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Abstract: With the development of AI (Artificial Intelligence), facial expression recognition (FER) is
a hot topic in computer vision tasks. Many existing works employ a single label for FER. Therefore,
the label distribution problem has not been considered for FER. In addition, some discriminative
features can not be captured well. To overcome these problems, we propose a novel framework,
ResFace, for FER. It has the following modules: 1) a local feature extraction module in which ResNet-
18 and ResNet-50 are used to extract the local features for the following feature aggregation; 2) a
channel feature aggregation module, in which a channel-spatial feature aggregation method is adopted
to learn the high-level features for FER; 3) a compact feature aggregation module, in which several
convolutional operations are used to learn the label distributions to interact with the softmax layer.
Extensive experiments conducted on the FER+ and Real-world Affective Faces databases demonstrate
that the proposed approach obtains comparable performances: 89.87% and 88.38%, respectively.
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1. Introduction

With the development of artificial intelligence, the field of facial expression recognition (FER) has
attracted researchers from various fields, e.g., computer vision, affective computing, etc. Recently,
deep learning (DL) technology has obtained excellent performance for FER [1, 2]. In general, the
features can be classified as either hand-crafted or deep learned features. Examples of hand-crafting
features include the use of the Gabor filter [3], the histogram of gradients [4], and local binary patterns
[5]. But DL has the following advantages over hand-crafted features: 1) strong learning ability; 2)
Many well-adaptive neural network layers with a wide width, which can theoretically map to any
function to solve very complex problems; 3) Excellent portability [6]. [7] proposes a two-stage method
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to fine-tune the face network for FER. Cai et al. [8] design a novel function named island loss to capture
informative features for FER. [9] proposes a novel region attention architecture and adopts ensemble
learning to learn discriminative features, which obtains state-of-the-art performance for FER.

Hence, the above method obtains a promising performance for FER. To lessen the computational
cost for FER, some researchers try to design lightweight architectures to address the problem, e.g.,
MobileNet [10, 11], ShuffleNet [12, 13], and another deep models [14–20]. However, there are some
challenges, such as occlusion and variations of the pose, which may lead to uninformative features
being extracted, which makes for a poor performance for FER. Therefore, various researchers have
tried to develop robust and lightweight architectures for FER. Nevertheless, there are still the following
problems: 1) the above methods do not consider the label distribution; 2) the performance still needs
to be improved in extracting discriminative features for FER.

Moreover, the psychologist’s study [21] and existing FER work [22] have demonstrate that the most
emotions occur as combinations, mixtures, or compounds of the basic emotions, and multiple emotions
always have different intensities from a single facial image, especially in the real world. Therefore, to
further promote the performance of the FER model, training the FER models by label distribution
called label distribution learning (LDL) instead of a single label seems more reasonable. Moreover,
there are various researches have shown that the LDL can also overcome the noise problem caused by
the subjectiveness of annotators and ambiguous in facial images [23]. Different from these approaches,
we introduce a simple but robust model by training a ResNet and label distribution generator (LDG) to
generate the label distribution directly.

In this paper, to solve the aforementioned problems, we introduce a novel architecture to model the
discriminative features for FER. Specifically, the proposed architecture includes the following main
components: 1) local feature extraction. Based on experience, ResNet-50 [24] is adopted to extract
the local low-level features. Meanwhile, to further know the efficiency of the proposed architecture,
other ResNet variants have also been evaluated. 2) To model the discriminative features based on the
local features, a feature aggregation module has been designed. Specifically, convolutional and global
average pooling (GAP) operation are adopted to transform and aggregate the local features for the
next stage. 3) To treat the label distribution problem, a cascade of convolutional operations are also
adopted to model the label distribution for FER. Meanwhile, a label distribution module and the main
architecture are also interactive to obtain the final performance of FER. In this paper, we focus on the
local and global feature extraction stages for FER.

1.1. Contributions

The main contributions can be summarized as follows:

1) A novel architecture, ResFace, is designed. In the architecture, we focus on extracting the local and
global discriminative features from the static images for FER. We then aggregate the local features
so as to reduce the useless features.

2) We explore and consider the label distribution in this task. This can overcome the noise issue for
FER. In addition, it also can improve the performance. In comparison with the modelling using
only a single label, considering the label distribution can promote the performance for FER.

3) Extensive experiments have been conducted on the RAF-DB and FER2013 databases, and
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promising performance was obtained. In addition, the effectiveness of the proposed method has
been evaluated on these databases.

The remainder of this paper is structured as follows. We briefly discuss the existing work based on
static images for FER in Section 2. Then we introduce the proposed method in Section 3. Subsection
4.1 introduces the used databases and presents the experimental results. Conclusions and future work
are described in Section 5.

2. Related works

Based on DL, many researchers have focused on designing various shallow and deep architectures
for FER. In particular, the emergence of transformer has brought about great success in many fields.
Therefore, we briefly divide the previous work into three aspects: hand-crafted features, CNN-based
features, and transformer-based features for FER.

Firstly, we briefly discuss the hand-crafted features and CNN-based features for FER. In [25], the
authors propose a hybrid architecture for FER. Specifically, the architecture includes dense and regular
Scale Invariant Feature Transform (SIFT) features for FER. They evaluate the proposed method on the
FER2013 and CK+ databases, and obtain a performance of 73.4% on FER2013 and 99.1% on CK+.

In [26], the authors design a two-stream framework with a spatial and temporal convolutional neural
network (CNN) and local binary patterns for three orthogonal planes (LBP-TOP) feature for FER.
Specifically, the framework considers the spatial and temporal patterns in the expression and non-
expression frame. The authors validate the proposed method method on CK+, and obtain a comparable
performance.

Shao et al. [27] proposes three architectures: a shallow network Light-CNN, a dual-branch CNN,
and a pre-trained CNN. For the shallow light-CNN, a fully convolutional neural network includes six
depthwise separable residual convolution modules to overcome the problem of complex topology and
over-fitting. The dual-branch CNN can extract deep learning features and LBP features at the same
time. The pre-trained CNN uses transfer learning technology to cope with the small amount of
training data. Extensive experiments were conducted on the CK+, BU-3DEF and FER2013 datasets,
and demonstrate the effectiveness of the proposed method when compared to the state of the art
methods.

[23] introduces a novel architecture label distribution learning on auxiliary label space graphs
(LDL-ALSG) for FER. Specifically, the framework uses topological information to model the facial
features from action units and facial landmarks. They assume that facial images should have similar
expression distributions to their neighbours in the label space of action unit recognition and facial
landmark detection. The proposed method is validated on various datasets and obtained promising
performance when compared the state of the art methods.

In [28], the authors propose an informative and discriminative Feature Learning (IDFL)
framework. Two components make up the framework: a multi-Path Attention Convolutional Neural
Network (MPACNN) and Balanced Separate loss (BS loss), for both basic and compound
high-accuracy FER in the wild. Specifically, MPACNN adopts many paths to capture discriminative
features. In addition, the BS loss is adopted as the objective function of MPACNN, so the model can
capture informative and discriminative features simultaneously, obtaining competitive results. The
authors evaluated the proposed method on seven databases, and the performances demonstrate that
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that approach obtains state-of-the-art results on both basic and compound expressions.
[29] proposes a novel architecture for FER, in which deep sparse autoencoders (DSAE) is adopted

to extract informative features from the data. Extensive experiments were conducted on the CK+
database, obtaining an accuracy of 95.79%. In addition, that method was also used to recognize eight
facial expressions, obtaining a comparable accuracy when compared with most other methods.

[30] designs a dynamic multi-channel metric learning network (DML-Net) to reduce the effects
of pose and identity for FER. Specifically, DML-Net can learn the local and global features from the
facial regions. DML-Net is an end-to-end trainable architecture to model discriminative features for
FER. Extensive experiments obtained accuracies of 88.2% on KDEF, 83.5% on BU-3DFE, 93.5% on
Multi-PIE, and 54.36% on SFEW.

In [31], Zhang et al. introduced a novel scheme to model the problem for FER. The scheme, referred
to as relative uncertainty learning (RUL), considers these uncertainties as weights to mix facial features
and design an add-up loss to encourage uncertainty learning. Extensive experiments show that RUL
outperforms state-of-the-art FER methods.

[32] proposes a deep attentive center loss (DACL) method to learn the discriminative features
to improve the informative features. Specifically, the DACL combines an attention mechanism with
spatial feature maps to learn the discriminative features for FER. The estimated weights accommodate
the sparse formulation of center loss to selectively achieve intra-class compactness and inter-class
separation for the relevant information in the embedding space. They evaluate the proposed method on
the public databases and demonstrate its effectiveness.

[33] proposes a disentangled facial expression recognition (IPD-FER) model for FER. The
authors consider the ensemble facial expressions, such as identity, pose, and expression. Therefore,
three different encoders are designed: an identity encoder, a pose encoder, and an expression encoder.
Experiments validate its capacity on both lab-controlled and in-the-wild databases and they obtain
state-of-the-art recognition performance.

[34] proposes a coarse-to-fine cascaded network with smooth predicting (CFC-SP) for FER. The
CFC-SP includes two models: coarse-to-fine cascaded networks (CFC) and smooth predicting (SP).
The proposed architecture can model the discriminative features for FER. They got 3rd place in the
expression classification challenge of the 3rd competition on affective behavior analysis in-the-wild.

In [35], the authors propose a new feature decomposition and reconstruction learning (FDRL)
method for FER. The framework includes two architectures: a feature decomposition network (FDN)
and a feature reconstruction network (FRN). They obtain promising performance both on the lab
controlled databases (including CK+, MMI, and Oulu-CASIA) and in-the-wild databases (including
RAF-DB and SFEW).

Based on the work reviewed above, we can conclude that: 1) the existing work only focuses on
learning the discriminative features in static images, and use different network structures to mine fine-
grained emotional feature embedding; 2) the existing work mainly focused on adopting a single label
for FER. Therefore, we have designed a novel framework to address these problems.

2.1. Architecture overview

To learn the discriminative features using the hybrid architecture, a brief overview will now be
presented. Figure 1 presents the architecture. The pipeline consists of the following modules: 1) a
local feature extraction module in which ResNet (ResNet-18, ResNet-50) are used to extract the local
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features for the following feature aggregation; 2) a channel feature aggregation module, in which a
channel-spatial feature aggregation method is adopted to learn the high-level features; 3) a compact
feature aggregation module, in which several convolutional operation are used to learn the label
distributions to interact with the softmax layer. In the following, we provide a detailed introduction to
each module of the architecture. The remainder of this section is structured as follows. Subsection 3.1
details the local feature extraction module, the channel-spatial feature aggregation module is
presented in Subsection 3.2, and then Subsection 3.3 discusses the label distribution generator. The
pipeline of the proposed approach is illustrated in Figure 1.
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Figure 1. Illustration of the proposed pipeline for ADE. The pipeline consists of the
following modules: 1) local feature extraction module, 2) channel feature aggregation
module, 3) compact feature aggregation module. The local feature extraction module learns
the local deep features using ResNet-18 and ResNet-50. The channel feature aggregation
module can be used to learn the high-level features. In the compact feature aggregation
module, several convolutional operation are adopted for feature learning to interact with the
label distribution learning for the final FER.

3. Our architecture

3.1. Local feature extraction

By now, deep learning technology has been adopted as an efficient feature extraction in computer
vision. DCNN captures local features with a hierarchical pattern by convolutional operations and
maintains the local patterns as feature maps. Meanwhile, ViT is also proposed to aggregate global
patterns from the compressed patch embedding by a soft pattern with the cascaded self-attention
modules. In this work, the ResNet (ResNet-18, ResNet-50) architecture is used to learn the
discriminative deep features.

Due to the small amount of training data, the pre-trained model can be divided in two ways for FER.
First, we explore the existing pre-trained deep models and adopt the discriminative models for FER.
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The other way is that the ensemble architecture and its sub-architecture are fine-tuned to fit our task.
Therefore, the weights of the deep model are taken as the values of the parameters for the new task and
updated in the training stage.

As for the FER task, to extract the discriminative features, ResNet (ResNet-18, ResNet-50) are
adopted to extract the deep features, followed by adopting different modules to extract the mid-level
and high-level features for FER. In our task, to make a clear explanation for the FER (Figure 3), we
only use ResNet-18 as an example. As illustrated in Figure 2, ResNet-18 contains 16 convolution
layers, 2 downsampling layers, and 2 fully connected layers. In ResNet-18, the convolutional layer is
224×224 with a kernel size of 7×7. As is known, the kernel size of the other layers is 3×3. Followed
by the last convolutional layer, an eigenvector is obtained by full connection. ResNet-50 has a similar
architecture to that of ResNet-18: the only difference is that it contains more layers.
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Figure 2. Illustration of the ResNet-18 architecture. ResNet-18 include 17 convolutional
layers and 1 fully connected layer.
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Figure 3. Illustration of the local feature extraction. After learning the compact features by
the variants of ResNet, ConvTranspose2d operation is used to augment and upsample the size
of the feature maps to make the features for the following feature learning and aggregation.

After the feature extraction by the ResNet variants, discriminative feature representations are
obtained from the architectures. More importantly, to improve the efficiency of the FER model, we
use the novel architecture ShuffleNet-V2 [13], which includes Conv1, Stages 2–4, and Conv5, and is
adopted as the main backbone network in our task. Meanwhile, to overcome the issues of occlusion
and pose variation in real-world scenes, two modules are adopted: a local-feature extraction module
and a channel-spatial feature aggregation module. In addition, a novel label distribution learning
method is introduced [21].

Existing work has suggested that local facial features are beneficial to FER [9, 36]. However, the
above mentioned methods mainly focused on the facial landmarks, and do not consider the local facial
features. Therefore, we adopted ResNet to extract local region features, to provide an solid foundation
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for the following global feature representation learning. The architecture is shown in Figure 3 (dashed
red rectangle). Assume that the input image has a size of 224 × 224 × 3. After performing the first
convolutional (conv1) operation, the feature map has a size of 56 × 56 × 29. To make a convenient
representation, let us assume the output is Feaconv1 ∈ R

H×W×C. After inputting the feature map Feaconv1

into the ResNet architecture, a new feature map Fealocal ∈ R
H′×W′×C′ is obtained.

3.2. Compact feature aggregation
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Figure 4. Illustration of the channel-spatial aggregation module for feature learning. To
learn the compact features, the first branch consists of one GAP layer and two FC layers, and
the second branch consists of two 1 × 1 layers and two 3 × 3 layers. After the following
operation, the learned features are concatenated and multiplied with the original feature
maps to generate the output feature maps. ⊕ denotes summation. ⊗ denotes element-wise
multiplication.

After the local feature extraction, discriminative features are obtained. Although ResNet has the
capacity to learn informative features, there are also some redundant features in it. Therefore, we
adopt a channel-spatial aggregation method to aggregate the representative features after Stage 2. In
our work, we change the channel-spatial aggregation method based on [37]. The framework of the
channel-spatial feature aggregation module is illustrated in Figure 4 (green dashed rectangle). After the
feature maps are input into Stage 2, the high-level feature maps (Feastage2) ∈ RH′×W′×C′ are generated.
In this stage, the procedure can be split into two sub-procedures for feature aggregation. The channel
heatmaps Zchannel(Feastage2) ∈ RC′ and the spatial heatmaps Zspatial(Feastage2) ∈ H′×W′ are calculated by
two parallele procedures. After that, all the heatmaps Z(Feastage2) can be written as

Z(Feastage2) = σ(Zchannel(Feastage2) + Zspatial(Feastage2)) (3.1)

where σ denotes a sigmoid function. The channel heatmaps Zchannel(Feastage2) ∈ RC′ and the spatial
heatmaps Zspatial(Feastage2) ∈ RH′×W′ are resized to RH′×W′×C′ before performing the addition operation.
Lastly, the final global feature maps are formed as follows:

Feamodulated = (Feastage2) ⊗ Z(Feastage2). (3.2)

When we perform the local feature extraction and bottleneck attention feature aggregation, the
obtained local–global features can be written as

Fea f inal = Fealocal + Feamodulated. (3.3)
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After performing the feature extraction and aggregation, the architecture is able to learn local
features and global-salience. In our work, to learn the discriminative features, we only adopt the local
feature extraction and channel-spatial feature aggregation after Stage 2. The reason is that the feature
maps contain the informative features by combining the local and channel-spatial features.

3.3. Label distribution learning

For the FER task, the annotation of the facial images is often difficult to recognize. In view of this,
a label distribution generator (LDG) has been designed to generate the label distribution for the deep
model training. The architecture is illustrated in Figure 1 (the pink dashed rectangle). To ensure the
capacity of the deep models, the LDG is fixed in the training stage.

Suppose given a facial image X, and the corresponding label la ∈ {0, 1, ..., l − 1}, where l is the
number of categories of expressions. The function of the LDG is to generate a distribution
Dis = (Dis0,Dis1, ...,Disl−1), where

∑l−1
j=0 ϕ j = 1. A feature vector Fv = (Fv0, Fv1, Fv2, ..., Fvl−1) is

generated. Then Dis can be calculated by a softmax function:

Dis =
exp(Fvm)∑l−1

n=0 exp(Fvn)
(3.4)

where m ∈ {0, 1, ..., l − 1}.
As is known, the existing FER methods also use a single label as ground truth. In our work, we use

a label distribution as ground truth for FER. Cross-entropy is adopted to compute the distance between
the predicted value and the output of LDG. Therefore, the label distribution loss can be written as

Lossall = −
1

N × l

N−1∑
i=0

l−1∑
m=0

disi
m log(dis

i
m) (3.5)

where N is the number of samples, dis = (dis1, dis2, ..., disl−1 is the predicted label distribution, and i
and j indicate the sample and the expression, respectively.

4. Experiments

In this part, we present the experimental validation of the introduced framework for FER. We first
present the used datasets, and the experimental settings and evaluation standard. Finally, we discuss
the experimental results for FER.

4.1. Datasets

RAF-DB [38] contains 30,000 facial images annotated with basic or compound expressions by 40
trained human coders. In order to make a fair comparison with the existing work, seven basic emotions,
i.e., neutral, happiness, sadness, surprise, fear, disgust, and anger, are adopted in our experiment. The
datasets consist of 12,271 images for training and 3068 images for testing.

FERPlus is an extension of FER2013 [39] in the the ICML 2013 Challenges. It is a large-scale and
real-world dataset collected by the Google search engine, and consists of 28,709 training images, 3589
validation images, and 3589 test images. All the facial images are resized to 48 × 48.
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4.2. Implementation details

In our experiment, we fine-tune the ResNet variants for FER. All the facial images are resized to
224× 224. To overcome the over-fitting problem, random cropping and random horizontal flipping are
adopted. The proposed architecture is trained from scratch. LDG is pre-trained on the face recognition
dataset MS-Celeb-1M [40]. For LDG, the 50-layer Residual Network is used as the backbone network.
For ResFace, the parameters were optimized via the SGD optimizer with an initial learning rate of 0.1
and a mini-batch size of 64. The Pytorch platform is used to train the deep models with the NVIDIA
Titan RTX.

4.3. Results

In this part, we first discuss the results for FER. Then we compare them with state of the art methods
for FER.

To validate the efficiency of the proposed method, we combine several architectures to learn the
discriminative features for FER. Resnet-18 and ResNet-50 are used to learn the local features, and
channel-spatial feature aggregation is used to learn the global features for the LDG for FER.

Table 1. Performance of ResNet-18 on the RAF-DB dataset.

Dataset Architecture # Params (M) # MFLOPs Accuracy (%)

RAF-DB

A 10.1 1642.86 88.00
A + B 10.2 1659.13 88.02
A + C 10.3 1675.39 88.07
A + B + C 10.4 1691.66 88.21

Table 2. Performance of ResNet-50 on the RAF-DB dataset.

Dataset Architecture # Params (M) # MFLOPs Accuracy (%)

RAF-DB

A 12.1 1968.18 88.02
A + B 12.2 1984.45 88.11
A + C 12.3 2000.72 88.16
A + B + C 12.4 2016.74 88.38

Table 3. Performance of ResNet-18 on the FER+ dataset.

Dataset Architecture # Params (M) # MFLOPs Accuracy (%)

FER+

A 10.1 1642.86 87.78
A + B 10.2 1659.13 87.80
A + C 10.3 1675.39 87.81
A + B + C 10.4 1691.66 87.89
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Table 4. Performance of ResNet-50 on the FER+ dataset.

Dataset Architecture # Params (M) # MFLOPs Accuracy (%)

FER+

A 12.1 1968.18 88.83
A + B 12.2 1984.45 89.46
A + C 12.3 2000.72 89.54
A + B + C 12.4 2016.74 89.87

To make a simple explanation for the experimental results, we abbreviate the “Baseline”, “Local-
Feature Extractor” and “Channel-Spatial Modulator” as A, se B and C, respectively. To validate the
effectiveness of the proposed method, we conductd extensive experiments with ResNet-18 and ResNet-
50 on the RAF-DB and FER+ datasets for FER. From Table 1, one can note that “A + B + C” obtains
the best performance, 88.21%. However, more parameters will be obtained, i.e., the parameters (M)
of 10.4 and the MFLOPs with 1691.66. Meanwhile, for the ResNet-50 architecture, we obtain a
comparable performance for the FER with an accuracy of 88.38% (see Table 2).

On the FER+ dataset, we also validate the capacity with the ResNet-18 and ResNet-50 architecture.
From Table 3, one can note that “A + B + C” still obtain the best performance, with an accuracy of
54.89% for FER with the ResNet-18 architecture. To further validate the effectiveness of the proposed
method, we also use ResNet-50 as a backbone to learn the discriminative features for FER (see Table
4).

4.3.1. Comparison with the state-of-the-art methods

To further compare the proposed method with the existing methods, we list several papers based on
the DL technology for FER.

Table 5. Performance of the proposed method on the RAF-DB dataset.

Methods # Params (M) # MFLOPs Accuracy (%)
IPA2LT [29] > 23.52 > 4109.48 86.77
Separate-Loss [41] 11.18 1818.56 86.38
gACNN [36] > 134.29 > 15479.79 85.07
RAN [9] 11.19 14548.45 86.90
LDL-ALSG [23] 23.52 4109.48 85.53
SCN [42] 11.18 1818.56 87.03
EfficientFace [43] 1.28 154.18 88.36
Ours (ResNet − 18(cross − entropy − loss)) 12.4 2156.12 83.24
Ours (ResNet − 50(cross − entropy − loss)) 13.1 2789.74 84.12
Ours (ResNet-18) 10.4 1691.66 88.21
Ours (ResNet-50) 12.4 2016.74 88.38
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Table 6. Performance of the proposed method on the FER+ dataset.

Methods Year Accuracy (%)
VGG13 [44] 2016 85.10
ResNet-18+VGG16 [45] 2017 87.40
SENet-50 [46] 2018 88.80
RAN+ResNet-18 [9] 2020 88.55
RAN+VGG16 [9] 2020 89.16
SCN+ResNet-18 [42] 2020 88.01
SCN+ResNet-18+ArcFace [42] 2020 89.35
Ours (ResNet-18 (cross-entropy-loss)) 2022 84.07
Ours (ResNet-50 (cross-entropy-loss)) 2022 85.20
Ours (ResNet-18) 2022 87.89
Ours (ResNet-50) 2022 89.87

In this part, our goal is to compare some state-of-the-art FER methods applied to the RAF-DB and
FER2013 databases. To obtain the best performance for FER, single label distribution is used by many
methods. In Table 5, we show the results of state of art methods on RAF-DB for FER. Our ResFace
(ResNet-18) achieves a comparable accuracy of 88.21%, and the ResNet-50 obtains a comparable
accuracy of 88.38%. The results show that the proposed method can better adopt both local and global
features, and the performances are advanced. Moreover, the comparison with other methods also shows
the effectiveness of the proposed method.

For FER+, as shown in Table 6, the proposed method obtains a comparable accuracy of 87.89%
and 89.87% with the ResNet-18 and ResNet-50, respectively. However, our method adopts the local,
global and label distribution information for FER.

On the considered RAF-DB and FER+ datasets, our method has achieved comparable performance
for FER. The advantage of our proposed method is that it can learn the informanative features for FER.
Specifically, the first reason is that the variants of ResNet can learn the local features to reduce the noise
of the features. Second, LDG can learn the distribution of labels, which can learn the informinative
information for FER.

5. Conclusions

Nowadays, various deep learning methods are proposed for FER. However, they mainly focused
on single label for this task. In this paper we proposed a novel architecture, referred to as ResFace,
for facial expression recognition (FER). In this framework, we use three modules: a local feature
extraction module, a channel-spatial feature aggregation module, and a compact feature aggregation
module, as well as several convolutional operations to learn the label distributions to interact with the
softmax layer. Extensive experiments conducted on the RAF-DB and FER+ datasets showed that it
obtained promising performance for FER.

In the future, we will learn the local deep features, and capture the discriminative features for FER.
In addition, we will leverage the label distribution learning scheme for FER.
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