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Abstract: Accidental falls pose a significant threat to the elderly population, and accurate fall detection 
from surveillance videos can significantly reduce the negative impact of falls. Although most fall 
detection algorithms based on video deep learning focus on training and detecting human posture or 
key points in pictures or videos, we have found that the human pose-based model and key points-based 
model can complement each other to improve fall detection accuracy. In this paper, we propose a 
preposed attention capture mechanism for images that will be fed into the training network, and a fall 
detection model based on this mechanism. We accomplish this by fusing the human dynamic key point 
information with the original human posture image. We first propose the concept of dynamic key points 
to account for incomplete pose key point information in the fall state. We then introduce an attention 
expectation that predicates the original attention mechanism of the depth model by automatically 
labeling dynamic key points. Finally, the depth model trained with human dynamic key points is used 
to correct the detection errors of the depth model with raw human pose images. Our experiments on 
the Fall Detection Dataset and the UP-Fall Detection Dataset demonstrate that our proposed fall 
detection algorithm can effectively improve the accuracy of fall detection and provide better support 
for elderly care. 

Keywords: preposed attention; fall detection; dynamic key points; decision fusion; 
complementary correction 
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1. Introduction 

Falls, which are unexpected and uncontrolled changes in body posture, commonly occur among 
the elderly and are a major cause of health problems worldwide. They can lead to various degrees of 
physical and psychological damage and even death. According to the United Nations World Population 
Ageing 2020 report, the elderly population is expected to exceed 1.5 billion in 2050, and the percentage 
of people aged 65 and older is projected to increase from 9.3% in 2020 to approximately 16.0%. With 
the gradual aging of the global population, more and more elderly people will be exposed to the risk 
of accidental falls. Fall detection is essential to advanced first aid systems, providing timely assistance 
to improve the safety of elderly people living alone and avoid injuries caused by falls. The framework 
proposed by Chen et al. [1] improves the efficiency of first aid for older adults during falls, shortening 
resuscitation time and reducing the severity of injuries. 

In recent years, researchers have conducted numerous studies in the field of fall detection. 
According to Mubashir [2], fall detection can be mainly divided into three approaches: wearable 
sensor-based, scene-based sensor-based, and computer vision-based. The wearable sensor-based 
approach relies on sensors worn by the person to detect falls, while the scene-based sensor-based 
approach uses sensors installed in the environment to detect falls. The computer vision-based approach 
uses cameras and computer algorithms to detect falls from video footage. 

1) Fall detection using wearable devices is a promising approach, with single-sensor-based 
systems offering high accuracy and multiple-sensor-based systems offering higher efficiency [3]. 
Some recent studies have proposed innovative wearable fall detection systems. For example, de Sousa 
et al. [4] developed a low-power wearable system that integrates a fall detection system with an 
inflatable airbag to protect the hip. Lin et al. [5] used wireless in-shoe insoles equipped with sensors 
and a trained reference noise-canceling autoencoder to rapidly identify falls in all four directions. Bet 
et al. [6] described the latest technology and features for wearable sensors in detecting falls and found 
that the waist was the most common wearing position. Boudouane et al. [7] proposed a fall detection 
device using a portable camera worn on the hip, which effectively reduced specificity in fall detection. 
However, there are challenges to implementing wearable fall detection systems due to the lack of 
uniform standards for study populations and fall risk assessment, the high cost of sensors, and the 
cumbersome and forgetful nature of wearing devices for elderly individuals. Additionally, Casilari and 
Silva [8] found significant differences between simulated falls and real falls when using wearable 
sensors for fall detection, suggesting that further research is needed in this area. 

2) Environmental sensor-based approaches rely on installed sensors that capture information such 
as sound and pressure to identify fall actions. For instance, Wang et al. [9] proposed a fall detection 
method that uses Wi-Fi signals based on the theory of indoor propagation of wireless signals, which 
has several advantages such as non-invasiveness and versatility. Other researchers, such as 
Madansingh et al. [10], have designed smartphone-based fall detection systems that utilize available 
embedded sensors such as accelerometer, gyroscope, and magnetometer. Wang et al. [11] proposed a 
radar-based fall detection method using pattern contour-confined Doppler-time maps that reduce 
superfluous information to improve detection accuracy. Chaccour et al. [12] summarized the 
deployment of sensors and proposed a generic fall detection classification scheme. However, such 
sensors are sensitive to environmental information, such as noise and light, which can result in false 
alarms and low detection rates. 

3) Computer vision-based approaches detect falls by analyzing visual information extracted from 
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images and videos. In contrast to machine vision, recent research by Gutiérrez [13] has reviewed 81 
fall detection systems based on computer vision in the last five years, which have improved from 
simple characterization to sophisticated classification techniques. However, Gutiérrez also indicated 
that existing public datasets lack a common reference framework for system performance evaluation, 
which makes it difficult to compare the performance of different systems. 

Compared to the first two approaches, computer vision-based systems offer several practical 
advantages, including lower equipment costs, greater convenience for the elderly, and richer semantic 
information contained in the video captured by the camera, which can be retrieved and reviewed at 
any time. These factors make computer vision-based systems more promising for future applications. 

This paper introduces three types of methods for vision-based fall detection: threshold-based, 
machine-learning-based, and deep learning-based. The threshold analysis method uses real-time 
acceleration or mean square value data after secondary processing as feature values, comparing them 
with thresholds derived from numerous fall experiments. When the data exceeds or falls below the 
threshold, it is deemed abnormal, and this method is effective in detecting and identifying fall events 
from continuous data [14]. The threshold-based method is often used in combination with other 
methods to enhance performance [15]. 

Machine learning-based detection algorithms process and describe underlying visual data using 
manually designed feature operators such as HOG features [16], ORB features [17], and LBP features [18], 
and these algorithms incorporate classifiers with multiple functions, providing significant 
classification advantages. However, these algorithms rely excessively on the manual extraction of 
action features, and any bias in the feature samples significantly degrades the performance of fall 
detection. Furthermore, these feature operators have difficulty capturing semantic information in 
complex images, whereas deep learning-based detection algorithms can compensate for this drawback, 
with feature values automatically derived from sample data to create a learning strategy with strong 
feature representation capabilities [19]. Liu et al. [20] proposed an accelerometer signal enhancement 
model based on deep learning as a front-end processor to improve the detection performance of low-
resolution fall detection systems. Yu et al. [21] compared the three types of methods: threshold-based, 
machine-learning-based, and deep learning-based, and the results showed that the deep learning-based 
methods outperformed the other two. 

In summary, vision-based fall detection methods can be divided into threshold-based, machine-
learning-based, and deep learning-based approaches. While the threshold-based method is useful for 
detecting and identifying fall events from continuous data, machine learning-based methods provide 
significant classification advantages but can be sensitive to biased feature samples. In contrast, deep 
learning-based methods automatically extract feature values from sample data, compensating for the 
shortcomings of manually designed feature operators, and have shown excellent performance in 
detecting falls. 

With the rapid development of deep learning, attention mechanisms have become widely used in 
image detection. Drawing inspiration from human attention, experts and scholars have proposed 
attention mechanisms that efficiently allocate information processing resources. The structural model, 
which includes the attention mechanism, not only records the positional relationships between 
information but also measures the importance of different information features based on their weights. 
Lu et al. [22] proposed a graph neural network based on the attention mechanism that holistically 
solves tasks by formulating them as an iterative information fusion process on the data graph. In 
another study, Abdulwahab et al. [23] classified and analyzed existing feature selection methods and 
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applied them to reduce dimensions when processing high-dimensional data. These methods help to 
overcome the inefficiencies and ineffectiveness of processing high-dimensional data. 

With the advancements in image processing technology and the widespread application of 
machine learning algorithms, researchers worldwide have conducted numerous studies related to 
fall detection algorithms. Mrozek et al. [24] developed a new scalable architecture system for 
remote monitoring, using Random Forest (RF), SVM, Artificial Neural Network (ANN), and 
Boosted Decision Trees (BDT) classifiers. Cai et al. [25] proposed a vision-based fall detection 
method using multi-task hourglass convolutional self-coding. The method involved extracting 
multi-scale features by extending the perceptual field of neurons through hourglass convolutional 
layers and completing the detection of fall actions and frame reconstruction tasks in parallel using 
a multi-task mechanism. Vishnu et al. [26] introduced the fall motion mixture model, which 
effectively recognizes fall events in various scenarios. 

Currently, the majority of fall detection algorithms only detect the original image or key points 
of the human body in the visual dimension, leaving room for further improvement in accuracy. 
Additionally, some key points of the human body may not be detectable due to environmental factors, 
and not all key points of the human body may be relevant for fall detection. To address these issues, 
this paper aims to make the following contributions. 

1) A new set of dynamic key points based on high-frequency human key points are proposed for 
fall detection. These key points are identified during a fall state and automatically labeled to implement 
an attention capture mechanism using the original data-driven attention mechanism of the depth model. 
The attention is distinguished by the size of pixel values. 

2) The paper also demonstrates that the depth model, which incorporates both human pose and 
key points, can yield strong complementarity in fall detection results. To this end, a fall detection 
model is proposed that incorporates dynamic key points and the preposed attention capture mechanism. 

The main structure of this paper is as follows: Section 2 introduces the method utilized in this 
paper, Section 3 shows the experimental results and analysis, Section 4 contains the discussion and 
outlook, and finally concludes the work of this paper. 

2. Materials and methods 

2.1. Deep learning model based on attention mechanism 

In this paper, we utilized Swin Transformer [27] to train the model, as it has demonstrated 
excellent performance in the field of image analysis. Unlike the original Transformer [28] that 
employs self-attention as a layer in the network structure and uses self-attention and feedforward 
networks for encoding and decoding, Swin Transformer introduces the hierarchical construction 
method typically used in CNNs [29] and conducts self-attention computation in the window region 
without overlap, which enhances efficiency and reduces computational complexity. The whole 
model comprises four stages, each of which reduces the resolution of the input feature map and 
expands the perception field layer by layer like CNN. Figure 1 depicts the system structure. Model-
a is the deep learning model without the preposed attention, while Model-b is the deep learning 
model with the preposed attention, which is trained using labeled key points. 
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Figure 1. System structure diagram. 

2.2. Preposed attention 

At present, most fall detection algorithms only rely on a single dimension of information, such as 
visual images or key points. To improve detection accuracy, it is necessary to expand the 
dimensionality of information properly. In this paper, we propose a preposed attention mechanism to 
enhance the images fed into the Swin Transformer training network. We achieve this by adding 
dynamic key points, visually stimulating elements that can attract more attention and cause 
unconscious attention shifting [30]. Our experiments explore whether there is a complementary 
fusion between the dynamic key points and the unmarked images, and the results will be presented 
in this paper. 

For labeling the key points, we selected the High-Resolution Network (HRNet) [31], which is 
based on a multi-resolution feature fusion network. This network changes the link between high and 
low resolutions from series to parallel, maintains high-resolution representation throughout the 
network structure, and introduces interaction between high and low resolutions to improve model 
performance. Some commonly used key point detection datasets include the COCO dataset [32], which 
represents human key points as 17 joints with up to 300 K samples; the MPII Human Pose Dataset [33], 
which contains 25 K samples and defines 16 key point coordinates; and the Leeds Sports Pose Dataset 
contains 2 K samples, with 14 key points per sample [34]. The HRNet network follows the heat map 
estimation framework and applies it to human pose estimation, and has experimentally demonstrated 
superior pose estimation performance on the COCO key points detection dataset. Therefore, we trained 
our model on the COCO key points detection dataset, which can detect a total of 17 human key points. 

We calculated the frequency of key points on the UR Fall Detection Dataset (URFD) [35], which 
includes 30 video segments captured during various daily activities. HRNet was used to label the fall 
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state map for each segment. Due to the fall posture, not all key points may contribute to fall detection. 
Therefore, we counted the frequency of occurrence of each of the 17 key points in the fall state map 
and ranked them according to their frequency, as shown in Figure 2. 

 

Figure 2. Human body key points frequency diagram. 

          

     (a) 17 key points            (b) 12 high-frequency key points 

Figure 3. Example diagram of human body key points. Which: 0: nose, 1: right eye, 2: left 
eye, 3: right ear, 4: left ear, 5: right shoulder, 6: left shoulder, 7: right elbow, 8: left elbow, 9: 
right wrist, 10: left wrist, 11: right hip, 12: left hip, 13: right knee, 14: left knee, 15: right 
ankle, 16: left ankle. 
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We selected the 12 points with frequencies higher than 75%: namely 3–8 and 11–16, and defined 
them as high-frequency key points. A comparison of 17 key points detected by the original HRNet 
network and the 12 key points is shown in Figure 3. 

Fall detection can suffer from incomplete information due to environmental occlusion and 
obstacles, which often results in missing some of the 12 high-frequency key points identified in the 
URFD. To obtain as much accurate information as possible, we propose the use of dynamic key points, 
which correspond to the maximum possible detection of the 12 unobstructed high-frequency key 
points. The number of dynamic key points varies dynamically based on the detection of the obscured 
parts, up to a maximum of 12. We present the pseudo-code for dynamic key points extraction in 
Algorithm 1. 

Algorithm 1. Marking dynamic key points with HRNet 
Input: Original images 
Load the trained 17 human key points models 
Adopt the top-down detection method, detect the human body first, then mark the key points 

1  repeat 
Extract the features of key points in the human image 
Locate 17 key points // Use the extracted features to locate the 17 key points on the human body. 

2      for i ∈ (3,8) & (11,16) do // Iterating on our selected high-frequency key points. 
3         if len(pred_boxes) >= 1 then // Check if the model detected the body part 

corresponding to the key point from the picture 
4             marked key points 
5      end 
6  until all 12 key points are detected // Repeat the process until all 12 key points are detected. 

Output: Dynamic key points picture marked 

By adding these dynamic key points, we aim to provide additional information that can aid in fall 
detection. Specifically, we add the dynamic key points to the image before it enters the Swin 
Transformer network, and we make them more visually stimulating, so they are likely to attract more 
attention than the unmarked images alone. The Swin Transformer network can then use this 
information to make more accurate predictions about the fall state. 

Overall, the preposed attention mechanism with the dynamic key points aims to provide a 
complementary fusion between the dynamic key points and the unmarked images. This fusion enhances 
the images’ quality and makes them more informative, leading to improved fall detection performance. 

2.3. Decision fusion 

In this paper, we propose the use of dynamic key points for fall detection, which enhances the 
attentional capture of the model and improves detection accuracy despite incomplete information 
caused by environmental occlusion and obstacles. To achieve complementary effects, the results of 
two models are fused at the decision level. Model-a is used to validate the validation set and output 
error images separately. Then, the error images are validated using Model-b, to achieve decision fusion 
of the two models. The proposed approach is illustrated in Figure 4. 
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As shown in Figure 4, Model-a is trained on the data layer composed of original images through 
the Swin-transformer. Meanwhile, Model-b is trained on the data layer composed of images marked 
with dynamic key points through the same architecture. Compared with Model-a, the data layer of 
Model-b added the size and coordinate information of dynamic feature points. Due to being trained 
on different data, the two models have different feature layers, which allow them to capture different 
aspects of the data. 

 

Figure 4. Demonstration of information fusion at different levels. 

At the decision level, Model-a and Model-b are fused to achieve complementary effects. Due to 
the differences in the data layer, the feature layers of Model-a and Model-b contain different network 
structure features and weights, which results in different decisions being output for the same data to 
be verified. In our method, specifically, the error images that Model-a fails to detect are sent to Model-
b for further detection, and the final result is based on the detection results of Model-b. 

By combining the strengths of both models, our proposed approach achieves improved accuracy 
in fall detection, even in scenarios with incomplete information caused by environmental occlusion 
and obstacles. 

2.4. Missing Detection Correction Rate (MDCR) and Error Detection Correction Rate (EDCR) 

In this paper, we define missing detection as the model fails to detect images with ground truth 
as fall, and the MDCR is expressed as (1):  

                              𝑀𝐷𝐶𝑅 ൌ
ிேିெ௏೘

ிே
 (1) 

where FN represents the total number of false negatives in the dataset that were missed by Model-
a. MVm, on the other hand, represents the number of false negatives that were corrected after being 
processed by Model-b. 
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Similarly, error detection is defined as the model fails to detect images with safe ground truth, 
and the EDCR is expressed as (2). 

                     𝐸𝐷𝐶𝑅 ൌ
ி௉ିெ௏೐

ி௉
 (2) 

where FP represents the total number of false positives in the dataset that were missed by Model-
a. MVe, on the other hand, represents the number of false positive that were corrected after being 
processed by Model-b. 

The results of EDCR and MDCR directly reflect the corrective effects of our proposed 
dynamic key points on the original image, further demonstrating the complementarity between 
Model-b and Model-a. 

2.5. Related terms 

In order to compare the effectiveness of different fall detection methods from various aspects, we 
define the key terms related to fall detection by a confusion matrix as shown in Table 1. 

Table 1. Terms related to the confusion matrix of fall detection. 

Test results Positive (factual falls) Negative (factual safe) Total 

Positive (Detecting falls) True Positive (TP) False Positive (FP) TP + FP 

Negative (Detecting safe) False Negative (FN) True Negative (TN) FN + TN 

Total TP + FN FP + TN TP + FP + FN + TN

Note: TP: Samples predicted by the model as fall and ground truth as fall. FN: Samples predicted by 
the model as safe but ground truth as fall. FP: Samples predicted by the model as fall but ground truth 
as safe. TN: Samples predicted by the model as fall and ground truth as safe. 

Sensitivity is defined as the proportion of TP to all factual positives of the participating tests. In 
this paper, sensitivity reflects the sensitivity of the applied method to falls, and experiments are 
conducted on two datasets. 

The specificity of a fall detection method is defined as the proportion of TF to all actual 
negatives in the tested dataset. In this study, specificity reflects the accuracy of the proposed method 
for detecting falls safely. 

3. Results 

To investigate the potential complementarity between Model-a and Model-b in fall detection, we 
conducted separate experiments on the Fall Detection Dataset (FDD) [36] and the UP-Fall Detection 
Dataset (UFDD) [37]. We evaluated the missed detection correction rate, false detection correction 
rate, and corrected accuracy. The Swin Transformer-based model was trained on the URFD, and the 
best model was tested on the FDD and UFDD datasets, with the detected erroneous images saved as 
output. We then labeled all key points and dynamic key points defined in the training set images of the 
model and categorized them into groups No.1–No.5, as shown in Figure 5, with all 17 key points 
labeled as an example. 
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To assess the effectiveness of dynamic key points in improving fall detection accuracy, we created 
four different training sets comprising different types of data: 1) all key points, 2) all key points and 
original images, 3) dynamic key points, and 4) dynamic key points and original images. We then 
trained models on each of these sets and used them to validate the output error images. This allowed 
us to determine the gain effect of dynamic key points and evaluate their impact on the accuracy of 
fall detection. 

 

Figure 5. Demonstration of key points groups. 

3.1. MDCR 

We conducted test experiments on four methods regarding the MDCR are tested. The test results 
on FDD are shown in Figure 6. 

From Figure 6, it can be seen that the MDCR of the No.3 and No.4 key points groups is better 
than that of the other three groups. In terms of methods, the dynamic key points perform better. 

In the field of fall detection, determining the accuracy of the result is important in addition to the 
final test result. We construct the same dataset for the experiments. 

The average correction rate of key points group No.4 was found to be the highest among the four 
methods. Therefore, key points group No.4 was taken as an example to count the recognition 
measurement accuracy of the four different methods used to correct false negative (FN) samples. 
Figure 7 shows the accuracy distribution of the four methods. A–D represent the following respectively: 
All key points, All key points and original images, Dynamic key points, Dynamic key points and original 
images. The red line represents the median of the box, and we have labeled the median and interquartile 
range for each box. 

From the box plot, it can be seen that the dynamic key points method has the highest overall 
distribution of data, as evidenced by both the interquartile range and the median. 
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Figure 6. Comparison of the MDCR by four methods on the FDD dataset. 

 

 

Figure 7. Comparison of the Accuracy of groups No.4 key points on the FDD dataset. 

3.2. EDCR 

The test results of the four methods on UFDD are shown in Figure 8. 
From Figure 8, it can be seen that the average EDCR of the No.4 key points group is superior to 

the other four groups, and the dynamic key points method in No.4 achieves the highest accuracy. 
We selected the best group of 5 key points based on the MDCR results, and then determined that 
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the dynamic key points method in Group No.4 had the highest accuracy rate in correcting FN data. In 
the EDCR section, we found that the Dynamic key points method yielded the highest accuracy. Thus, 
we used this method as an example and assessed the recognition accuracy of corrected FP samples 
using five different key point groups. We also marked the median and interquartile range of the 
box plot in Figure 9. From the box plot, it can be seen that the No.4 key points group yielded the 
best results. 

 

Figure 8. Comparison of the EDCR by four methods on the UFDD dataset. 

 

Figure 9. Comparison of the Accuracy of 5 groups Dynamic key points on the UFDD dataset. 
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3.3. Accuracy 

In this paper Accuracy is defined as the accuracy corrected by Model-b, expressed as (3):  

          𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
஺ିிேିி௉ାெ௏ಾାெ௏ಶ

஺
 (3) 

where A is All images of the test. 
The experimental results are shown in Figures 10 and 11. 

 

Figure 10. Accuracy obtained by four methods on the FDD dataset. 

 

Figure 11. Accuracy obtained by four methods on the UFDD dataset. 
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From Figures 10 and 11, it can be seen that among the four methods and 5 key point groups, the 
Dynamic key points method of the No.4 group has the highest accuracy. 

3.4. Related terms 

The test results of sensitivity on FDD are shown in the Figure 12. From the figure it 
demonstrated that only the Dynamic key points method of groups No.3 and No.4 outperforms the 
correction effect of origin. 

 

Figure 12. Comparison of the Sensitivity by four methods on the FDD dataset. 

 

Figure 13. Comparison of the Specificity by four methods on the UFDD dataset. 
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We evaluated the specificity of our method on both datasets, and the results for the UFDD are shown 
in Figure 13. From the figure, it can be observed that half of the methods outperform the baseline, and 
the Dynamic key points method using key points group No.4 achieves the highest specificity. 

We compared the training and validation speed of adding preposed attention and not adding 
preposed attention in Tables 2 and 3. As can be seen from the tables, with preposed attention, the 
training and validation speed of the data only decreased slightly. Therefore, it can be concluded that 
our proposed preposed attention did not increase the computation burden. 

Table 2. Comparison of iteration speeds of data training processes with or without preposed attention. 

Model Average iterations per second (it/s) 
Model-a 3.07 
Model-b 3.01 

Table 3. Comparison of iteration speeds of data validation processes with or without preposed attention. 

Model Average iterations per second (it/s) 
Model-a 8.77 
Model-b 8.61 

Table 4 compares the accuracy of different algorithms on the dataset URFD, and it can be 
indicated that our method outperforms most algorithms in terms of detection accuracy, slightly lower 
than the hybrid algorithm [42,43] and Deep network [44] with higher detection cost and time. 

Table 4. Comparison of fall detection methods in URFD. 

Methods Accuracy (%) 
CNN [38] 96.43 
1D CNN [38] 92.72 
OF CNN [40] 83.02 
OF CNN [41] 91.40 
multi-stream DNN [42] 99.72 
3D CNN, LSTM [43] 99.27 
Deep network [44] 99.67 
Our method 99.20 

Table 5. Results of our method for cross dataset detection. 

Dataset Accuracy (%) 
FDD 97.27 
UFDD 99.68 

In order to verify the applicability and robustness of the method in this paper, we did cross-library 
detection. The model is trained on URFD and detected on FDD and UFDD respectively, and the results 
are shown in Table 5. Based on the accuracy it can be indicated that the robustness of the method in 
this paper is strong. 
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After analyzing the experimental results, it has been demonstrated that each method has different 
accuracy improvement effects for different indexes. For instance, the Dynamic key points method of 
groups No.3 displays the most significant improvement for the correction of missed detections, but the 
correction effect for false detections is mediocre. On the other hand, the Dynamic key points method 
of groups No.4 achieves the best improvement in both datasets for the final accuracy index, which 
represents the comprehensive performance of the proposed method. These results further validate the 
effectiveness of the proposed method. 

4. Discussion 

Fall detection algorithms play an important role in fall detection and fall prevention. Each fall 
detection algorithm is capable of achieving very high accuracy, and applying fall detection to real life 
is an urgent issue to be considered at present. Through the above experiments, it was shown that the 
performance of the Model-b, compared with the Model-a, did not improve significantly, and even 
decreased slightly. The Model-b trained with Dynamic key points groups No.4, which has the best 
results in the above experiments, was selected for comparison, as shown in Table 6. 

Table 6. Accuracy of the two models on different datasets. 

Model URFD FDD UFDD 

Model-a 0.987 0.926 0.931 

Model-b 0.982 0.938 0.986 

  

Figure 14. Correction results of Model-a. 

Although the improvement in accuracy with Model-b alone was small, further analysis revealed 
strong complementarity between Model-a and Model-b. To investigate this, we used the highest-
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accuracy Model-a trained on URFD in a 5-fold cross-validation approach (defined as K1–K5), where 
we labeled the validation set images of each fold, sequentially validated and outputted the images with 
detection errors. We then used Model-a and Model-b in turn to detect the output images. Black dots 
indicate the error detection result, red dots indicate the corrected error result, and more red dots 
represent stronger complementarity between the models. The results are shown in Figures 14 and 15. 

As an example, we take K1 of Figure 14: in the K1 fold, the images incorrectly detected by the 
first CNN model are No.1, No.90, No.224, No.225, No.226, and No.227. The No.90 image is 
corrected after being detected by the Model-a with the next highest accuracy. : error detection 
result, : corrected error result. 

 

Figure 15. Correction results of Model-b. 

The experiments described above have demonstrated the complementarity between the models 
trained using dynamic key points and original images. To explore whether training the models with 
dynamic key points first and then using original images for complementary correction would yield 
similar results, we conducted additional experiments. The results showed that original images do have 
a correction effect, and the final accuracy is similar. This provides further evidence for the 
complementarity between the two approaches. However, the correction effect is lower compared to 
the method proposed in this paper. The results of these additional experiments are summarized in 
Tables 7 and 8. 

Table 7. Data on FDD in two orders. 

FDD MDER EDCR Accuracy sensitivity specificity 

Exchange Order 0.5238 0.5 0.97 0.971 0.9687 

Our method 0.9225 0.847 0.973 0.9571 0.9852 

K-fold cross validation
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Table 8. Data on UFDD in Two Orders. 

UFDD MDER EDCR Accuracy sensitivity specificity 

Exchange Order 0.7673 0.867 0.997 0.9964 0.9992 

Our method 0.9268 0.995 0.997 0.9848 0.9939 

In the field of biomedical imaging, Optical Coherence Tomography (OCT) is a commonly used 
non-invasive detection technology. Among them, Swept-Source OCT (SS-OCT) system uses a rapidly 
scanning laser for imaging in the 1300 nm bio-imaging window [45]. Various automatic calibration 
schemes have been widely studied to ensure the high-precision imaging of the SS-OCT system. Ratheesh 
et al. [46] proposed an automatic calibration scheme based on spectral phase. Meleppat et al. [47] 
proposed an effective wavenumber linearization method that can help SS-OCT systems achieve more 
accurate imaging. At the same time, dynamic key points detection technology has become an important 
research direction for real-time monitoring of small structural changes in biological tissue. 

In cutting-edge research in this field, Meleppat et al. [48] successfully achieved imaging of the 
retina and choroid in different types of vertebrate eyes through experiments. Murukeshan et al. [49] 
introduced a method for quantitative detection of biofilm thickness using an SS-OCT system. 

Based on these cutting-edge studies, we can consider new application scenarios, such as 
whether marking key points at the sclera or iris of the pupil, and combining dynamic key points 
detection technology, can help the SS-OCT system detect eye or retina structural changes earlier or 
more quickly, thus achieving more accurate diagnosis and treatment of eye diseases. This is a new 
direction worth further research. 

5. Conclusions 

This paper presents a novel approach for fall detection using dynamic key points and a preposed 
attention mechanism that fuses this information with original human posture images. We propose a 
deep learning model that incorporates this attention mechanism, which improves the accuracy of fall 
detection when compared to models trained with original images and all key points. Our extensive 
experiments on multiple datasets demonstrate the complementarity of dynamic key points and original 
images at the decision level, resulting in improved detection accuracy. In the future, we plan to develop 
more attention capture methods to fuse complementary information from different modalities. 
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