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Abstract: New stochastic and deterministic Hepatitis B epidemic models with general incidence
are established to study the dynamics of Hepatitis B virus (HBV) epidemic transmission. Optimal
control strategies are developed to control the spread of HBV in the population. In this regard, we
first calculate the basic reproduction number and the equilibrium points of the deterministic Hepatitis
B model. And then the local asymptotic stability at the equilibrium point is studied. Secondly, the
basic reproduction number of the stochastic Hepatitis B model is calculated. Appropriate Lyapunov
functions are constructed, and the unique global positive solution of the stochastic model is verified by
Itô formula. By applying a series of stochastic inequalities and strong number theorems, the moment
exponential stability, the extinction and persistence of HBV at the equilibrium point are obtained.
Finally, using the optimal control theory, the optimal control strategy to eliminate the spread of HBV
is developed. To reduce Hepatitis B infection rates and to promote vaccination rates, three control
variables are used, for instance, isolation of patients, treatment of patients, and vaccine inoculation. For
the purpose of verifying the rationality of our main theoretical conclusions, the Runge-Kutta method
is applied to numerical simulation.
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1. Introduction

Hepatitis B is a global health problem with a high incidence rate in developing countries. According
to statistics, asymptomatic HBV carriers in the world exceed 280 million, and China accounts for about
130 million. HBV infects liver cells when it enters the body. Most Hepatitis infections are caused by
viruses, infections, germs or addiction to ethyl alcohol and medicines. The transmission of HBV can
take place in a variety of ways, for instance, transmission of blood, bodily fluid transmission and
mother-to-child vertical transmission, and so on. Vaccination against Hepatitis B is the most basic
measure for preventing and controlling the disease. Many mathematicians and biologists have studied
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the Hepatitis B epidemic. They built different mathematical models to analyze the dynamic behavior
of HBV. Then stability theory, bifurcation phenomenon, analysis of sensitivity and optimal control
strategies of the infectious disease models are studied. This not only helps to achieve a reduction in
Hepatitis B transmission, but also helps to prevent Hepatitis B in daily life. For example, in [1, 2], the
authors established the epidemic models with bilinear incidence for Hepatitis B. Hepatitis B can be
effectively controlled through optimal control strategies. In [3], a Hepatitis B transmission model is
established as follows: 

dS
dt

= Λ −
α1S I

1 + α2I
− (µ0 + ν) S ,

dI
dt

=
α1S I

1 + α2I
− (µ0 + µ1 + γ) I,

dR
dt

= γI + νS − µ0R,

S (0) ≥ 0, I (0) ≥ 0,R (0) ≥ 0,

(1.1)

where α1 represents the transmission rate of HBV, α2 represents the saturation rate. The kinetic be-
havior of HBV model is discussed with stability theory. In [4, 5], the authors established the fractional
HBV model. By means of the fractional Routh-Hurwitz stability criterion, the global dynamic behavior
of fractional Hepatitis B model is studied.

Epidemics are strongly influenced by environmental changes. In the case of human diseases, since
one person’s contact with another is unpredictable, the prevalence and spread of infectious diseases
is random. Therefore, it is necessary to incorporate random effects into mathematical models [6, 7].
By doing so, we are able to develop a more reasonable model. Modeling using stochastic differential
equations is a very suitable method in the study of epidemic dynamics. Many researchers use stochastic
infectious disease models to investigate different diseases. Here we focus on the stochastic HBV
models. Khan et al. [8] proposed a stochastic HBV epidemic model with bilinear incidence as follows:

dS
dt

=
[
Λ − αS I − (µ0 + ν) S

]
dt − ηS IdB (t) ,

dI
dt

=
[
αS I − (µ0 + µ1 + γ) I

]
dt + ηS IdB (t) ,

dR
dt

= (γI + νS − µ0R) dt,

S (0) ≥ 0, I (0) ≥ 0,R (0) ≥ 0,

(1.2)

where α represents the bilinear incidence rate, η2 > 0 represents the intensity of white noise, B(t)
represents the Brownian motion. Based on the theory of stochastic Lyapunov function, the dynamic
behavior of Hepatitis B stochastic model is studied. Anwarud Din et al. [9–11] proposed the stochastic
models of Hepatitis B with standard incidence. Wu et al. [12] established a stochastic delay model
of Hepatitis B with bilinear incidence. Anwarud Din et al. [13] built a stochastic time-delay model of
Hepatitis B with standard incidence. In [14], a new stochastic Hepatitis B epidemic model that includes
white noise, Markov switching, and vaccination control was developed. The above studies concluded
that high noise can guarantee the extinction of Hepatitis B.

To sum up, most of the current research focus on HBV models with bilinear incidence, standard
incidence and saturated incidence, and few studies on HBV models with environmental noise distur-
bance and general incidence. The general incidence rate is more realistic than the bilinear incidence
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rate, standard incidence rate and saturated incidence rate. This is the research motivation of this paper.
New stochastic and deterministic models of Hepatitis B epidemic with general incidence rate are es-
tablished. The dynamic behavior of HBV model is studied, and the influence of environmental white
noise on the epidemic of HBV is analyzed, and the optimal control strategy for eliminating HBV is
developed. The research work in this paper is an extension of the work on [3, 8–11]. The meanings of
parameters in the models studied in this paper are as follows:

Λ: the birth rate;
β: infection rate from susceptible population to Hepatitis B;
µ0: the natural mortality rate;
µ1: the mortality rate from HBV;
γ: the recovery rate of HBV;
ν: the vaccination rate of HBV.
Here is a breakdown of this article’s organization. In Section 2, the new models of Hepatitis B

are established. In Section 3, we obtain the basic reproduction number and the equilibrium points
for the deterministic epidemic model of Hepatitis B. Lyapunov function is used to prove the local
asymptotic stability. In Section 4, we verify that the stochastic model has one and only one global
positive solution. The extinction, persistence and moment exponential stability of stochastic model are
studied by means of stochastic Lyapunov function theory. In section 5, the optimal control strategy to
eliminate HBV is developed by using the optimal control theory. To reduce Hepatitis B infection rates
and to promote vaccination rates, three control variables are used, for instance, isolation of patients,
treatment of patients, and vaccine inoculation. In Section 6, Runge-Kutta method is used for numerical
simulation to support our main theoretical conclusions. Section 7 provides a brief summary and outlook
of the main findings.

2. Mathematical model formulation

New deterministic and stochastic mathematical models of HBV transmission are established. We
make the following assumptions about the models:

(A1). N(t) represents the total population at time t, which is divided into three parts: susceptible
persons S (t), infected persons I(t) and convalescent patients R(t). Namely, N(t) = S (t) + I(t) + R(t).

(A2). All parameter values of the models are non-negative.
(A3). The incidence is set as nonlinear incidence rate.
(A4). Once successfully vaccinated or cured by treatment, immunity is considered permanent.

The supposed conditions (A1)–(A4) lead to Hepatitis B epidemic model as below:

dS
dt

= Λ −
βS I

f (S , I)
− (µ0 + ν) S ,

dI
dt

=
βS I

f (S , I)
− (µ0 + µ1 + γ) I,

dR
dt

= γI + νS − µ0R,

(2.1)

with S (0) = S 0 ≥ 0, I (0) = I0 ≥ 0,R (0) = R0 ≥ 0, where β represents the transmission rate of Hepati-
tis B, f (S , I) = 1 + a1S + a2I + a3S I. For convenience, we define g (S , I) =

βS I
f (S ,I) =

βS I
1+a1S +a2I+a3S I . Here
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g (S , I) is the incidence rate, where a1, a2, a3 ≥ 0. Morbidity is the number of new infections per pop-
ulation in a given time period. To simulate the spread of disease, some scholars use bilinear incidence
(see [15–17]), standard incidence (see [18–20]) and saturated incidence (see [21, 22]). However, the
nonlinear morbidity g(S , I) takes many forms, each of which has its own advantages, as below:

(i) When a1 = a2 = a3 = 0, g(S , I) represents the bilinear incidence;
(ii) When a1 = a3 = 0 or a2 = a3 = 0, g(S , I) is the saturation incidence [3];
(iii) When a3 = 0, g(S , I) is the Beddington-DeAngelis functional response as shown in [23];
(iv) When a3 = a1a2, g(S , I) is the Crowley-Martin functional response as shown in [24].

On the other hand, the following stochastic epidemic model of Hepatitis B is studied by incorporating
environmental noise into the above model (2.1):

dS =

(
Λ −

βS I
f (S , I)

− (µ0 + ν) S
)

dt −
σS I

f (S , I)
dB (t) ,

dI =

(
βS I

f (S , I)
− (µ0 + µ1 + γ) I

)
dt +

σS I
f (S , I)

dB (t) ,

dR = (γI + νS − µ0R) dt,

(2.2)

with S (0) = S 0 ≥ 0, I (0) = I0 ≥ 0,R (0) = R0 ≥ 0, where B(t) represents the Brownian motion, σ > 0
represents the white noise intensity.

3. Asymptotic behavior of deterministic Hepatitis B epidemic model (2.1)

3.1. Basic reproduction number and disease-free equilibrium point E0

Let dS
dt = 0, dI

dt = 0, dR
dt = 0, then E0 = (S 0, I0,R0) =

(
Λ

µ0+ν
, 0, νΛ

(µ0+ν)µ0

)
, for I0 = 0. The basic

reproduction number of Hepatitis B model (2.1) is given below. Let X = (S , I,R), (2.1) is written as
dX
dt = F (X) −V(X), where

F (X) =


Λ
βS I

f (S ,I)

γI + νS

 ,V(X) =


βS I

f (S ,I) + (µ0 + ν) S
(µ0 + µ1 + γ) I

µ0R

 . (3.1)

The Jacobian of equation (3.1) around E0. Rd
0 can be obtained by calculating the spectral radius of

FV−1. Then, Rd
0 =

βΛ

(µ0+ν+a1Λ)(µ0+µ1+γ) .

Theorem 3.1 E0 is locally asymptotically stable if Rd
0 < 1, otherwise E0 is unstable.

Proof. The Jacobian matrix of Hepatitis B epidemic model (2.1) at E0 can be calculated as follows:

J|E0 =


− (µ0 + ν) βΛ

µ0+ν+a1Λ
0

0 βΛ

µ0+ν+a1Λ
− (µ0 + µ1 + γ) 0

ν γ −µ0

 .
After calculation, J|E0 has three eigenvalues:

λ1 = − (µ0 + ν) < 0, λ2 = −µ0 < 0, λ3 = − (µ0 + µ1 + γ)
(
1 − Rd

0

)
.

Obviously, the sign of λ3 depends on Rd
0. If Rd

0 < 1, then the eigenvalues of J|E0 are all negative. Thus,
HBV model (2.1) is locally asymptotically stable at E0. On the contrary, if Rd

0 > 1, then λ3 is positive,
so E0 is unstable.
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3.2. Endemic equilibrium point E∗ and stability

By simple calculation, we have E∗ = (S ∗, I∗,R∗), for I∗ , 0, where t1 = µ0 + µ1 + γ, t2 = µ0 + ν,

S ∗ =
Λ − t1I∗

t2
, I∗ =

−∆1 +

√
∆2

1 − 4t2
1a3∆2

2t2
1a3

, R∗ =
γI∗ + νS ∗

µ0
,

∆1 = t2
1a1 − Λt1a3 − t1t2a2 − βt1, ∆2 = βΛ − t1t2 − Λt1a1.

Lemma 3.1 If Rd
0 > 1, then E∗ exists, otherwise it does not exist.

Proof. If Rd
0 > 1, we have

∆1 = t2
1a1 − Λt1a3 − t1t2a2 − βt1

< (µ0 + µ1 + γ)
[
− (µ0 + ν)

(
µ0 + µ1 + γ

Λ
+ a2

)
− Λa3

]
< 0,

∆2 = βΛ − t1t2 − Λt1a1

= (µ0 + ν + a1Λ) (µ0 + µ1 + γ)
(
Rd

0 − 1
)
> 0.

And by calculation, we get ∆2
1 − 4t2

1a3∆2 > 0. Thus, I∗ > 0. Because 2Λt1a3 + ∆1 >
√

∆2
1 − 4t2

1a3∆2, so

Λ −
−∆1+
√

∆2
1−4t21a3∆2

2t1a3
> 0. Then, Λ − t1I∗ > 0. Hence, we have S ∗ > 0, thereby R∗ > 0. Consequently,

E∗ exists, if Rd
0 > 1.

Theorem 3.2 E∗ is locally asymptotically stable if Rd
0 > 1, otherwise E∗ is unstable.

Proof. The Jacobian matrix of Hepatitis B epidemic model (2.1) at E∗ can be calculated as follows:

J|E∗ =


− (µ0 + ν) − βI∗(1+a2I∗)

f 2(S ∗,I∗) −
βS ∗(1+a1S ∗)

f 2(S ∗,I∗) 0
βI∗(1+a2I∗)

f 2(S ∗,I∗)
βS ∗(1+a1S ∗)

f 2(S ∗,I∗) − (µ0 + µ1 + γ) 0
ν γ −µ0

 .
By calculation, the first eigenvalue of J|E∗ is λ1 = −µ0 < 0. Take

A =

 − (µ0 + ν) − βI∗(1+a2I∗)
f 2(S ∗,I∗) −

βS ∗(1+a1S ∗)
f 2(S ∗,I∗)

βI∗(1+a2I∗)
f 2(S ∗,I∗)

βS ∗(1+a1S ∗)
f 2(S ∗,I∗) − (µ0 + µ1 + γ)

 .
By dI

dt = 0, one has βS ∗

f (S ∗,I∗) = (µ0 + µ1 + γ) . Thus, βS ∗ = (µ0 + µ1 + γ) f (S ∗, I∗). By the definition of f ,
we get βS ∗ (1 + a1S ∗) < (µ0 + µ1 + γ) f 2 (S ∗, I∗). So,

βS ∗ (1 + a1S ∗)
f 2 (S ∗, I∗)

< µ0 + µ1 + γ. (3.2)

Then, by (3.2), we obtain

trac (A) =

[
− (µ0 + ν) −

βI∗ (1 + a2I∗)
f 2 (S ∗, I∗)

]
+

[
βS ∗ (1 + a1S ∗)

f 2 (S ∗, I∗)
− (µ0 + µ1 + γ)

]
< 0

and

det (A) =

(
(µ0 + ν) +

βI∗ (1 + a2I∗)
f 2 (S ∗, I∗)

) (
(µ0 + µ1 + γ) −

βS ∗ (1 + a1S ∗)
f 2 (S ∗, I∗)

)
+
βS ∗ (1 + a1S ∗)

f 2 (S ∗, I∗)
·
βI∗ (1 + a2I∗)

f 2 (S ∗, I∗)
> 0.
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Thus, trac (A) < 0, det (A) > 0 if Rd
0 > 1. According to Routh-Hurwitz criterion, the two eigenvalues

of the matrix A are negative. It can therefore be concluded that E∗ is locally asymptotically stable when
Rd

0 > 1.

3.3. Numerical simulation

Example 3.1 In model (2.1), let Λ = 0.8, β = 0.01, a1 = 0.1, a2 = 0.2, a3 = 1.2, µ0 = 0.02, µ1 =

0.1, ν = 0.01, γ = 0.01, S (0) = 200, I (0) = 100, R(0) = 100. After the calculation, we get
E0 = (27, 0, 13) and Rd

0 = 0.56 < 1. By observing Figure 1(a), it can be concluded that E0 is locally
asymptotically stable, which verifies the rationality of Theorem 3.1.
Example 3.2 The values of the parameters except β = 0.9 are the same as those in Example 3.1. After
calculation, we get E∗ = (5, 5, 10) and Rd

0 = 50 > 1. By observing Figure 1(b), it can be concluded
that E∗ is locally asymptotically stable, which verifies the rationality of Theorem 3.2.

t
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 the Deterministic Model
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R(t)
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I(t)

R(t)

(a). Simulations of (S (t), I(t),R(t)), when β = 0.01. (b). Simulations of (S (t), I(t),R(t)), when β = 0.9.

Figure 1. Simulations of (S (t), I(t),R(t)) in the deterministic model (2.1).

4. Dynamical behavior of the stochastic HBV model (2.2)

Let (Ω,F ,P) be one complete probability space whose filtration {Ft}t≥0 satisfies the usual conditions
(i.e., {Ft}t≥0 is monotonically increasing and right-continuous while F0 contains all P-null sets). We
think over the following n-dimensional stochastic differential equation:

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), ∀t ≥ t0, (4.1)

with x(0) = x0 ∈ R
n, where f (x(t), t) : Rn × [0,+∞] → Rn and g(x(t), t) : Rn × [0,+∞] → Rn×m

are locally Lipschitz functions in x. B(t) represents the n-dimensional Brownian motion defined on
(Ω,F , {Ft}t≥0,P). C2,1(Rn × [0,+∞],R+) is a family of all nonnegative functions V(x, t) defined on
Rn×[0,+∞], making them continuously differentiable twice in x and once in t. The differential operator
L associated with (4.1) is defined [25] by:

L =
∂

∂t
+

n∑
i=1

fi (x, t)
∂

∂xi
+

1
2

n∑
i, j=1

[
gT (x, t) g (x, t)

]
i j

∂2

∂xi∂x j
. (4.2)

If L acts on V ∈ C2,1(Rn × [t0,∞],R+), then

LV (x, t) = Vt (x, t) + Vx (x, t) f (x, t) +
1
2

trace
[
gT (x, t) Vxx (x, t) g (x, t)

]
. (4.3)
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If x(t) ∈ Rn, by Itô’s formula, one has

dV (x, t) = LV (x, t) dt + Vx (x, t) g (x, t) dB(t). (4.4)

Definition 4.1 [26] The equilibrium point x = 0 of (4.1) is considered to be pth moment exponentially
stable, if there are C1, C2 > 0 so that

E (|x (x0, t)|p) ≤ C1|x0|
pe−C2t, ∀x0 ∈ R

n, t ≥ 0. (4.5)

4.1. The existence and uniqueness of positive solutions

A bounded set ∆ is defined as below:

∆ :=
{

x = (x1, x2, x3) : x1 > 0, x2 > 0, x3 > 0, x1 + x2 + x3 <
Λ

µ0
a.s.

}
.

Theorem 4.1 For (S (0) , I (0) ,R (0)) ∈ ∆, model (2.2) possesses one unique positive solution
(S (t), I(t),R(t)) on t ≥ 0. The solution is still in R3

+ with probability 1, namely, (S (t), I(t),R(t)) ∈ R3
+

on t ≥ 0 a.s.
Proof. See Appendix A.

Corollary 4.1 The set ∆ is positively invariant; in other words, if (S (0), I(0),R(0)) ∈ ∆, then
P((S (t), I(t),R(t)) ∈ ∆) = 1, ∀t ≥ 0.

4.2. Moment exponential stability

Lemma 4.1 [26] If there is the function V(t, x) ∈ C1,2(R × Rn) so that

K1|x|p ≤ V (t, x) ≤ K2|x|p, LV (t, x) ≤ −K3|x|p, t ≥ 0, p > 0,Ki > 0, i = 1, 2, 3, (4.6)

then the equilibrium point of the Eq (4.1) is pth moment exponentially stable. This implies that the
number of infected people goes extinct at an exponential rate. When p = 2, it usually means that it is
exponentially stable at the mean square, and global asymptotically stable at the equilibrium point x = 0.

Lemma 4.2 [27] Let p ≥ 2, ε, x, y > 0, then the following two inequalities are true

xp−1y ≤
(p − 1) ε

p
xp +

1
pεp−1 yp, xp−2y2 ≤

(p − 2) ε
p

xp +
2

pε(p−2)/2 yp. (4.7)

Theorem 4.2 Let p ≥ 2. If Rd
0 < 1 and

σ2 <
2
[
(µ0 + µ1 + γ) (µ0 + a1Λ) − βΛ

]
(µ0 + a1Λ)

(p − 1) Λ2 , (4.8)

then E0 is pth moment exponentially stable in ∆.
Proof. See Appendix B.

Corollary 4.2 If Rd
0 < 1 and

σ2 <
2
[
(µ0 + µ1 + γ) (µ0 + a1Λ) − βΛ

]
(µ0 + a1Λ)

Λ2 , (4.9)

then E0 is globally asymptotically stable in ∆.
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4.3. Extinction of the disease

In studying Hepatitis B model, we are interested in when the disease becomes extinct and when it
becomes persistent in the population. This section establishes sufficient conditions for disease elimina-
tion in model (2.2). First, we need to give the basic symbols and lemmas associated with this problem.
For the integrable function x(t) defined on (0,∞), is denoted as 〈x (t)〉 = 1

t

∫ t

0
x (s) ds. The threshold Rs

0
of model (2.2) is as follows

Rs
0 =

βΛ

µ0+a1Λ
− σ2Λ2

2(µ0+a1Λ)2

µ0 + µ1 + γ
=
µ0 + ν + a1Λ

µ0 + a1Λ
Rd

0 −
σ2Λ2

2(µ0 + a1Λ)2 (µ0 + µ1 + γ)
.

Theorem 4.3 Let (S (t) , I (t) ,R (t)) be the solution of model (2.2) with (S (0) , I (0) ,R (0)) ∈ ∆. Sup-
pose (i) σ2 > β2

2(µ0+µ1+γ) ; or (ii) Rs
0 < 1, σ2 ≤

2β(µ0+a1Λ)
Λ

. Then

limsup
t→∞

ln I (t)
t
≤

β2

2σ2 − (µ0 + µ1 + γ) < 0 a.s. if (i) holds, (4.10)

limsup
t→∞

ln I (t)
t
≤

(
Rs

0 − 1
)

(µ0 + µ1 + γ) < 0 a.s. if (ii) holds. (4.11)

In other words, I(t) approaches zero at an exponential rate a.s., namely, extinction is a certainty.
Proof. See Appendix C.

4.4. Persistence

The conditions that allow the disease to persist are discussed in this section. Now, let’s start with
the relevant knowledge.

Definition 4.2 If lim inf
t→∞

〈I (t)〉 > 0 a.s., then the disease is persistence in the mean.

Lemma 4.3 [28] Let F ∈ C([0,∞)×Ω,R), f ∈ C([0,∞)×Ω, (0,∞)) such that lim
t→∞

F(t)
t = 0 a.s.Assume

there are λ0, λ > 0 so that for all t ≥ 0,

ln f (t) ≥ λt − λ0

∫ t

0
f (τ) dτ + F (t) a.s.

Thus,

lim inf
t→∞

〈 f (t)〉 ≥
λ

λ0
a.s.

Theorem 4.4 If Rs
0 > 1, then I(t) is persistence in the mean, i.e.,

lim inf
t→∞

〈I (t)〉 ≥
(µ0 + a1Λ) (µ0 + µ1 + γ)

(
Rs

0 − 1
)

β
[
µ0 + µ1 + Λ

(
a2 + a3

Λ
µ0

)] > 0 a.s.

Proof. See Appendix D.
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4.5. Numerical simulation

Example 4.1 In model (2.2), let β = 0.01, σ = 0.4, S (0) = 50, I(0) = 20, R(0) = 20. For other parame-
ter values, see Example 3.1. Through calculation, we can getσ2 = 0.16 < 2[(µ0+µ1+γ)(µ0+a1Λ)−βΛ](µ0+a1Λ)

Λ2 =

0.38125, Rd
0 = 0.56 < 1. Then the conditions of Corollary 4.2 are verified. Figure 2(a) illustrates that

E0 is globally asymptotically stable, which verifies Corollary 4.2.
Example 4.2 In model (2.2), let β = 0.4, σ = 0.8. For other parameter values, see Example 3.1.
Through calculation, we can get σ2 = 0.64 > β2

2(µ0+µ1+γ) � 0.6154. Then the condition (i) of Theorem

4.3 is verified. By Theorem 4.3, one has limsup
t→∞

ln I(t)
t ≤

β2

2σ2 − (µ0 + µ1 + γ) = −0.005 < 0 a.s. As

a result, I(t) approaches 0 at an exponential rate with probability 1. In other words, the disease has
disappeared. As a confirmation of our findings, we present simulations based on the Euler-Maruyama
(EM) method, as shown in Figure 2(b).
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(a). Simulations of (S (t), I(t),R(t)), when β = 0.01, σ = 0.4. (b). Simulations of (S (t), I(t),R(t)), when β = 0.4, σ = 0.8.
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(c). Simulations of (S (t), I(t),R(t)), when β = 0.1, σ = 0.15. (d). Simulations of (S (t), I(t),R(t)), when β = 0.8, σ = 0.4.

Figure 2. Simulations of (S (t), I(t),R(t)) for HBV stochastic model (2.2).

Example 4.3 In model (2.2), let β = 0.1, σ = 0.15. For other parameter values, see Example 3.1.
Through calculation, we can get Rs

0 � 0.615 < 1, σ2 = 0.0225 ≤ 2β(µ0+a1Λ)
Λ

= 0.025. Then the condition
(ii) of Theorem 4.3 is verified. By Theorem 4.3, one has limsup

t→∞

ln I(t)
t ≤

(
Rs

0 − 1
)

(µ0 + µ1 + γ) �

−0.05005 < 0 a.s. As a result, I(t) approaches 0 at an exponential rate with probability 1. In other
words, the disease has disappeared. The simulation result is shown in Figure 2(c).
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Example 4.4 In model (2.2), let β = 0.8, σ = 0.4. For other parameter values, see Example 3.1.
Through calculation, we can get Rs

0 � 9.8 > 1. Then Theorem 4.4 is verified. By Theorem 4.4, one has

lim inf
t→∞

〈I (t)〉 ≥
(µ0 + a1Λ) (µ0 + µ1 + γ)

(
Rs

0 − 1
)

β
[
µ0 + µ1 + Λ

(
a2 + a3

Λ
µ0

)] � 0.003697 > 0 a.s.

Thus, the disease persists. The simulation result is shown in Figure 2(d).

5. Optimal control analysis

In order to control the spread of HBV, this section adopts the optimal control theory [29–31]. Our
aim is to seek an effective control strategy to reduce HBV infection in the population. In order to
reduce Hepatitis B infection rates and to promote vaccination rates, three control variables are used,
for instance, u1(t), u2(t) and u3(t). The specific explanation is as below:

1) u1(t) is the isolation rate. Through this control variable, infected persons are isolated to avoid
contact between infected persons and susceptible persons;

2) u2(t) represents the cure rate. Through this control variable, the number of patients can be
decreased by using effective drugs to treat the infected persons;

3) u3(t) represents vaccination rate. The spread of Hepatitis B can be reduced through vaccination.

5.1. Optimal control of Hepatitis B model (2.1)

To design a control strategy to eliminate Hepatitis B, we will consider the optimal strategy of deter-
ministic model (2.1). The control strategy is achieved by minimizing the target function as below

J (u1, u2, u3) =

∫ T

0

[
ω1I (t) +

1
2

(
ω2u2

1 (t) + ω3u2
2 (t) + ω4u2

3 (t)
)]

dt, (5.1)

subjugate to the control model
dS
dt

= Λ −
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + ν + u3 (t)) S ,

dI
dt

=
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + µ1 + γ + u2 (t) + u3 (t)) I,

dR
dt

= (γ + u2 (t) + u3 (t)) I + (ν + u3 (t)) S − µ0R,

(5.2)

with
S (0) ≥ 0, I (0) ≥ 0,R (0) ≥ 0. (5.3)

In Eq (5.1), ω1, ω2, ω3, ω4 > 0. In the target function, ω1 represents the weight constant of Hepatitis
B infection I(t). ω2, ω3 and ω4 represent the weight constants of quarantine of infected persons and
susceptible persons, infected persons’ treatment and vaccination, respectively. 1

2ω2u2
1 (t), 1

2ω3u2
2 (t) and

1
2ω4u2

3 (t) represent costs related to segregation, treatment and vaccine inoculation, respectively. The
objective of this section is to seek u∗1, u∗2, u∗3 so that

J
(
u∗1, u

∗
2, u

∗
3
)

= min {J (u1, u2, u3) , u1, u2, u3 ∈ U} (5.4)

subordinate to problems (5.2) and (5.3), where

U :=
{
(u1, u2, u3)| 0 ≤ ui ≤ 1, ui (t) is Lebesgue measurable on [0,T ], i = 1, 2, 3

}
. (5.5)
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5.1.1. Existence of solution

As a result of this part, it will be demonstrated that the control problems (5.2) and (5.3) have a
solution. Let

dX
dt

= L1X + L2 (X) , (5.6)

where

X =


S (t)
I (t)
R (t)

 ,
L1 =


− (µ0 + ν + u3 (t)) 0 0

0 − (µ0 + µ1 + γ + u2 (t) + u3 (t)) 0
ν + u3 (t) γ + u2 (t) + u3 (t) −µ0

 ,
L2 (X) =


Λ −

βS I
f (S ,I) (1 − u1 (t))

βS I
f (S ,I) (1 − u1 (t))

0

 .
(5.7)

It is obvious that Eq (5.6) is a nonlinear system with bounded coefficients. Let

F (X) = L1X + L3 (X) , (5.8)

which satisfies

|L3 (X1) − L3 (X2)| ≤ k1 |S 1 (t) − S 2 (t)| + k2 |I1 (t) − I2 (t)| + k3 |R1 (t) − R2 (t)|
≤ K1(|S 1 (t) − S 2 (t)| + |I1 (t) − I2 (t)| + |R1 (t) − R2 (t)|),

(5.9)

where K1 = max {ki} , i = 1, 2, 3 is not affected by state parameters in system (5.2). And we could write
it the same way for this

|F (X1) − F (X2)| ≤ K2 |X1 − X2| , (5.10)

where K2 = max {K1, ‖L1‖} < ∞, which implies that F is continuous and uniformly Lipschitz. It goes
without saying that state variables and control variables can’t be negative. Thus, the solution of model
(5.2) exists. As a next step, we will determine the control variables for minimizing the objective
function.

Theorem 5.1 There is an optimal control u∗ =
(
u∗1, u

∗
2, u

∗
3

)
∈ U, so that

J
(
u∗1, u

∗
2, u

∗
3
)

= min J (u1, u2, u3) (5.11)

subjugate to systems (5.2) and (5.3).
Proof. Our method of demonstrating optimal control is the one proposed in [31, 32]. Because the state
parameters and the control variables are both positive. Therefore, in the minimization problem, the
necessary convexity in u1(t), u2(t) and u3(t) of the objective functional defined in Eq (5.1) is satisfied.
As defined, u1, u2, u3 ∈ U are specified as enclosed and convex variables. In order for optimal control
to exist, the optimal system (5.2) must have a bound, which ensures its compactness. In addition,
the function is composed of control variables and state variables, which shows the convexity of the
objective function. Therefore, the problem under consideration satisfies all assumptions, so

(
u∗1, u

∗
2, u

∗
3

)
exists.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10883–10908.



10894

5.1.2. Optimality conditions

Define u = (u1, u2, u3), x = (S , I,R). Then the definition of Lagrangian L is as below:

L (x, u) = ω1I (t) +
1
2

(
ω2u2

1 (t) + ω3u2
2 (t) + ω4u2

3 (t)
)
. (5.12)

And the related Hamiltonian H is defined as below:

H (x, u, λ) = λg (x, u) + L (x, u) , (5.13)

where
g (x, u) = (g1 (x, u) , g2 (x, u) , g3 (x, u)) , λ = (λ1, λ2, λ3) ,

with
g1 (x, u) = Λ −

βS I
f (S , I)

(1 − u1 (t)) − (µ0 + ν + u3 (t)) S ,

g2 (x, u) =
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + µ1 + γ + u2 (t) + u3 (t)) I,

g3 (x, u) = (γ + u2 (t) + u3 (t)) I + (ν + u3 (t)) S − µ0R.

(5.14)

Secondly, the main research tool for optimal solution of control problem is the standard Pontryagin
maximum principle. Suppose that (x∗, u∗) is the optimal solution of (5.1)–(5.3), then there is one
nontrivial vector function λ, so that 

dx∗ (t)
dt

=
∂H
∂λ

(x∗, u∗, λ) ,

0 =
∂H
∂u

(x∗, u∗, λ) ,

dλ (t)
dt

= −
∂H
∂x

(x∗, u∗, λ) ,

(5.15)

with
H (x∗, u∗, λ) = max

u∈[0,1]
H (x∗ (t) , u∗ (t) , λ (t)) , (5.16)

and the transversal condition
λ(T ) = 0. (5.17)

Theorem 5.2 For the optimal control problems (5.1) and (5.2), S ∗, I∗ and R∗ are the optimal state
solutions of the optimal control variables

(
u∗1, u

∗
2, u

∗
3

)
. Then there are adjoint variables λ1 (t) , λ2 (t) and

λ3 (t), so that

λ′1 (t) =
(λ1 (t) − λ2 (t)) βI∗ (1 + a2I∗)

(
1 − u∗1 (t)

)
f 2 (S ∗, I∗)

+ (λ1 (t) − λ3 (t)) u∗3 (t) + λ1 (t) (µ0 + ν) − λ3 (t) ν,

λ′2 (t) = − ω1 +
(λ1 (t) − λ2 (t)) βS ∗ (1 + a1S ∗)

(
1 − u∗1 (t)

)
f 2 (S ∗, I∗)

+ (λ2 (t) − λ3 (t))
(
u∗2 (t) + u∗3 (t)

)
+ λ2 (t) (µ0 + µ1 + γ) − λ3 (t) γ,

λ′3 (t) =λ3 (t) µ0

(5.18)
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with transversality conditions

λi(T ) = 0, i = 1, 2, 3. (5.19)

And the specific forms of u∗1(t), u∗2(t) and u∗3(t) are as below

u∗1 (t) = max
{

min
{

(λ2 (t) − λ1 (t)) βS ∗I∗

f (S ∗, I∗)ω2
, 1

}
, 0

}
, (5.20)

u∗2 (t) = max
{

min
{

(λ2 (t) − λ3 (t)) I∗

ω3
, 1

}
, 0

}
, (5.21)

u∗3 (t) = max
{

min
{

(λ1 (t) − λ3 (t)) S ∗ + (λ2 (t) − λ3 (t)) I∗

ω4
, 1

}
, 0

}
. (5.22)

Proof. Taking the partial derivatives of S (t), I(t), R(t) in (5.13) yield the adjoint variables (5.18). In
addition, to calculate u∗1, u∗2, u∗3, we take partial derivatives of u1, u2, u3 in (5.13). Then we obtain the
optimal control variables (5.20)–(5.22).

By giving the equation of the adjoint variables (5.18) and its related conditions (5.3) and (5.19)
and the optimal control parameters (5.20)–(5.22), control variables and state variables of the control
problem are solved. The next step is to investigate the control theory of stochastic systems when the
same control measures are applied.

5.2. Optimal control for HBV stochastic model (2.2)

As mentioned in Section 5.1, in this section, we study the stochastic optimal control of model (2.2),
and the following stochastic control system can be obtained

dS =

(
Λ −

βS I
f (S , I)

(1 − u1 (t)) − (µ0 + ν + u3 (t)) S
)

dt −
σS I

f (S , I)
dB (t) ,

dI =

(
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + µ1 + γ + u2 (t) + u3 (t)) I

)
dt +

σS I
f (S , I)

dB (t) ,

dR =
[
(γ + u2 (t) + u3 (t)) I + (ν + u3 (t)) S − µ0R

]
dt

(5.23)

with

S (0) ≥ 0, I (0) ≥ 0,R (0) ≥ 0. (5.24)

For easy reading, the vectors are given as below:

x (t) = (S (t) , I (t) ,R (t))′, u (t) = (u1 (t) , u2 (t) , u3 (t))′, g (x (t)) = (g1 (t) , g2 (t) , g3 (t))′

f (x (t) , u (t)) = ( f1 (x, u) , f2 (x, u) , f3 (x, u))′,
(5.25)

and

dx (t) = f (x (t) , u (t)) dt + g (x (t)) dB (t) (5.26)
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with x (0) = (S (0) , I (0) ,R (0))′ = x0, where

f1 (x (t) , u (t)) = Λ −
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + ν + u3 (t)) S ,

f2 (x (t) , u (t)) =
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + µ1 + γ + u2 (t) + u3 (t)) I,

f3 (x (t) , u (t)) = (γ + u2 (t) + u3 (t)) I + (ν + u3 (t)) S − µ0R,

g1(t) = −
σS I

f (S , I)
, g2(t) =

σS I
f (S , I)

, g3 (t) = 0.

(5.27)

The quadratic function is considered as below:

J (x, u) =
1
2

E
{∫ t f

0

[
C1I +

1
2

(
C2u2

1 + C3u2
2 + C4u2

3

)]
dt +

C5

2
S 2 +

C6

2
I2 +

C7

2
R2

}
, (5.28)

where Ci > 0, i = 1, 7. The objective of this section is to obtain the control vector u∗ (t) =(
u∗1 (t) , u∗2 (t) , u∗3 (t)

)
so that

J (u) ≥ J (u∗) , ∀u ∈ U, (5.29)

where the specific form of U is as below:

U =
{
ui (t) : ui (t) ∈

[
0, umax

i
]
,∀ui ∈ L2

[
0, t f

]
, t ∈ (0, t f ], i = 1, 2, 3

}
, (5.30)

where umax
i > 0. The next step is to apply the stochastic maximum principle to define the Hamiltonian

H (x, u, p, q), which has the following form:

H (x, u, p, q) = −l (x, u) + 〈g (x) , q〉 + 〈 f (x, u) , p〉 , (5.31)

where q = (q1, q2, q3)′, p = (p1, p2, p3)′ are two different adjoint vectors, and 〈·, ·〉 denotes Euclidean
inner product space. As a result of applying the maximum principle, one has

dx∗ (t) =
∂H (x∗, u∗, p, q)

∂p
dt + g (x∗ (t)) dB (t) , (5.32)

dp∗ (t) = −
∂H (x∗, u∗, p, q)

∂x
dt + q (t) dB (t) , (5.33)

Hm (x∗, u∗, p, q) = min
u∈U

Hm (x∗, u∗, p, q) . (5.34)

In this case, x∗(t) is one optimal path of x(t). It is observed that, at both initial and terminal conditions
of Eqs (5.32) and (5.33) are

x∗ (0) = x0, (5.35)

p
(
t f

)
= −

∂h
(
x∗

(
t f

))
∂x

. (5.36)

As shown in Eq (5.34), the optimal control x∗(t) is an operator of q(t), p(t) and x∗(t). Thus, it means
that

u∗ (t) = Φ (x∗, p, q) , (5.37)
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In this case, Φ can be computed by (5.34). Therefore, Equations (5.32) and (5.33) are written as the
following equations

dx∗ (t) =
∂H (x∗, u∗, p, q)

∂p
dt + g (x∗ (t)) dB (t) , (5.38)

dp (t) = −
∂H (x∗, u∗, p, q)

∂x
dt + q (t) dB (t) . (5.39)

So,

H =C1I +
1
2

(
C2u2

1 + C3u2
2 + C4u2

3

)
+

C5

2
S 2 +

C6

2
I2 +

C7

2
R2

+ p1

[
Λ −

βS I
f (S , I)

(1 − u1 (t)) − (µ0 + ν + u3 (t)) S
]

+ p2

[
βS I

f (S , I)
(1 − u1 (t)) − (µ0 + µ1 + γ + u2 (t) + u3 (t)) I

]
+ p3

[
(γ + u2 (t) + u3 (t)) I + (ν + u3 (t)) S − µ0R

]
−

σS I
f (S , I)

q1 +
σS I

f (S , I)
q2.

(5.40)

According to random maximum principle,

dp∗ (t) = −
∂H (x∗, u∗, p, q)

∂x
dt + q (t) dB (t) . (5.41)

We have

p′1 (t) =
(p1 (t) − p2 (t)) βI∗ (1 + a2I∗)

(
1 − u∗1 (t)

)
f 2 (S ∗, I∗)

+ (p1 (t) − p3 (t)) u∗3 (t)

+ p1 (t) (µ0 + ν) − p3 (t) ν +
σI∗ (1 + a2I∗)

f 2 (S ∗, I∗)
(q1 − q2) ,

p′2 (t) = −C1 +
(p1 (t) − p2 (t)) βS ∗ (1 + a1S ∗)

(
1 − u∗1 (t)

)
f 2 (S ∗, I∗)

+ (p2 (t) − p3 (t))
(
u∗2 (t) + u∗3 (t)

)
+ p2 (t) (µ0 + µ1 + γ)

− p3 (t) γ +
σS ∗ (1 + a1S ∗)

f 2 (S ∗, I∗)
(q1 − q2) ,

p′3 (t) =p3 (t) µ0.

(5.42)

An auxiliary initial conditions and end conditions are granted as below

S ∗ (0) = S̃ , I∗ (0) = Ĩ,R∗ (0) = R̃, p
(
t f

)
= −

∂h
(
x∗

(
t f

))
∂x

, (5.43)

h (S , I,R) =
k1

2
S 2 +

k2

2
I2 +

k3

2
R2. (5.44)

In this case, p1

(
t f

)
= −k1S , p2

(
t f

)
= −k2I, p3

(
t f

)
= −k3R. In the Hamiltonian equation, by taking

the derivatives of u1, u2, u3, we can figure out that

u∗1 (t) = max
{

min
{

(p2 (t) − p1 (t)) βS ∗I∗

f (S ∗, I∗) C2
, 1

}
, 0

}
, (5.45)
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u∗2 (t) = max
{

min
{

(p2 (t) − p3 (t)) I∗

C3
, 1

}
, 0

}
, (5.46)

u∗3 (t) = max
{

min
{

(p1 (t) − p3 (t)) S ∗ + (p2 (t) − p3 (t)) I∗

C4
, 1

}
, 0

}
. (5.47)

In control theory, the desired objective is achieved by adjusting control variables. By substituting the
control parameters into the system, the optimal goal of the power system can be obtained. The limits
of control can be set according to Eq (5.27). We will establish the objective function by referring to the
method of Eq (5.28). As a result of objective functions, there is a direct relationship between optimality
and optimality. So special attention should be paid when selecting the objective function. Whenever
the control objective function has multiple factors, the more important items should be given weight.
Before applying the Pontryagin Maximum Rules [33], the existence and compactness of an optimal
control are tested. The optimal control makes the goal function reach a maximum or minimum value at
a certain point. Differential equations can be optimized to Hamiltonian at a certain point. Hamiltonian
is defined as below:

Hamiltonian = (integrand of the goal functional) + (adjoint)(RHS of Differential system).

Optimal control involves finding the necessary point u∗ to maximize the Hamiltonian equation. We are
able to obtain the adjoint system (5.43) by taking the derivative of H w.r.t. with respect to the state
variable and substituting it with the final condition.

6. Numerical simulations

Our analysis results are supported by approximate simulations of Hepatitis B models (2.1) and
(2.2), respectively. Simulations can be performed from qualitative aspects. To test the rationality of
the results, we use the stochastic Runge-Kutta method is adopted to simulate model (2.2), and the
calculation model is obtained as below:

S k+1 = S k +

(
Λ −

βS kIk

f (S k, Ik)
− (µ0 + ν) S k

)
∆t −

σS kIk

f (S k, Ik)

√
∆tξk +

σ2S kIk

2 f (S k, Ik)

(
ξ2

k − 1
)
∆t,

Ik+1 = Ik +

(
βS kIk

f (S k, Ik)
− (µ0 + µ1 + γ) Ik

)
∆t +

σS kIk

f (S k, Ik)

√
∆tξk +

σ2S kIk

2 f (S k, Ik)

(
ξ2

k − 1
)
∆t,

Rk+1 = Rk + (γIk + νS k − µ0Rk) ∆t,

(6.1)

where σ > 0 is the white noise value, ξk

(
k = 1, n

)
is a standalone Gaussian stochastic variable with

N(0, 1) and the step length ∆t > 0.
Next, the qualitative characteristics of deterministic and stochastic optimal controls are modeled.

Firstly, Runge-Kutta iterative technique is used to simulate the deterministic model. The time interval
is set as [0,100] in the positive direction, and the state system (5.2) and transverse condition (5.19)
are solved by the prescribed method. Then the adjoint equation (5.18) with the same time interval is
simulated by Runge-Kutta iterative method in the backward direction supported by transverse condition
(5.19). Note that the values of other parameters except β are shown in Example 3.1. The results are
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shown in Figure 3(a). Figure 3(a) shows the dynamic curves of susceptible population, infected person
and recovered person in HBV deterministic model (2.1) with and without optimal control value. A clear
difference can be observed between the two conditions with and without control. The simulation results
show that with the implementation of control measures, the number of the infected and susceptible
population tend to decrease, while the number of recovered patients tend to increase.
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(a). Control system (5.2) with β = 0.5. (b). Control system (5.23) with β = 0.8, σ = 0.9.

Figure 3. Simulations of (S (t), I(t),R(t)) with and without controls for the deterministic and stochastic
HBV models.

Next, we simulate optimal control techniques for stochastic models. The stochastic Runge-Kutta
iterative technique is applied to simulate the optimal control system. Considering the transverse con-
dition, the optimal control strategy is realized by approximating the state and adjoint model. First,
we apply the stochastic Runge-Kutta iterative method to calculate the state system (5.42). Secondly,
under the transverse condition (5.43), the corresponding adjoint equation (5.42) of the system is ob-
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tained by using the reverse technique and the iterative technique of the state equation. The control is
then modified by applying the convex combination of the control and the values from the character-
izations (5.45)–(5.47). The algorithm is repeated over and over again, and the iteration is performed
until the difference between the values obtained in two successive iterations is very small. Note that
the values of other parameters except β, σ are shown in Example 3.1. The results are shown in Figure
3(b). Figure 3(b) respectively shows the dynamic curves of susceptible population, infected persons
and recovered persons in the stochastic model (2.2) with and without optimal control values. Under
the optimal control parameter values, the dynamic behavior before and after the optimal control is sig-
nificantly different. The images show that through isolation, treatment and vaccination, the number of
susceptible and infected persons is decreasing, but the number of recovered people is increasing.

7. Conclusions

This paper investigates the transmission dynamics of HBV. The optimal control strategy is devel-
oped to control the transmission of HBV in the population. To this end, we first establish new HBV
models with general incidence rate. We calculate the basic reproduction number, equilibrium points
of deterministic Hepatitis B model to study the local asymptotic stability under certain conditions.
Secondly, we calculate the random threshold. The random Lyapunov function theory is applied to
verify that the model has one unique global positive solution. The extinction, persistence and stability
of stochastic Hepatitis B model are given. These conditions are expressed as expressions containing
the stochastic system parameters and the intensity of the noise term. It is clear that noise intensity
has an important effect on disease transmission. To control the transmission of HBV, optimal control
strategies are used to eliminate the transmission of HBV. In order to reduce Hepatitis B infection rates
and to promote vaccination rates, three control variables are used, for instance, isolation of patients,
treatment of patients, and vaccine inoculation. Runge-Kutta method is used for numerical simulations
to support the theoretical results. It can be found that when the white noise is stronger, the extinction
rate of the disease is higher. Disease is more persistent when white noise is lower in intensity. Virus
dynamics-based stochastic epidemic models perform better in our study. A broad range of biomedi-
cal applications can be made from this theory, as it provides a solid foundation for studying similar
diseases. An infection dynamics model based on stochastic delayed infection can, for example, be
considered for studying the effects of incubation periods. Additionally, our research can be applied to
analyze other epidemics, such as COIVD-19, tuberculosis, HIV and so on.
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Appendix A Proof of Theorem 4.1.

Let (S (0) , I (0) ,R (0)) ∈ ∆, N(t) = S (t) + I(t) + R(t). By model (2.2), one has

dN (t) =
[
Λ − µ0N (t) − µ1I (t)

]
dt. (7.1)

Then,
dN (τ) <

[
Λ − µ0N (τ)

]
dτ, ∀ 0 ≤ τ ≤ t a.s. (7.2)

By integration, we get

N (τ) <
Λ

µ0
+

(
N (0) −

Λ

µ0

)
e−µ0τ, ∀ 0 ≤ τ ≤ t a.s. (7.3)

So N (τ) < Λ
µ0

,

S (τ) , I (τ) ,R (τ) ∈
(
0,

Λ

µ0

)
, ∀ 0 ≤ τ ≤ t a.s. (7.4)

There is no doubt that model (2.2) meets the local Lipschitz condition. For (S (0) , I (0) ,R (0)) ∈ R3
+, in

this model (2.2), there is a unique local solution (S (t), I(t),R(t)), t ∈ [0, τe). In this case, τe refers to the
duration of the explosion. In order to prove that τe = ∞ a.s., we must do the following. Make k0 > 0
large enough so that (S (0) , I (0) ,R (0)) > k0. For each integer k ≤ k0, the stopping time is defined as
below

τk = inf {t ∈ [0, τe) : S (t) ≤ k or I(t) ≤ k or R(t) ≤ k} ,

τ0 = lim
k→0

τk = inf {t ∈ [0, τe) : S (t) ≤ 0 or I(t) ≤ 0 or R(t) ≤ 0} .

A C2-function V : R3
+ → R+ is defined as below

V(S , I,R) = −ln

 S
Λ
µ0

 − ln

 I
Λ
µ0

 − ln

 R
Λ
µ0

 = − ln S IR + 3 ln
Λ

µ0
.

By applying the formula Itô, we can get

dV(S , I,R) =

[
−

Λ

S (τ)
+

βI (τ)
f (S (τ) , I (τ))

+ (µ0 + ν) +
σ2I2 (τ)

2 f 2 (S (τ) , I (τ))

]
dτ

+

[
−

βS (τ)
f (S (τ) , I (τ))

+ (µ0 + µ1 + γ) +
σ2S 2 (τ)

2 f 2 (S (τ) , I (τ))

]
dτ

+

[
−γ

I (τ)
R (τ)

− ν
S (τ)
R (τ)

+ µ0

]
dτ +

σ (I (τ) − S (τ))
f (S (τ) , I (τ))

dB (τ)

≤

3µ0 + µ1 + γ + ν +
βI (τ)

f (S (τ) , I (τ))
+
σ2

(
S 2 (τ) + I2 (τ)

)
2 f 2 (S (τ) , I (τ))

 dτ

+
σ (I (τ) − S (τ))
f (S (τ) , I (τ))

dB (τ) , τ ∈ [0, t ∧ τk] .

(7.5)
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For τ ∈ [0, t ∧ τk], one has

S (τ)
f (S (τ) , I (τ))

≤
S (τ)

1 + a1S (τ)
≤

Λ
µ0

1 + a1
Λ
µ0

≤
Λ

µ0 + a1Λ
,

I (τ)
f (S (τ) , I (τ))

≤
I (τ)

1 + a1S (τ)
≤

Λ
µ0

1 + a1
Λ
µ0

≤
Λ

µ0 + a1Λ
.

(7.6)

Thus,

dV(S , I,R) ≤ Kdτ +
σ (I (τ) − S (τ))
f (S (τ) , I (τ))

dB (τ) a.s., (7.7)

where K = 3µ0 + µ1 + γ+ ν+
βΛ

µ0+a1Λ
+ σ2Λ2

(µ0+a1Λ)2 . Integrate the above inequality from 0 to τk ∧ t, and then
taking the expectation, according to the properties of Brownian motion, we get

EV (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t)) ≤ V (S (0) , I (0) ,R (0)) + E

∫ τk∧t

0
Kdt

≤ V (S (0) , I (0) ,R (0)) + Kt < ∞.

Because V (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t)) > 0, so

EV (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t)) = E[1{τk≤t}V (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t))]
+ E[1{τk>t}V (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t))] ≥ E[1{τk≤t}V (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t))].

For τk, some component of S (τk) , I (τk) ,R (τk) is equal to k. Thus, V (S (τk) , I (τk) ,R (τk)) ≥
− ln

(
kµ0
Λ

)
. So,

EV (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t)) ≥ E[1{τk≤t}V (S (τk ∧ t) , I (τk ∧ t) ,R (τk ∧ t))]

≥ − ln
(
kµ0

Λ

)
P(τk ≤ t).

(7.8)

By (7.8), we obtain

P (τk ≤ t) ≤ −
V (S (0) , I (0) ,R (0)) + Kt

ln
(

kµ0
Λ

) . (7.9)

Extending k to 0, one has P (τ0 ≤ t) = 0, t > 0. Therefore, P(τ0 = ∞) = 1. Consequently, τ0 = τe =

∞ a.s.

Appendix B Proof of Theorem 4.2.

Let p ≥ 2. The Lyapunov function is considered as below

V = τ1

(
Λ

µ0 + ν
− S

)p

+
I p

p
, (7.10)
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Here τ1 > 0 will be determined later. The first inequality in (4.6) is easily proved to be true. Then,

LV = − pτ1

(
Λ

µ0 + ν
− S

)p

(µ0 + ν) +

(
Λ

µ0 + ν
− S

)p−1 pτ1βS I
f (S , I)

+

[
βS

f (S , I)
− (µ0 + µ1 + γ)

]
I p +

τ1 p (p − 1)σ2S 2I2

2 f 2 (S , I)

×

(
Λ

µ0 + ν
− S

)p−2

+
(p − 1)σ2S 2I p

2 f 2 (S , I)
.

(7.11)

In ∆, we get

LV ≤ − pτ1

(
Λ

µ0 + ν
− S

)p

(µ0 + ν) + I
(

Λ

µ0 + ν
− S

)p−1

·
pτ1βΛ

µ0 + a1Λ

−

[
(µ0 + µ1 + γ) −

βΛ

µ0 + a1Λ
−

(p − 1)σ2Λ2

2(µ0 + a1Λ)2

]
I p

+
τ1 p (p − 1)σ2Λ2

2(µ0 + a1Λ)2 · I2
(

Λ

µ0 + ν
− S

)p−2

(7.12)

According to Lemma 4.2, we can get

I
(

Λ

µ0 + ν
− S

)p−1

≤
(p − 1) ε

p

(
Λ

µ0 + ν
− S

)p

+
1

pεp−1 I p,

I2
(

Λ

µ0 + ν
− S

)p−2

≤
(p − 2) ε

p

(
Λ

µ0 + ν
− S

)p

+
2

pε(p−2)/2 I p.

(7.13)

Then

LV ≤
(

Λ

µ0 + ν
− S

)p

×

[
−pτ1 (µ0 + ν) +

βΛτ1ε (p − 1)
µ0 + a1Λ

+
(p − 2) (p − 1) ετ1σ

2Λ2

2(µ0 + a1Λ)2

]
+ I p ×

[
τ1βΛ

(µ0 + a1Λ) εp−1 +
τ1 (p − 1)σ2Λ2

(µ0 + a1Λ)2ε(p−2)/2

]
+ I p ×

[
− (µ0 + µ1 + γ) +

βΛ

µ0 + a1Λ
+

(p − 1)σ2Λ2

2(µ0 + a1Λ)2

]
.

(7.14)

Select ε small enough to make the coefficient of
(

Λ
µ0+ν
− S

)p
negative. By (4.8), we have

− (µ0 + µ1 + γ) +
βΛ

µ0+a1Λ
+

(p−1)σ2Λ2

2(µ0+a1Λ)2 < 0. When − (µ0 + µ1 + γ) +
βΛ

µ0+a1Λ
+

(p−1)σ2Λ2

2(µ0+a1Λ)2 < 0, select τ1 is
positive, so that the coefficient of I p is negative.

Appendix C Proof of Theorem 4.3.

Applying Itô formula for the second equation of model (2.2), one has

d ln I (t) =

[
βS

f (S , I)
− (µ0 + µ1 + γ) −

σ2S 2

2 f 2 (S , I)

]
dt +

σS
f (S , I)

dB (t) . (7.15)
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Integrating the above equation from 0 to t, and dividing both sides by t at the same time, then we get

ln I (t) = ln I (0) +

∫ t

0

[
βS (τ)

f (S (τ) , I (τ))
− (µ0 + µ1 + γ) −

σ2S 2 (τ)
2 f 2 (S (τ) , I (τ))

]
dτ + M (t) , (7.16)

where M(t) :=
∫ t

0
σS (τ)

f (S (τ),I(τ))dB (τ). Then

ln I (t)
t

=
ln I (0)

t
+

1
t

∫ t

0

−σ2

2

(
S (τ)

f (S (τ) , I (τ))
−
β

σ2

)2

− (µ0 + µ1 + γ) +
β2

2σ2

dτ +
M (t)

t
. (7.17)

The following formula can be obtained from the martingale theorem of large numbers

lim sup
t→∞

M(t)
t

= 0 a.s. (7.18)

If condition (i) is met, then by (7.17), (7.18), we have

lim sup
t→∞

ln I (t)
t
≤

β2

2σ2 − (µ0 + µ1 + γ) < 0 a.s. (7.19)

From the definition of f (S , I), we get

S
f (S , I)

≤
S

1 + a1S
≤

Λ

µ0 + a1Λ
. (7.20)

If condition (ii) is met, then by (7.20), one has

ln I (t)
t

=
ln I (0)

t
+

1
t

∫ t

0

[
βS (τ)

f (S (τ) , I (τ))
− (µ0 + µ1 + γ) −

σ2S 2 (τ)
2 f 2 (S (τ) , I (τ))

]
dτ +

M (t)
t

≤
ln I (0)

t
+

1
t

∫ t

0

[
βS (τ)

1 + a1S (τ)
− (µ0 + µ1 + γ) −

σ2S 2 (τ)
2(1 + a1S (τ))2

]
dτ +

M (t)
t

≤
ln I (0)

t
+

βΛ

µ0 + a1Λ
− (µ0 + µ1 + γ) −

σ2Λ2

2(µ0 + a1Λ)2 +
M (t)

t

≤
(
Rs

0 − 1
)

(µ0 + µ1 + γ) +
ln I (0)

t
+

M (t)
t

.

(7.21)

If condition (ii) is met, then by (7.21), one has

limsup
t→∞

ln I (t)
t
≤

(
Rs

0 − 1
)

(µ0 + µ1 + γ) < 0 a.s. (7.22)

The above inequality indicates that

lim
t→∞

I (t) = 0 a.s. (7.23)
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Appendix D Proof of Theorem 4.4.

By Corollary 4.1, we have S (t) < Λ
µ0

a.s. Then,

βS
f (S , I)

=
βΛ

µ0 + a1Λ
−

βµ0

µ0 + a1Λ
·

Λ
µ0
− S

f (S , I)
−

βΛa2I
(µ0 + a1Λ) f (S , I)

−
βΛa3S I

(µ0 + a1Λ) f (S , I)

≥
βΛ

µ0 + a1Λ
−

βµ0

µ0 + a1Λ
·

(
Λ

µ0
− S

)
−

βΛ

(µ0 + a1Λ)

(
a2 + a3

Λ

µ0

)
I

=
βµ0S

µ0 + a1Λ
−

βΛ

(µ0 + a1Λ)

(
a2 + a3

Λ

µ0

)
I.

(7.24)

By model (2.2), one has

d(S + I + R) =
[
Λ − µ0(S + I + R) − µ1I

]
dt. (7.25)

Integrating the above equation from 0 to t, and dividing both sides by t at the same time, then
S (t) + I(t) + R(t) − (S (0) + I(0) + R(0))

t
= Λ − µ0 〈S (t)〉 − (µ0 + µ1) 〈I(t)〉 − µ0 〈R(t)〉 .

(7.26)

Then
〈S (t)〉 =

Λ

µ0
−
µ0 + µ1

µ0
〈I(t)〉 − 〈R(t)〉 − ϕ (t) , (7.27)

here ϕ (t) = [S (t) + I(t) + R(t) − (S (0) + I(0) + R(0))]/(µ0t). In this situation,

lim
t→∞

ϕ (t) = 0 a.s. (7.28)

Applying Itô formula for the second equation of model (2.2) and combining with (7.20), (7.24), we get

d ln I (t) =

[
βS

f (S , I)
− (µ0 + µ1 + γ) −

σ2S 2

2 f 2 (S , I)

]
dt +

σS
f (S , I)

dB (t)

≥

[
βµ0S

µ0 + a1Λ
−

βΛ

µ0 + a1Λ

(
a2 + a3

Λ

µ0

)
I

− (µ0 + µ1 + γ) −
σ2Λ2

2(µ0 + a1Λ)2

]
dt +

σS
f (S , I)

dB (t) .

(7.29)

Integrating the above equation from 0 to t, and combining with (7.27), then

ln I (t) ≥ ln I (0) +
βµ0t

µ0 + a1Λ

(
Λ

µ0
−
µ0 + µ1

µ0
〈I(t)〉 − 〈R(t)〉 − ϕ (t)

)
−

βΛ

µ0 + a1Λ

(
a2 + a3

Λ

µ0

)
×

∫ t

0
I(τ)dτ −

[
(µ0 + µ1 + γ) +

σ2Λ2

2(µ0 + a1Λ)2

]
· t +

∫ t

0

σS (τ)
f (S (τ), I(τ))

dB(τ)

≥

[
βΛ

µ0 + a1Λ
− (µ0 + µ1 + γ) −

σ2Λ2

2(µ0 + a1Λ)2

]
· t −

β

µ0 + a1Λ

[
µ0 + µ1 + Λ

(
a2 + a3

Λ

µ0

)]
×

∫ t

0
I(τ)dτ −

βµ0

µ0 + a1Λ
(〈R(t)〉 + ϕ (t)) · t +

∫ t

0

σS (τ)
f (S (τ), I(τ))

dB(τ) + ln I (0)

≥ (µ0 + µ1 + γ)
(
Rs

0 − 1
)
· t −

β

µ0 + a1Λ

[
µ0 + µ1 + Λ

(
a2 + a3

Λ

µ0

)]
×

∫ t

0
I(τ)dτ + Φ (t) ,

(7.30)
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here Φ (t) = ln I (0) +
∫ t

0
σS (τ)

f (S (τ),I(τ))dB(τ)− βµ0
µ0+a1Λ

(〈R(t)〉 + ϕ (t)) t. By combining the martingale theorem
of large numbers with (7.28), we can get

lim
t→∞

Φ (t)
t

= 0 a.s. (7.31)

Lemma 4.3 implies that

lim inf
t→∞

〈I (t)〉 ≥
(µ0 + µ1 + γ) (µ0 + a1Λ)

(
Rs

0 − 1
)

β
[
µ0 + µ1 + Λ

(
a2 + a3

Λ
µ0

)] > 0 a.s. (7.32)
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