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Abstract: Automatic and fast segmentation of retinal vessels in fundus images is a prerequisite in 
clinical ophthalmic diseases; however, the high model complexity and low segmentation accuracy 
still limit its application. This paper proposes a lightweight dual-path cascaded network (LDPC-Net) 
for automatic and fast vessel segmentation. We designed a dual-path cascaded network via two 
U-shaped structures. Firstly, we employed a structured discarding (SD) convolution module to 
alleviate the over-fitting problem in both codec parts. Secondly, we introduced the depthwise 
separable convolution (DSC) technique to reduce the parameter amount of the model. Thirdly, a 
residual atrous spatial pyramid pooling (ResASPP) model is constructed in the connection layer to 
aggregate multi-scale information effectively. Finally, we performed comparative experiments on 
three public datasets. Experimental results show that the proposed method achieved superior 
performance on the accuracy, connectivity, and parameter quantity, thus proving that it can be a 
promising lightweight assisted tool for ophthalmic diseases. 
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1. Introduction  

Retinal image assessment is indispensable for the identification of retinal pathology. It illustrates 
retina structure, such as blood vessels tree, optic cup, disc, and macula (shown in Figure 1). Fundus 
vessel segmentation is an essential step for diagnosing ophthalmic diseases. It requires manual 
segmentation by experienced ophthalmologists. However, this process faces many challenges. For 
example, the topological structure of vessels and the bending shape are complex, and there are many 
pathological areas around the branches of blood vessels. Besides, the collected images can be 
affected by the illumination and focus of the camera, which results in uneven brightness. These factors 
restrict ophthalmologists’ segmentation accuracy and cause manual segmentation remains challenging. 

 

Figure 1. Structures in retinal image. 

Computer-aided medical image processing can assist the doctor in making an accurate and 
efficient diagnosis and taking proper treatment. Therefore, developing an efficient method for retinal 
vessel segmentation is of great value. With the development of computer hardware, a mass of 
automatic retinal vessel segmentation methods has been proposed. However, these methods are still 
unsatisfactory in terms of accuracy and time consumption. Therefore, this paper presents an 
LDPC-Net for retinal vessel segmentation. Its main contributions are as follows: 
 Design a SD convolution block in the encoding and decoding parts to alleviate the 

over-fitting problem. 
 Introduce the DSC technology into the structured convolution block to reduce the number of 

parameters. 
 Construct a residual atrous spatial pyramid pooling (ASPP) in the connection layer to integrate 

multi-scale information and expand the receptive field. 
The following Section 2 gives an introduction to related work. Section 3 details the proposed 

method, Section 4 provides the experimental results and analysis, and the final Section 5 presents the 
conclusion of this paper. 
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2. Related works 

2.1. Matched filter 

Chaudhuri et al. [1] introduced a two-dimensional matched filter into the fundus vessel 
segmentation task. However, due to the complex shape of fundus blood vessels, single-scale matched 
filters cannot identify variable blood vessels. To solve this problem, Li et al. [2] established the 
response relationship of matched filters on three scales and proposed a simple and efficient 
multi-scale matched filtering method. Sreejini et al. [3] provided the particle swarm optimization 
algorithm in the multi-scale matched filter method. Saroj et al. [4] proposed a novel matched filter 
approach based on Fréchet probability distribution function for blood vessel segmentation. 

The matched filter method for fundus vessel segmentation is easy to implement, and the amount 
of calculation is relatively tiny. However, these methods are severely restricted by factors such as 
image contrast and noise, and the ability to distinguish blood vessel pixels from background pixels is 
relatively poor.  

2.2. Vessel tracking 

Aibinu et al. [5] proposed a method with a better segmentation effect at the intersection and 
branch of vessels. They use the mixed intersection number method to identify vessels’ intersection 
and branch points and realize blood vessel tracking and extraction. On the other hand, the linear 
multi-scale tracking method proposed by Vlachos et al. [6] adopts the initial seed node as a blood 
vessel pixel block and tracks according to the grayscale characteristics of the blood vessel pixels. 
When the condition of the cross-sectional outline of the blood vessel is invalid, the tracking is 
stopped, and then the meshed extraction of the blood vessel is formed. Therefore, the vessel tracking 
method can obtain a very accurate width of the segmented target. Still, the segmentation effect 
largely depends on the selection of the initial seed node. It is also susceptible to noise interference, 
which may cause the problem of segmented blood vessels to be broken. 

2.3. Morphology 

Zana et al. [7] first determined the Gaussian-like contours of vessels, combined morphological 
processing with cross-curvature evaluation, and segmented blood vessel images. Fraz et al. [8] 
further obtained the vessel skeleton based on detecting the vessel’s centerline, got the direction map 
through morphological plane slices, and simultaneously generated the vessel’s shape. The vessel 
neutral line image is reconstructed through the orientation map and vessel shape, and finally, the 
segmented vessel choroid map is obtained. Yang et al. [9] applied mathematical morphology and 
fuzzy clustering algorithm to propose a hybrid method to extract vessels. The morphological-based 
process has fast calculation speed and strong anti-interference ability. However, the selection of 
structural elements limits the segmentation effect of these methods without considering the delicate 
features of blood vessels, and the accuracy of segmenting blood vessels is low. Mardani et al. [10] 
proposed a new algorithm for segmenting retinal blood vessels in medical images. They used the 
density-based spatial clustering of applications with noise (DBSCAN) and the morphological 
reconstruction (MR) techniques. 
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2.4. Classification 

Staal et al. [11] used the K-nearest neighbor algorithm to intercept the first k data for further 
comparison to determine its category, essentially performing binary classification on each pixel. 
Soares et al. [12] used a two-dimensional Gabor filter to extract the overall features of the retinal 
image. Then they classified the retinal blood vessels and background through a naive Bayesian 
classifier. Khowaja et al. [13] proposed a framework based on a hybrid feature set and hierarchical 
classification method. They use random forests for classification and evaluating the performance of 
each feature category for feature set selection and then combine the selected feature set with the 
classification method for vessel segmentation. 

2.5. Neural network 

The proposal of U-Net [14] makes the U-shape network an efficient segmentation framework. 
The U-Net stitches coarse features with fine features through skip connections, showing its 
applicability in medical image analysis. U-Net is a convolutional neural network architecture 
designed for biomedical image segmentation, but it has been successfully applied in various other 
domains as well. The network consists of a contracting path, which encodes the input image into a 
small feature map, and an expanding path, which produces a segmentation mask of the same size as 
the input image. The contracting path is designed to capture the context of the input image, while the 
expanding path uses this context to produce a fine-grained segmentation mask. 

Compared to traditional image segmentation algorithms, U-Net has several advantages. First, 
it can handle complex and irregular object shapes since it uses a convolutional neural network to 
learn complex image patterns. Second, it can be trained end-to-end, which means that the entire 
network can be optimized simultaneously for the task of image segmentation. Third, it can be 
easily adapted to new datasets and segmentation tasks since it only requires a small number of 
annotated images for training. 

Recent works [15–17] have extended the U-Net architecture by adding various modifications, 
such as skip connections, attention mechanisms, and multi-scale input. These modifications have 
improved the performance of U-Net in various tasks, such as semantic segmentation, instance 
segmentation, and image-to-image translation. Specifically, many retinal vessel segmentation 
approaches are based on U-Net. For example, Wu et al. [18] proposed a multi-scale follower 
network-MS-NFN model to solve the problem of small blood vessel segmentation. The LadderNet 
presented by Zhuang et al. [19] introduces multiple sets of encoding and decoding structures, and 
skip connections also increase the path of information flow. Alom et al. [20] proposed a recursive 
residual convolutional neural network R2U-net based on a U-shaped network model, which better 
preserves feature information and achieves the effect of feature reuse. Li et al. [21] proposed a small 
U-Net multiple iteration segmentation methods, IterNet, which considers the segmentation details 
while expanding the model depth. Gu et al. [22] proposed CE-Net. This model introduces a feature 
extraction module for cascading context information in the middle layer of the codec, which can ensure 
the acquisition of complete feature information and extract deeper information. Lin et al. [23] 
combined HR-Net to propose a multi-path high-resolution retinal vessel segmentation method. It 
discarded the high-low-high architecture, and the feature map kept a high resolution in the network 
feature extraction process, making the retinal blood vessel probability map more accurate. Li et al. [24] 
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proposed a lightweight attention network for retinal image segmentation, significantly reducing 
network parameters. Its primary network adopted U-Net, and the attention mechanism module was 
designed for its symmetrical structure. Zhang et al. [25] introduced new edge-aware flows into U-Net 
encoder-decoder architecture to guide the retinal vessel segmentation, which makes the segmentation 
more sensitive to the delicate edges of the capillaries. Deng et al. [26] proposed a D-MNet network 
combined with an improved PCNN (PulseCoupled Neural Network) model to bring together the 
advantages of supervised and unsupervised learning to improve the performance of retinal blood 
vessel segmentation. 

In addition, there are other network models developed for high-level segmentation tasks. For 
example, He et al. [27] proposed a generative adversarial framework for COVID-19 infection 
segmentation. However, due to the complex vessel structure in fundus images, adversarial 
approaches may not be suitable for vessel segmentation. Alternatively, non-adversarial methods have 
also been extensively studied. For example, mu et al. [28] proposed the Progressive Global 
Perception and Local Polishing (PCPLP) network for automatically segmenting COVID-19-caused 
pneumonia infections in CT images. Zhao et al. [29] suggested a deep learning model that integrates 
a feature pyramid with a U-Net++ model for automatic segmentation of coronary arteries in ICAs. 
Additionally, Liu et al. [30] employed a deep, fully convolutional neural network to perform 
end-to-end segmentation of pathological tissue slices by combining distance maps and contour 
information, which was difficult to achieve using traditional segmentation methods. 

Although the neural network-based methods can automatically learn features, avoid manual 
participation, have stronger robustness, and achieve promising results in vessel segmentation, the 
discontinuous phenomenon of vessel segmentation, blurred boundaries, and the identification of 
microvessels still exist. To summarize, there are three problems in the existing research: (i) Firstly, 
improving segmentation accuracy often leads to higher computational complexity. (ii) Secondly, 
some deep neural network models are prone to training overfitting. (iii) Thirdly, the concatenated 
layers of the encoder and decoder do not fully capture multi-scale information, and continuous 
pooling and convolution may further cause a decrease in the recognition rate of the vessel ends.  

Therefore, it is still necessary to further explore the automatic segmentation method of fundus 
retinal vessels. 

3. Methods 

3.1. Overview 

Figure 2 is the overall flowchart of the training LDPC-Net framework proposed in this paper. 
The process consists of three stages: 1) fundus image preprocessing and patch extraction. 2) feeding 
the patches into the LDPC-Net for prediction. 3) reconstructing the prediction results.  

3.2. Image preprocessing 

This paper employs grayscale transformation, standardization, contrast-limited adaptive 
histogram equalization (CLAHE), and gamma correction for image preprocessing. Besides, we 
utilize the random cropping strategy for image expansion, and the sliced image is randomly flipped 
and rotated. 
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Figure 2. The flowchart of the proposed LDPC-Net framework. 

3.2.1. Grayscale transformation 

The image in the green channel has higher brightness and stronger foreground-background 
contrast. However, the image of the green channel still has a large amount of redundant information. 
Therefore, this paper employs the channel re-weighting strategy to implement the grayscale 
transform [31], which is defined by the following formula: 

 Gray = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵 (1) 

3.2.2. Standardization 

The data standardization formula is as follows: 

 𝐱new =
௫ିఓ

ఙ
 (2) 

where 𝜇 and 𝜎 represent the mean and variance of the image data. 
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3.2.3. CLAHE 

To alleviate the problem of the low contrast of fundus images, the image data needs to be 
further processed by CLAHE after data standardization. First, we clip the unit pixel’s peak value of 
the neighborhood histogram. Then, the redundant pixels are evenly distributed so that the overall 
area of the histogram does not change, thereby enhancing the contrast of the fundus image under the 
premise of effectively suppressing noise amplification. 

3.2.4. Gamma correction 

The light intensity of the input retinal image is adjusted using the nonlinear gamma transform, 
and the intensity values are subjected to nonlinear operations so that the intensity values of the input 
and output images form an exponential relationship: 

 𝑉out = 𝐴𝑉in 
ఊ  (3) 

where A is a constant, γ is a gamma variable, and the Vin and Vout are both non-negative values. In 
this paper, we empirically select the correction value of γ = 1.2 to perform nonlinear regulation to 
increase the proportion of high and low gray values in the image and increase the contrast. As 
shown in Figure 3, the overexposed or too dark retinal images are corrected through nonlinear 
gamma transformation. 

 

Figure 3. Illustration of Gamma correction. 

For the preprocessing data parameters, we randomly crop out patches of size 128 × 128 from 
the original image due to the large size of the fundus image. Then, all patches are normalized before 
being fed into the neural network. Finally, the probability maps predicted by the model are binarized 
with a threshold of 0.5 to obtain the final segmentation. 
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3.3. Lightweight dual-path cascaded network (LDPC-Net) 

In the LDPC-Net, the original input shape is 128 × 128 × 1, and a three-channel probability map 
with the same shape size is predicted. Since vessel segmentation is a binary classification task, we 
employed binary cross entropy (BCE) loss for backpropagation to make the prediction results closer 
to the ground truth through iteration and optimization. Its formula is defined as follows: 

 Loss = −
ଵ

ே
∑  ே

௜ୀଵ [𝑔௜ log 𝑝௜ + (1 − 𝑔௜) log(1 − 𝑝௜)] (4) 

where g represents the label value, with two possible values of 0 and 1; p represents the predicted 
value of the pixel. When g is 0, the first half of the formula equals 0. If a smaller loss value is 
required, p should be as close to 0 as possible; otherwise, when g is 1, the second half of the formula 
is 0. For a minor loss, p should be as close to 1 as possible. Besides, the sigmoid activation function 
is necessary to ensure that the model output is in the range of (0, 1). In addition, the evaluation 
metrics for model performance are provided in Section 3.3. 

The framework of the proposed LDPC-Net is shown in Figure 4, which consists of two 
cascaded U-shaped units, the rough segmentation unit, and the refinement unit. Each unit consists of 
two-layer downsampling structures, and the structured discarded (SD) convolutional block forms 
both the encoding and decoding parts of the model. Firstly, the encoder performs feature extraction 
via the SD block, and the downsampling operation is followed to extract high-level features. 
Secondly, the ResASPP model is used in the connection layer to aggregate multi-scale information. 
Finally, the decoder is deployed to restore the feature map to the same size as the input image and 
outputs the probability segmentation map.  

 

Figure 4. The architecture of the proposed LDPC-Net. 
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After the rough segmentation process, the segmentation result is joined with the input image 
and input to the refinement unit for post-processing. The structure of the refinement unit is the same 
as that of the rough segmentation unit, except that SD introduces an additional residual process to 
avoid the problem of gradient disappearance. 

3.3.1. Structured discarded (SD) convolutional block 

In the rough segmentation part, the SD shape consists of two repeat units (shown in Figure 5(a)). 
For the first unit, a 3 × 3 convolution kernel is used for feature extraction, followed by a structured 
DropBlock [32] layer. It is used to discard the continuous area of the feature map, which can 
effectively suppress the overfitting problem. The third layer is a classic batch normalization (BN) 
layer, which speeds up the training speed and alleviates the gradient disappearance; The fourth layer 
is the rectified linear unit (ReLU), employed to improve the expression level of the model. After the 
first unit, the iteration in the second SD block continues. 

As the network structure is gradually complicated, we introduced the residual operation in the 
SD block, named SDതതതത (as shown in Figure 5(b)) to avoid network degradation problems in the 
refinement step. 

 

Figure 5. The structures of SD and SDതതതത convolution blocks. (a) SD (b) SDതതതത. 
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3.3.2. Depthwise separable convolution (DSC) module 

To reduce the network’s parameter amount and computational cost and achieve a lightweight 
architecture, we employ the depthwise separable convolution (DSC) technology to replace all the 
ordinary convolution operations in this paper. A schematic diagram of DSC is shown in Figure 6, 
which was first proposed by Chollet et al. [31]. 

 

Figure 6. The schematic diagram of DSC. 

In Figure 3, the DSC first peels off each channel of the input feature map. It uses depthwise 
convolution to convolve a single track to obtain the feature map of the first stage. Then, the 
convolution operation with the same number of channels and a convolution kernel size of 1 × 1 is 
used to perform pointwise convolution on the above feature map. It extracts the spatial information 
of each feature map at the same position and finally realizes the weighting of the feature map output 
via depthwise convolution combination. 

The above process splits the conventional convolution operation and uses two different forms of 
convolution operation to reduce the number of parameters significantly. In this way, we built a 
deeper and more complex model using the same amount of parameters. 

3.3.3. Residual atrous spatial pyramid pooling (ResASPP) module 

We designed the ResASPP module at the intermediate connection layer of the network to 
aggregate multi-scale information (as shown in Figure 7). The ResASPP consists of three parallel 
atrous spatial branches. The atrous convolution is used to avoid information loss while expanding the 
receptive field.  

The main idea of atrous convolution is to set different atrous rates for feature extraction, which 
enable atrous convolution to capture multi-scale detail information. Therefore, the atrous ratios of the 
atrous convolutional layers of the three parallel branches are set to 2, 4 and 8, respectively. In 
addition, a residual connection is introduced in each branch to improve the information flow and 
reduce computational complexity. Moreover, we designed a bottleneck structure to reduce the 
computation of the larger convolutional layer. Therefore, the middle layer of LDPC-Net uses 
convolution to compress the number of channels of the feature map input to the larger convolutional 
layer and achieves a reduction of computation.  

Figure 7 shows the detailed process of the bottleneck structure designed in this paper. First, it is 
processed using a 1 × 1 convolutional layer with 128 channels, followed by an atrous convolutional 
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layer with a 3 × 3 kernel. After that, it is handed over to 1 × 1 convolutional layer with 256 channels. 
Through these operations, The bottleneck structure makes the network achieve a deeper level and 
improves the feature extraction ability accordingly. 

 

Figure 7. The structure of the ResASPP module. 

3.4. Evaluation metrics 

1) Acc: It measures the proportion of correctly classified pixels, a representative evaluation metric 
for the vessel segmentation task. 

TP TN
Accuracy

TP FP FN TN




  
                           (5) 

2) Spe: It refers to the proportion of correctly classified non-vessel pixels to actual non-vessel pixels. 

TN
Spe

TN FP



                                (6) 

3) Sen: It is also known as the recall rate (Recall), which refers to the proportion of correctly 
classified blood vessel pixels to the actual blood vessel pixels. 

en
TP

S
TP FN




                                (7) 

4) PR: It refers to the ratio of the blood vessel pixels correctly classified to those classified as 
positive cases. 

TP
PR

TP FP



                                (8) 

5) F1_Score: It can be seen as the harmonic mean of model precision and recall, and it will show 
satisfactory results only when the values of Sen and PR are high. 
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( )

2

P R TP
F Score

P R TP FP FN
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  
                   (9) 

6) IoU: It represents the ratio of the intersection and union of the segmentation results of a specific 
method and the ground truth. 

TP
IoU

FP TP FN


 
                              (10) 

7) FLOPs: The Floating Point Operations (FLOPs) indicate the amount of floating-point operations 
the model performs during an information transmission process. FLOPs are mainly used to measure 
the computational complexity of the network. 

2 ( 1)i h w tFLOPs H W C K K C                           (11) 

(2 1)i tFLOPs D D                               (12) 

8) Params: The number of parameters (Params) indicates the number of parameters stored in the 
network, reflecting the space complexity of the model. The parameters of the convolutional layer and 
the densely connected layer can be calculated by formulas (13) and (14). 

( 1)h w i tParams F F C C                            (13) 

( 1)i tParams D D                               (14) 

Among them, H, W, and Ct represent the output feature map’s height, width, and number of 
channels. Likewise, Fh and Fw represent the height and width of the convolution kernel, respectively. 
Finally, Ci is the number of channels of the input feature map, representing the densely connected 
layer's input and output dimensions. 

4. Experiments and results 

4.1. Datasets and implementation 

All the experiments in this paper are implemented on three public fundus databases, including 
DRIVE, STARE, and CHASE_DB1 (DRIVE dataset (https://drive.grand-challenge.org/) STARE 
dataset (http://cecas.clemson.edu/~ahoover/stare/) CHASE_DB1 dataset 
(https://blogs.kingston.ac.uk/retinal/chasedb1/)). Table 1 lists the specific ways to divide the training 
and test sets. 

Table 1. DRIVE, STARE, and CHASE_DB1 fundus database. 

Dataset Size Format Number Train Test Patches 

DRIVE 565 × 584 JPEG 40 20 20 110000 

STARE 700 × 605 PPM 20 15 5 130000 

CHASE 996 × 960 JPEG 28 20 8 230000 
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We performed the proposed method using the Keras framework. Experiments and tests are 
implemented in Ubuntu 18.04 operation system with GPU 2080Ti. In the experiment, the BCE is 
used as the loss function, the Adam optimizer is used for iterative calculation, and the learning rate is 
set to 0.001. The batch size is set to 32, the epoch is set to 50, and an early stop mechanism is 
introduced during the training process. Based on these configurations, our training time on the three 
datasets is 47m 21s, 49m 56s, and 1h 12m 40s, respectively. 

As shown in Figure 8, during the training stage, the loss value and accuracy rate changes on the 
validation sets of the three datasets are visualized separately. It can be found that at the 400th batch, 
the curve converges and becomes stable. 

 

Figure 8. The convergence curve of the training process on the validation datasets, 
including changes in loss and accuracy. (a) DRIVE (b) STARE (c) CHASE. 

4.2. Ablations 

This section verified the gain of each module to the proposed framework on the public dataset. 
We set the cascaded UNet as the baseline and tested the improved framework performance after adding 
the SD and ResASPP modules. As shown in Table 2, adding the proposed modules to the baseline can 
improve the network performance, and all evaluation metrics are superior to the baseline. 
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Table 2 shows that compared with the baseline, the Acc and AUC values are not significantly 
improved after adding the SD block. It is because the DSC technology in the SD convolution is used 
for a lightweight purpose, which results in a loss of accuracy. However, compared with the single 
module, the integrated LDPC-Net model has improved in all evaluation metrics except for a slight 
decrease in specificity. It thus proved that the proposed model could combine each module's 
advantages and improve the overall segmentation performance. 

Table 2. Segmentation index of ablation experiment. 

Dataset Method UNet SD ResASPP Acc (%) AUC (%) Sen (%) Spe (%) 

DRIVE 

Baseline √   95.61 97.83 76.86 97.98 

+ SD √ √  95.68 98.09 68.48 99.05 

+ ResASPP √  √ 95.88 98.36 78.81 98.27 

Proposed √ √ √ 96.96 98.47 80.78 98.52 

STARE 

Baseline √   96.03 97.65 76.97 98.26 

+ SD √ √  96.38 97.91 84.80 99.16 

+ ResASPP √  √ 96.48 98.17 83.61 99.35 

Proposed √ √ √ 97.32 98.31 86.73 98.02 

CHASE 

Baseline √   95.80 97.53 78.61 97.57 

+ SD √ √  96.25 98.10 80.52 98.89 

+ ResASPP √  √ 96.39 97.61 70.65 99.13 

Proposed √ √ √ 97.20 98.14 81.79 98.02 

4.3. Quantitative comparison and analysis 

To verify the effectiveness of the cascaded network, we evaluate the performance of the 
proposed model and the U-Net model for qualitative and quantitative analysis on the DRIVE, 
STARE and CHASE databases. The training and testing parameters, configuration, and datasets are 
consistent in the comparative experiment. 

Table 3. Quantitative segmentation results of LDPC-Net and U-Net. 

Dataset Methods Acc (%) AUC (%) Sen (%) Spe (%) 

DRIVE 
U-Net 95.31 97.55 75.37 98.20 

LDPC-Net 96.96 98.47 80.78 98.52 

STARE 
U-Net 95.89 97.67 76.42 97.01 

LDPC-Net 97.32 98.31 86.73 98.02 

CHASE 
U-Net 95.82 97.30 71.49 97.93 

LDPC-Net 97.20 98.14 86.79 98.02 

Table 3 lists the quantitative segmentation results. It can be seen that the Sen, Spe, Acc, and 
AUC values of the LDPC-Net on the DRIVE, STARE, and CHASE datasets are all higher than those 
of the U-Net model. Although the overall performance of the proposed method is superior to that of 
U-Net, the performance on the CHASE dataset, especially the AUC value, is not significantly 
improved compared with the U-Net model. The reason is that the proposed method focuses more on 
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segmenting small blood vessels. Besides, some small blood vessels manually segmented by the 
second expert were not marked by the first, resulting in false negatives/positive errors.  

 

Figure 9. Visual comparison chart of the evaluation index value. 

 

Figure 10. Qualitative segmentation results of LDPC-Net and U-Net on DRIVE. 
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Figure 9 presents a comparison of the two methods in a histogram. It can be observed that the 
sen of the proposed LDPC-Net is significantly higher than the U-Net, mainly due to our method's 
superior ability to deal with microscopic blood vessels. 

4.4. Qualitative comparison and analysis 

We compare the qualitative segmentation results of the proposed model and the U-Net model 
on DRIVE, STARE, and CHASE databases. From Figures 10–12, we can see that the proposed 
model result in fewer artifacts at the mask boundary, and the false negative rate is also lower. 
Specifically, in the DRIVE dataset’s third column and the STARE dataset’s first column, the blood 
vessels that U-Net failed to segment were successfully extracted by our proposed LDPC-Net, which 
is also consistent with the ground truth. 

 

Figure 11. Qualitative segmentation results of LDPC-Net and U-Net on STARE. 
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Figure 12. Qualitative segmentation results of LDPC-Net and U-Net on CHASE. 

In addition, from the second column of the CHASE dataset, we found that the segmentation 
results of U-Net are discontinuous; however, the blood vessels segmented by LDPC-Net show better 
connectivity. Compared with U-Net, the proposed method can detect blood vessels more completely 
while considering the segmentation of small blood vessels. The reason is that the proposed SD block 
enables the model to more accurately identify the edges of blood vessels and extract more positional 
information. Moreover, the ResASPP makes the model more capable of obtaining multi-scale 
information through a larger receptive field. 

Finally, we can also observe from the area framed by the light green oval circle that, although 
the U-Net model identified most of the main blood vessels, it is ineffective in segmenting small 
vessels and areas with dense blood vessels. In contrast, our proposed LDPC-Net showed a higher 
segmentation recognition rate for small blood vessels and better connectivity at the vascular end. 
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4.5. Comparisons with SOTA methods 

To further verify the effectiveness of the proposed method in retinal vascular segmentation, we 
selected four metrics (Acc, Sen, Spe and AUC) to compare the proposed model with the 
state-of-the-art (SOTA) methods on the DRIVE, STARE, and CHASE databases. Table 4 lists the 
comparative result. 

It can be seen from the table that compared with the SOTA method, the proposed LDPC-Net 
achieved superior performance on the three datasets. Specifically, it showed that it reached the 
best value on Acc, AUC, and Spe in the DRIVE datasets. In addition, the proposed method 
exceeds the average of all approaches in each metric, mainly because the proposed method's 
purpose is to significantly reduce the number of parameters while retaining relatively high 
accuracy as much as possible. 

4.6. Test on the generalization ability 

The method’s generalization ability is also essential from the application point of view. 
Therefore, we train the proposed LDPC-Net on the DRIVE dataset, save the model weights, and test 
it on the STARE dataset.  

 

Figure 13. Test of generalization experiment. (a) the original image on the STARE 
dataset, (b) the preprocessed image on the STARE dataset, (c) ground truth, (d) test result 
in the STARE dataset using the weight of the DRIVE dataset. 
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Table 4. Comparations with the SOTA methods on three datasets. 

Methods Authors Years 

DRIVE STARE CHASE 

Acc 

(%) 

AUC 

(%) 
Sen (%) Spe (%) 

Acc 

(%) 

AUC 

(%) 
Sen (%) Spe (%) 

Acc 

(%) 

AUC 

(%) 
Sen (%) Spe (%) 

R2U-Net Alom [20] 2018 95.56 97.84 77.92 98.13 96.34 98.15 77.56 98.20 96.34 98.15 77.56 98.20 

DU-Net Jin [33] 2019 95.66 98.02 79.63 98.00 96.41 98.32 75.95 98.78 96.56 98.39 79.78 98.18 

CSU-Net Chollet [34] 2020 95.65 98.01 80.71 97.82 97.02 98.25 84.32 98.45 96.10 98.04 81.55 97.52 

DDNet Mou [35] 2020 95.94 97.96 81.26 97.88 96.85 98.58 83.91 97.69 96.37 98.12 82.68 97.73 

Attention 

U-Net 
Li [24] 2021 95.68 98.06 79.21 98.10 96.78 98.75 83.52 98.23 96.35 98.10 78.18 98.19 

Edge-aware 

U-net 
Zhang [25] 2022 − − − − 96.91 83.91 69.12 99.11 98.11 91.42 85.06 99.81 

Three-stage 

Model 
Yan [36] 2019 95.38 97.50 76.31 98.20 96.38 98.33 77.35 98.57 96.07 97.76 76.41 98.06 

D-MNet Deng [26] 2022 95.39 97.93 83.68 97.12 96.43 98.55 84.35 84.35 98.06 97.79 84.35 97.79 

LDPC-Net Proposed 2022 96.96 98.47 80.78 98.52 97.32 98.31 86.73 98.02 97.20 98.14 86.79 98.02 

AVERAGE   95.78 97.97 79.94 97.97 96.56 96.9 80.93 96.35 96.72 97.37 81.88 97.78 

Note: bold font indicates the best value of the column. 
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Figure 13 shows the segmentation results of the generalization experiment. It can be seen that 
the detection of blood vessels is relatively complete, and the ends and bifurcations were also 
segmented entirely, which verifies the consistency of the proposed method in different data 
distributions and its good generalization ability. 

4.7. Analysis of parameters and complexity 

This section gives different model parameters and floating-point operations (FLOPs). In Table 5, 
we listed the model parameters, the complexity, and the AUC on the DRIVE dataset. Generally, the 
number of parameters of a model is directly proportional to its computational complexity. However, 
too few model parameters will also significantly affect the network performance. Compared with the 
SOTA models, our proposed model’s number of parameters is considerably reduced. It can be seen 
that the proposed method is second only to that of [24] in terms of the number of parameters, mainly 
because the proposed network LDPC-Net has more layers. Still, it is acceptable, considering the 
improvement of the AUC value. Since the proposed LDPC-Net requires fewer model parameters and 
lower computational complexity, with superior segmentation performance compared with other 
models, the proposed model is competitive in considering both model performance and scale. The 
main reason is that the proposed LDPC-Net employs a structured discarding (SD) convolution 
module to alleviate over-fitting and utilizes the depthwise separable convolution (DSC) technique to 
reduce model parameters. In addition, the residual atrous spatial pyramid pooling (ResASPP) model 
effectively aggregates multi-scale information. Therefore, the proposed method could be a promising 
tool in rapidly diagnosing fundus diseases. 

Table 5. Comparisons of the model parameter, FLOPs, and AUC. 

Methods Parameters (M) FLOPs (M) AUC (%) 

SegNet [37] 29.46 58.91 92.94 

FCN_8s [38] 9.01 18.01 94.10 

MultiResUNet [39] 7.26 14.55 94.51 

LinkNet [40] 11.55 23.62 94.92 

DeepLabV3+ [41] 41.06 82.23 95.75 

U-Net [14] 2.07 4.13 97.93 

Att-UNet [42] 8.91 17.82 97.93 

R2U-Net [20] 17.65 51.03 98.04 

Attention U-Net [24] 0.4 − 98.06 

Proposed  1.95 3.87 98.47 

Note: bold font indicates the best value of the column. 

4.8. Application 

To enable cross-platform single-device high-speed online inference, we deployed LDPC-Net on 
the web using the Django (https://github.com/django/django) framework and ONNX 
(https://github.com/onnx/onnx) technology. Figure 14 presents a screenshot of the application system 
of the proposed method. 
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Accurate and efficient segmentation of eye fundus images is critical for diagnosing and 
monitoring diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma. 
The method proposed in this paper takes into account both accuracy and lightweight. Specifically, 
this paper’s dual-path structure and multi-scale aggregation model could inspire society in network 
structure design, thereby promoting the development of automatic fundus image segmentation 
technology. In addition, it is worth noting that the proposed framework could also be deployed and 
applied in other image processing and analysis, such as thermographic fault diagnosis based on the 
analysis of thermal images [43.44]. 

 

Figure 14. LDPC-Net is deployed on the Django web. 

5. Conclusions 

This paper proposes a lightweight dual-path cascaded network (LDPC-Net) for automatic and 
fast vessel segmentation in fundus images, which is crucial in clinical ophthalmic diseases. The 
LDPC-Net employs a structured discarding (SD) convolution module to alleviate over-fitting, a 
depthwise separable convolution (DSC) technique to reduce model parameters, and a residual atrous 
spatial pyramid pooling (ResASPP) model to effectively aggregate multi-scale information. We 
performed qualitative and quantitative experiments on public datasets to verify the effectiveness of 
the proposed network. First, we demonstrate the model combination's effectiveness through ablation 
analysis. Then, through the comparative experimentation with SOTA methods, we prove that 
LDPC-Net can retain the accuracy as much as possible, meanwhile significantly reducing the 
number of parameters. In addition, the generalization experiments also verify the model’s 
generalization ability. Finally, the comparative analysis of the parameter amount and computational 
complexity further proves the lightweight and efficiency of the LDPC-Net. However, although the 
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proposed method effectively achieves lightweight, there is still room for improvement in 
segmentation accuracy. Therefore, in the future, we will consider choosing a better compromise 
between lightweight and accuracy to improve the networks. Besides, we also plan to test the 
proposed model on other medical images tasks, such as vessel classification and auxiliary diagnosis 
of ophthalmic diseases. 
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