82.81 89.06 84.86 89.18 90.14 91.23 91.71 88.94
sub3 71.51 61.06 66.59 69.71 71.63 67.79 78.73 79.81
sub4 60.22 61.90 70.55 68.39 62.62 70.55 77.52 71.27
sub5 62.14 67.79 60.70 67.67 67.07 68.39 65.02 68.99
sub6 77.52 70.55 64.42 71.03 86.66 70.55 81.25 81.37
sub7 74.40 75.48 72.60 80.77 78.73 80.77 91.59 82.93
sub8 71.88 62.86 73.92 69.95 74.28 70.43 75.24 81.13
sub9 66.83 67.07 77.28 78.73 74.04 79.09 72.00 82.21

sub10 54.81 68.27 65.75 53.85 62.38 55.89 69.95 73.44
sub11 64.18 49.28 51.21 52.04 65.38 52.04 56.61 69.59
sub12 63.58 55.17 67.43 53.13 74.16 70.67 65.99 74.16
sub13 65.99 67.55 66.83 68.63 71.88 69.59 66.47 72.60
sub14 76.92 68.15 74.76 76.92 76.68 74.76 68.15 83.65
sub15 94.23 93.63 91.71 87.14 97.36 97.36 96.23 97.36

Avg. 68.78 67.54 69.18 69.52 74.07 71.51 74.71 78.18

a1: FSOR, a2: DLSR, a3: EAGR, a4: RLSR, a5: ORLSR, a6: SDSSFS, a7: ASLCGLFS, a8:
SRAGL.

1) The proposed SRAGL model achieves the highest recognition accuracy on most subjects in the
cross-session emotion recognition tasks, and the average recognition accuracies of all the three
cross-session tasks are higher than the remaining models, i.e., 78.18%, 80.55%, and 81.99%,
respectively. Compared to the second best model ASLCGLFS, SRAGL improves by 3.47%,
6.63%, 3.85% in the three cross-session tasks. Overall, the proposed SRAGL model is verified to
be effective and the adaptive graph learning-based similarity matrix facilitates the improvement
of emotion recognition performance.

2) Though EAGR, ASLCGLFS, and SRAGL are all graph-based models, the recognition results
of EAGR are generally worse than those obtained by ASLCGLFS and SRAGL. To be specific,
EAGR only obtained 69.18%, 69.47%, and 72.58% average recognition accuracies in three cross-
session tasks. The reason accounting for it is that the similarity matrix constructed by EAGR is
not powerful enough to depict the desirable data connections. EAGR selects a few representative
samples, and then uses them to represent all sample points. Though the computational complexity
of this anchor point based model is greatly reduced, recognition results and the quality of the
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Table 2. Comparison of the recognition results (%) on the ‘session1→ session3’ task.

subject a1 a2 a3 a4 a5 a6 a7 a8

sub1 75.55 74.45 68.37 70.68 74.21 70.19 64.72 73.48
sub2 79.93 79.68 83.33 89.29 87.47 84.43 83.33 93.43
sub3 40.88 43.55 60.10 48.78 53.89 45.50 59.73 67.03
sub4 61.68 65.69 64.72 71.17 69.59 79.32 80.29 80.05
sub5 68.00 68.73 70.92 58.39 72.75 74.57 75.43 65.21
sub6 79.08 79.56 69.46 83.45 76.03 82.24 77.98 81.39
sub7 89.05 88.69 79.56 88.44 91.12 84.91 87.10 96.35
sub8 88.20 80.17 78.47 80.78 82.36 79.68 76.28 85.04
sub9 50.73 54.74 58.76 62.77 65.57 63.50 68.00 79.56

sub10 58.27 48.91 63.75 49.64 68.37 49.64 64.23 75.30
sub11 78.35 71.90 62.65 71.17 73.36 70.68 69.22 80.66
sub12 54.01 57.06 56.57 65.45 68.13 66.79 66.67 74.94
sub13 58.64 54.99 60.58 62.41 75.91 61.31 73.11 73.11
sub14 85.40 80.17 83.21 82.85 87.59 82.73 78.22 89.66
sub15 86.37 83.82 81.63 85.40 86.37 85.40 84.43 93.07

Avg. 70.28 68.81 69.47 71.38 75.51 72.06 73.92 80.55

Table 3. Comparison of the recognition results (%) on the ‘session2→ session3’ task.

subject a1 a2 a3 a4 a5 a6 a7 a8

sub1 57.79 61.92 67.52 62.65 68.86 61.68 64.60 72.63
sub2 88.56 85.59 86.98 83.21 90.63 86.74 86.13 88.81
sub3 70.80 67.03 65.94 67.27 68.98 68.98 71.78 76.64
sub4 80.78 75.91 79.08 80.17 77.49 89.54 78.83 83.45
sub5 83.70 76.76 83.45 72.87 83.58 77.98 80.54 83.21
sub6 78.95 78.35 66.55 83.70 85.16 92.70 83.33 92.70
sub7 81.87 81.14 80.05 88.56 81.14 89.78 89.05 90.02
sub8 73.48 74.70 77.37 82.97 79.56 80.41 76.52 84.06
sub9 59.85 52.07 59.73 61.80 74.45 58.39 69.83 77.25

sub10 70.68 67.03 66.18 78.35 69.71 78.35 74.57 78.59
sub11 58.88 56.20 67.64 59.49 66.67 73.60 76.16 70.68
sub12 78.71 66.30 57.54 63.63 74.57 70.32 80.17 77.86
sub13 54.14 51.70 62.41 64.48 68.00 62.17 61.80 72.63
sub14 84.67 86.86 82.85 87.10 90.15 87.10 89.17 91.00
sub15 83.94 85.64 85.40 89.90 89.54 93.07 89.90 90.27

Avg. 73.79 71.17 72.58 75.08 77.90 78.05 78.16 81.99
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constructed graph depend severely on the selected anchor points. In contrast, the graph learning
in ASLCGLFS and SRAGL is by projecting the original data into the subspace to suppress the
noisy and unwanted data components, and then constructing the graph similarity matrix based on
the distance of the projected data.

3) The remaining comparison models can be considered as variations of LSR. Among them, RLSR
outperforms DLSR and FSOR due to its ability of adaptively learning the significance of different
features through a feature self-weighting variable. By comparing the recognition results obtained
by RLSR, ORSLR, and SDSSFS, the latter two models are superior to RLSR. ORLSR addition-
ally includes the orthogonal constraint to the transformation matrix in RLSR, which on one hand
can better remove the data redundancy information and on the other hand can retain the EEG
data metric. SDSSFS employs the label dragging strategy to correct the labels of the originally
misclassified samples, thus improving the recognition accuracy.

In Table 4, it shows the analysis of the variance (ANOVA) between SRAGL and each of the other
models [30]. The ANOVA is a popular statistical method used to determine whether there are sig-
nificant differences between two or more groups. In our experiment, we adopt a standard one-way
ANOVA. Specifically, the performance accuracy is the dependent variable and the algorithm is the
independent variable. The null hypothesis of ANOVA is that there is no difference between the group
means. When performing ANOVA, it is usually necessary to set a significance level α, which means
the probability of incorrectly rejecting the null hypothesis. If α is set at 0.05 and p-value is less than
0.05, it means that there are differences between the models. If α is set to 0.01 and p-value is less than
0.01, the models are considered to be significantly different from each other. From Table 4, F-value and
p-value are got by comparing the recognition results obtained by SRAGL (i.e., a8) and the other seven
methods (i.e., a1-a7) respectively. These results demonstrate that SRAGL statistically outperforms the
other seven models in terms of recognition accuracy.

Table 4. The analysis of the variance (**p-value< 0.01, *p-value< 0.05).

ANOVA a1 a2 a3 a4 a5 a6 a7

F-value 16.41 24.42 24.94 14.09 5.24 8.07 5.98
p-value 1.095e-04** 3.67e-06** 2.97e-06** 3.12e-04** 0.025* 0.0056** 0.017*

In Figure 3, the confusion matrix is used to represent the accuracy of each model for four emotion
states. From the figure, we can obtain more information from the recognition results, which includes
1) the eight models’ average recognition accuracy in each emotion state. For example, the average
recognition accuracy for the neutral emotional state using SRAGL was 84.58%, which was the highest
recognition rate among the four emotional states. Conversely, the fear state had the lowest average
recognition accuracy at 76.67%. 2) the accuracy improvement of SRAGL compared to the other models
in each state. For example, SRAGL improved ASLCGLFS by 6.91%, 4.81%, 6.40%, and 1.01% for
identifying the four states. 3) the proportion of each state that is misclassified into the other states. For
example, SRAGL misclassified the EEG samples belonging to the fear state as sad, happy and neutral
with 11.25%, 4.40% and 7.68%, respectively.

In SRAGL, we learn an optimal graph according to iteratively updating the graph adjacency matrix
which describes the relationship between the subspace represented EEG samples. Based on the struc-
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Figure 3. The recognition results are organized by confusion matrices, in which both the
horizontal and vertical axes correspond to the four emotional states.
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tured graph learning theory [31, 32], the number of connected sub-components (i.e., diagonal blocks
in visualized graph similarity matrix) in an ideal graph should be equal to the number of classes in
the data set. In the SEED-IV data set, there are four emotional states (i.e., c = 4); therefore, the ideal
graph adjacency matrix should have four diagonal blocks, respectively corresponding to the sad, fear,
happy, and neutral states. In Figure 4, we visualize the learned graphs in terms of different iterations,
i.e., when the numbers of iterations are 1, 2, 5 and 12, respectively. From figures, we can see that as
SRAGL iterates, the learned graph for the SEED-IV data set has four diagonal blocks, each of which
corresponds to one of the four emotional states. This result demonstrates that the adjacency matrix of
the learned graph can represent the relationship between EEG samples effectively. Take Figure 4(a)
as an example, we can clearly observe that the four diagonal blocks gradually become more visible as
the number of iterations increases, which means the connection values within the block become larger
while the connection values between the blocks become smaller. In other words, EEG samples belong-
ing to the same emotional state should be connected to each other while EEG samples belonging to
different states should be unconnected. Based on the learned graph adjacency matrix, the recognition
accuracy of this case is 97.36%. Similarly, other cases also illustrate the above facts. However, since
the EEG samples have inter-session variablities to some extent, it is not guaranteed that the learned
graph adjacency matrix has the exact four diagonal blocks in all cases. In addition, this figure shows
us that the objective function of SRAGL exhibits good convergence, with the objective function value
decreasing quickly as the number of iterations increases.

Below, we show how the emotion recognition performance of SRAGL is influenced by the regular-
ization parameters, i.e., λ, β, α, γ, by some example cases. In SRAGL, the parameters α, β correspond
to the graph adjacency matrix learning, γ corresponds to graph label propagation and λ controls the
sparsity of the transformation matrix P. It is found experimentally that the performance of SRAGL is
insensitive to parameter β. In Figure 5, we fix β as 1 and take the case of ’sub1: session1→session3’ as
an example to investigate how the recognition results of SRAGL varies in response to different settings
of α, λ, and γ. From this figure, we observe that the parameter λ is the most sensitive one to SRAGL.
In model training, we can set λ within {0.1, 1, 10} to make SRAGL achieve good recognition results.
In contrast, SRAGL is not very sensitive to the parameters α and γ due to α mainly affects the learning
of the graph adjacency matrix and thus implicitly influences the label matrix of the unlabeled EEG
samples.

In Figure 6, three cases were used to show the iterative optimization process of SRAGL according
to the learned label indicator matrix of unlabeled EEG samples, which was proposed in [33]. More
specifically, with the number of iterations increasing, we reconstruct the graph adjacency matrix at
different iterations by YuYT

u . From this figure, we observe that the correlations for the intra-class EEG
samples are increasing over time, whereas the relationships for inter-class EEG samples are gradu-
ally decreasing. This is consistent with our expectation that SRAGL gradually depicts the underly-
ing semantic information of EEG samples whilst suppressing the interference of different sessions
and trials. In addition, the more accurate the label matrix of the unlabeled EEG samples was pre-
dicted, the clearer the four diagonal blocks in the reconstructed graph become. Taking Figure 6(a)
‘sub2: session1→session2’ as an example, four diagonal blocks correspond to four emotion states in
the SEED-IV data set become more and more visible as the accuracy increases which illustrates the
effectiveness of the SRAGL model optimization. Meanwhile, we show the ground truth graph as a
comparison in the last column.
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(a) sub15: session1→session2 (b) sub14: session1→session3

(c) sub15: session2→session3

Figure 4. Three example cross-session emotion recognition cases were used to illustrate
the graph learning process in SRAGL. As the number of iterations increases, the connection
weights become larger for the samples belonging to the same emotional state and smaller for
the ones from different states. Equivalently, the diagonal blocks corresponding to the four
emotional states become more and more apparent.
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(a) α = 1000, (γ, λ) (b) λ = 1, (α, γ) (c) γ = 0.01, (α, λ)

Figure 5. Examples to show the parameter sensitivity.

(a) sub2: session1→session2

(b) sub8: session1→session3

(c) sub4: session2→session3

Figure 6. The iterative graph reconstruction process by the label matrix predicted by
SRAGL.
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3.4. EEG Emotional Activation Pattern Mining

EEG data is typically characterized as multi-frequency and multi-channel signals, and DE features
are extracted from different frequency bands and channels. In this section, we quantify the contribu-
tions of EEG features to cross-session emotion recognition tasks to investigate key frequency bands
and channels. As shown in Figure 7, the coupling relationship between each EEG feature dimension
and each frequency band (channel) is illustrated.

Channel 1

Channel 2
.
.
.

Channel 62

Channel 1

Channel 2
.
.
.

Channel 62

Channel 1

Channel 2
.
.
.

Channel 62

Channel 1

Channel 2
.
.
.

Channel 62

Channel 1

Channel 2
.
.
.

Channel 62

···

1             62    63           124  125          186  187          248  249           310

• • • • • • • • • • • • • • •

1q 62q• • •
63q 124q• • •

125q 186q• • •
187q 248q• • •

249q 310q• • •

• • • • • • • • • • • • • • •

Delta Theta Alpha Beta Gamma

FP1           FPZ                                                                    CB2

Channels

Frequency bands

2

21

|| ||

|| ||

i

i d j

j

q

 

 

!

w

w

Delta

Theta

Alpha

Beta

Gamma

Figure 7. Framework of emotional activation patterns analysis.

Inspired by the `2,1-norm based feature ranking theory [34, 27], we calculate the normalized `2-
norm of each row of the projection matrix W to determine the contribution of each EEG feature (i.e.,
θi). In mathematics, it is expressed by

θi =
||wi||2∑d

j=1 ||w j||2
. (3.1)

It is obvious that the larger θi is, the greater contribution of the i-th EEG feature to the emotion clas-
sification tasks. For each subject, we calculate the contribution of each feature dimension. Due to the
inter-subject variability, there may be variations for the learned feature importance values of different
subjects. To mitigate the impact of individual variability and improve the reliability of the identified
important features by SRAGL, we average the feature contributions across all the subjects. As a result,
we obtain the contributions of the 310 feature dimensions, shown in Figure 8. Suppose that we have
a EEG bands and b channels in total, based on the established relationship between EEG features and
their correlated frequency band (channel) [35], we can calculate the contribution of the i-th frequency
band by

pi = θ(i−1)∗a+1 + θ(i−1)∗a+2 + . . . + θi∗a. (3.2)

Similarly, the contribution of the j-th EEG channel is

q j = θ j + θ j+b + . . . + θ j+(a−1)∗b. (3.3)

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11379–11402.



11396

In SEED-IV, the feature dimension is 310, the number of frequency bands is 5 (i.e., a=5) and the
number of EEG channel is 62 (i.e., b=62). According to equation (3.2), Figure 9 displays the relative
importance of different frequency bands, represented as bar charts. From this figure, we observe that
Gamma is the most significant frequency band for cross-session EEG emotion recognition, while the
second one is Delta. Similarly, according to equation (3.3), we obtained the contribution values of
the 62 EEG channels and represented their relative importance using brain topography maps in Figure
10. As a result, we conclude that prefrontal, left/right temporal, especially the (central) parietal lobes
contributed more to emotion recognition, which is consistent with the existing studies [21]. In Figure
11, we show the 10 most important channels in cross-session emotion recognition, which are CZ, CPZ,
CP2, P2, C2, FP1, CP1, POZ, FP2, and FC6. The emotional activation pattern analysis method utilized
above can be extended to any EEG data set, regardless of the number of bands or channels.
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Figure 8. The learned feature importance of the 310 EEG feature dimensions.

3.5. Discussion

To highlight the significance of this work, this section provides thorough discussions by putting the
emphasis on the connections and differences between SRAGL and some of our previous studies includ-
ing the Self-weighted Semi-supervised Classification (SWSC) [36], the retargeted semi-supervised re-
gression with robust weights (RSRRW) [37], the semi-supervised Joint Sample and Feature importance
Evaluation (sJSFE) [38], the Joint label-Common and label-Specific Features Exploration (JCSFE)
[39], and the Optimal Graph coupled Semi-Supervised Learning (OGSSL) [40]. The connections are
first analyzed, followed by the differences.

Generally, all of these models are proposed for EEG-based emotion recognition under the semi-
supervised classification paradigm. On the experimental setup, EEG data from different sessions was
utilized in the comparative studies for their performance evaluation, i.e., cross-session emotion recogni-
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Figure 9. The importance analysis of the five frequency bands.

(a) session1→ session2 (b) session1→ session3 (c) session2→ session3

(d) average

Figure 10. The importance of the 62 EEG channels using brain topography maps.

tion. Besides, the important EEG frequency bands and channels in emotion recognition were identified
according to the explicit/implicit feature importance exploration and the correspondence between EEG
features and the associated frequency bands (channels).
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Figure 11. Top 10 important EEG channels.

On the differences between SRAGL and the previously proposed ones, we have the following two
understandings.

1) From the perspective of model formulation, SWSC is motivated by explicitly introducing a fea-
ture weighting variable to characterize the different contributions of different features in emotion
recognition while JCSFE is a more problem-driven model and puts more focus on the common
activation patterns across different emotional states and the specific patterns associated with a
certain state. Both RSRRW and sJSFE mainly pay attention to the model robustness by respec-
tively introducing discrete and continuous weights to characterize the different contributions of
different samples in emotion recognition, which do not involve the graph data structure in their
model formulations. Though graph regularization terms were used in both SWSC and JCSFE, the
graph similarity matrices were directly calculated according to fixed rules such as the ‘0-1’ and
‘heatkernel’ weighting schemes. In SRAGL, the graph similarity matrix is dynamically learned
within the iterative model optimization process, which aims to enforce the label consistency of
unlabeled EEG samples. In the experiments, the effectiveness of the graph learning technique
in SRAGL is intuitively analyzed from two aspects. On one aspect, we showed how the learned
graph similarity matrix depicts the semantic information of EEG samples; that is, each of four
diagonal blocks in Figure 4 corresponds to one of the four emotional states. On the other aspect,
we showed how the learned graph facilitates the estimation of the label indication matrix of the
unlabeled samples in Figure 6.

2) Both OGSSL and SRAGL involve the dynamic graph learning strategy in their model objective
functions. The main difference between them is how the label indicator matrix of unlabeled
samples is estimated. In OGSSL, the estimation of the label indicator matrix corresponds to
a label-propagation process over the learned graph. However, in SRAGL, the label matrix is
obtained by learning a projection matrix to bridge the data space and the label space. Obviously,
different optimization strategies were employed in respective models to handle the updating of the
label indicator matrix. In terms of the recognition accuracy, the proposed SRAGL model in the
present work improves OGSSL by 1.67%, 3.47%, and 0.70% corresponding to three cross-session
tasks respectively.

4. Conclusions

In this paper, a semi-supervised regression with adaptive graph learning model is proposed for EEG
emotion recognition, which is termed SRAGL. In SRAGL, semi-supervised regression, adaptive graph
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structure learning and label propagation are seamlessly integrated together. SRAGL updates the graph
similarity matrix gradually by leveraging label information from both labeled and unlabeled samples,
which is jointly estimated by LSR, ultimately resulting in the optimal structured graph. Extensive
results on SEED-IV indicated that the learned graph adjacency matrix effectively improves the perfor-
mance of emotion recognition. Furthermore, by the established relationship between EEG features and
their correlated frequency band (channel), and utilizing the learned projection matrix, we calculated
the contribution of each EEG feature and analyzed the emotional activation patterns. Our findings us-
ing SRAGL suggest that the Gamma band is the most significant one, and that the central parietal lobe
is more closely related to emotional expression. Based on these findings, it is expected to customize
the hardware and computing models for emotion recognition applications in the future. For example,
we can minimize the number of electrodes required in wearable devices such as caps for EEG data
collection. In addition, we explore the possibility of utilizing only Gamma band to reduce computa-
tional requirements. These conclusions shed new light on emotional processing for human-computer
interaction and provide valuable insights for future research in this field.
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