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Abstract: Background: Ulcerative colitis (UC) is an idiopathic inflammatory disease with an increasing
incidence. This study aimed to identify potential UC biomarkers and associated immune infiltration
characteristics. Methods: Two datasets (GSE87473 and GSE92415) were merged to obtain 193 UC
samples and 42 normal samples. Using R, differentially expressed genes (DEGs) between UC and
normal samples were filtered out, and their biological functions were investigated using Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Promising biomarkers were
identified using least absolute shrinkage selector operator regression and support vector machine
recursive feature elimination, and their diagnostic efficacy was evaluated through receiver operating
characteristic (ROC) curves. Finally, CIBERSORT was used to investigate the immune infiltration
characteristics in UC, and the relationship between the identified biomarkers and various immune cells
was examined. Results: We found 102 DEGs, of which 64 were significantly upregulated, and 38 were
significantly downregulated. The DEGs were enriched in pathways associated with interleukin-17,
cytokine—cytokine receptor interaction and viral protein interactions with cytokines and cytokine
receptors, among others. Using machine learning methods and ROC tests, we confirmed DUOX2,
DMBTI1, CYP2B7P, PITX2 and DEFBI1 to be essential diagnostic genes for UC. Immune cell
infiltration analysis revealed that all five diagnostic genes were correlated with regulatory T cells, CD8
T cells, activated and resting memory CD4 T cells, activated natural killer cells, neutrophils, activated
and resting mast cells, activated and resting dendritic cells and M0, M1 and M2 macrophages.
Conclusions: DUOX2, DMBT1, CYP2B7P, PITX2 and DEFBI were identified as prospective
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biomarkers for UC. A new perspective on understanding the progression of UC may be provided by
these biomarkers and their relationship with immune cell infiltration.

Keywords: ulcerative colitis; differentially expressed genes; LASSO regression model; support vector
machine recursive feature elimination; bioinformatics

1. Introduction

Ulcerative colitis (UC) is a type of idiopathic, immune-mediated inflammatory bowel disease
(IBD) with symptoms of diarrhea, abdominal pain and mucopurulent bloody stools [1]. The prevalence
of IBD is more than 0.3% in numerous nations in North America, Oceania and Europe, being the
highest in Norway: 505 UC cases per 100,000 people [2]. The mean annual healthcare cost per UC
patient is approximately €2088, and its burden is increasing globally [3].

The pathogenesis of UC, including infection details, role of the immune system and the
environment and sensitive genes, has not been fully delineated yet [4]. UC treatment aims to induce
and maintain remission. However, the management of UC is extremely difficult due to its poorly
known etiology [1]. The establishment of novel diagnostic biomarkers that reflect the inflammatory
damage to the intestinal mucosa is important for the timely diagnosis and treatment of UC.

Recent high-throughput microarray analysis of specimens from patients and healthy subjects has
allowed us to investigate various diseases at multiple levels, revealing the numerous genes activated
in different tissues as well as their physiological and pathological states [5,6]. Bioinformatics and
machine learning can be efficiently combined to analyze high-throughput microarray data to further
explore disease mechanisms and identify potential biomarkers.

Several studies have analyzed UC and IBD microarray data [7-9]. Zhang identified five genes as
potential indicators for UC tissue biopsy and found the DUOX2/DUOXA2 and CXCL1/CXCR2
pathways to be crucial in the development of UC [8]. Shi discovered that core differentially expressed
genes (DEGs) found in UC are associated with inflammation and the immune response and that
CXCR2 may indicate the degree of inflammation in UC patients [9]. These findings further reveal core
features of UC pathogenesis. Further bioinformatic analysis of UC is now possible with the advances
in bioinformatics technology and the application of machine learning to pathology. In this study,
bioinformatic and machine learning analyses of microarray data were employed to identify prospective
biomarkers for the diagnosis of UC.

2. Materials and methods
2.1. Microarray data

The flowchart of analysis steps is shown in Figure 1. GSE87473 and GSE92415 were downloaded
from Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) [10]. Expression data for GSE87473
were generated using 106 cases of UC and 21 healthy controls, and data for GSE92415 were generated
using 87 cases of UC and 21 healthy controls. Gene probe IDs in the matrix file were converted into
international standard gene names using Perl. The two datasets were normalized and merged into a
metadata cohort for subsequent integrated analysis using the “limma” package in R. Furthermore, the
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“SVA” package in R was applied to remove batch effects. All gene expression data were subjected to

log2 transformation.
Gﬂtasets (GSE87473 and GSE92415), n=199

Probe reannotation and
data normalization
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Figure 1. The flowchart of the analysis steps.
2.2. Identification of DEGs

Linear models from the “limma” package in R were used to identify DEGs between colon tissues
from UC patients and healthy subjects. The Benjamini—-Hochberg approach was used to control the
false discovery rate. Genes with adjusted p <0.05 and log2 (fold change) > 2 were considered as DEGs.
Finally, the “ggplot2” and “pheatmap” packages were used to plot the volcano plots and heat map of
the DEGs, respectively.

2.3. Functional enrichment analyses

Gene Ontology (GO) is a bioinformatics resource for annotating genomes with terms such as
molecular functions, cellular components and biological processes. As a comprehensive database
resource, the Kyoto Encyclopedia of Genes and Genomes (KEGG) aims to provide biological
interpretation of high-throughput data or genomic data, ultimately helping identify functional and
metabolic pathways. In this study, GO and KEGG enrichment analyses of DEGs were performed using
the “clusterProfiler” package in R. p <0.05 was considered to indicate significant enrichment of DEGs.

2.4. Identification of diagnostic biomarkers

Two machine learning methods were applied to the potential diagnostic criteria for predicting UC
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status. Using the “glmnet” package in R, least absolute shrinkage selector operator (LASSO)
regression was carried out to identify genes significantly associated with the discrimination between
UC and healthy samples. Support vector machine (SVM) is a machine learning method that is
frequently employed for classification and regression analysis. With the aim of preventing overfit, the
optimum genes in the metadata cohort were filtered using recursive feature elimination (RFE).
Consequently, SVM-RFE was used to filter acceptable features to discover the gene set with the highest
discrimination capacity.

To estimate the prediction value for UC diagnosis, the “pROC” package in R was used. Area
under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated to judge
the accuracy of the diagnostic biomarkers: The higher the AUC value is, the higher the accuracy.

2.5. CIBERSORT analysis

To reveal the differences in immune characteristics between UC patients and health individuals,
the CIBERSORT algorithm in R was applied to evaluate the score distribution and differential
expression of 22 immune cells in the gene expression profile. The advantages of using CIBERSORT
for gene expression profiling data are the removal of unknown mixture content and the removal of
artifacts through deconvolution, ultimately providing an estimate of the relative proportions of the 22
immune cell subpopulations, which were displayed using the “ggpubr” package in R. The “ggplot2”
package in R was applied to create a boxplot depicting the differences between the UC and normal groups.

2.6. Statistical analysis

Continuous variables were expressed as the mean + standard deviation, whereas categorical
variables were expressed as percentages. The Mann—Whitney U test or Kruskal-Wallis H test was used
to compare between non-normal data, t-test or one-way analysis of variance was used for normally
distributed data, and Fisher’s exact probability method or chi-squared test was used for supCount data.
All data analyses in this study were performed in R, and a p-value < 0.05 was regarded as significant.
3. Results
3.1. UC-associated DEGs

The two gene expression datasets included 193 UC cases and 42 healthy controls. In total, 102
DEGs were identified from the expression data, including 64 upregulated genes and 38 downregulated
genes. Figure 2 depicts the heatmap and volcano plot for the discovered DEGs.
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Figure 2. Heatmap and volcanic graphic for differentially expressed genes (DEGs). (A)
DEG heat map. The red and green colors represent upregulated and downregulated DEGs,
respectively. Each row represents one DEG, while each column represents one sample. (B)
Volcano plot for DEGs. Green and red plot points denote downregulated and upregulated
DEGs, respectively.

3.2. GO and KEGG analysis of overlapping DEGs

GO analysis revealed that DEGs associated with antimicrobial humoral immune response,
humoral immune response, reaction to molecule of bacterial origin and neutrophil chemotaxis were
considerably enriched (Figure 3A). KEGG analysis showed that DEGs were significantly enriched in
pathways involving interleukin-17 (IL-17), cytokine—cytokine receptor interaction, rheumatoid
arthritis, viral protein interaction with cytokine—cytokine receptor, Staphylococcus aureus infection
and others (Figure 3B).
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Figure 3. (A) Gene Ontology (GO) enrichment analysis. (B) Kyoto Encyclopedia of Genes
and Genomes (KEGQ) enrichment analysis. The size of the dot represents the number of
enriched genes. The terms with p < 0.05 are shown in the figure.

3.3. Determination of diagnostic biomarkers

To identify potential biomarkers for UC, two different arithmetic methods were used. LASSO
regression identified 13 variables as diagnostic markers for UC (Figure 4A). SVM-RFE was used to
determine a subset of 10 DEG features (Figure 4B). Five features that overlapped between the two
arithmetic methods—DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1—were finally selected as key
genes in UC development (Figure 4C).
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Figure 4. Selection of candidate diagnostic markers for ulcerative colitis (UC). (A)
Screening of tuning features in the least absolute shrinkage selector operator (LASSO)
model. (B) A plot of biological marker screening using the support vector machine-
recursive feature elimination (SVM-RFE) arithmetic. (C) Venn diagram displaying five
shared biomarkers identified by LASSO and SVM-RFE.

3.4. The expression and significance of diagnostic markers for UC
The expression levels of DUOX2 and DMBT1 were significantly higher in UC samples than in

healthy samples, while those of CYP2B7P, PITX2 and DEFB1 were significantly lower in UC samples
(Figure 5).

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10741-10756.



10748

p<222e-16 p<222-16 8.4e-16
.. -
10 .. 10 e O 12
. . o . . .
< + g
2 : 5 .y ol 5
2 2 X M o o, 2
5 ¢ . 5 g
o : J
3 3 58 "1....:' 10
& P O ) =
8 . b I 5 N
> .. o e a W 3 e
o . o’ 0o oo
N, e
6 e .o 3 Ld
o L . 6 “;.-. . 8
- o Capre, 3 S
. ¢ ) © A% Ad
R ol .
4 . . . °
Normal samples UC samples Normal samples UG samples Normal samples UC samples
p <2.220-16 10 p <2.22e-16
12 .
8 .
2 5
g 2
go 5
5 g
s g
o o
5 X
= E
3 : =
3
6 * =
" 4 s e (RPN
. R . .
Normal samples UG samples Normal samples UG samples

Figure 5. The expression significance of diagnostic markers for UC.

ROC curve analysis was carried out to determine the utility of these diagnostic markers. The
AUC values for DUOX2, CYP2B7P, PITX2, DEFB1 and DMBT1 were 0.985, 0.966, 0.968, 0.966
and 0.896, respectively, indicating that all of them displayed a strong ability to distinguish UC cases

from normal samples (Figure 6).
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Figure 6. Receiver operating characteristic (ROC) assays for diagnostic markers in UC.
3.5. Characterization of immune cell infiltration in UC patients

CIBERSORT was used to elucidate the relative proportions of 22 immune cells in UC and normal
tissues, as well as their relationships with one another (Figure 7A,B). Differences were observed in the
levels of memory B cells, CD8 T cells, activated and resting memory CD4 T cells, activated natural
killer (NK) cells, neutrophils, activated and resting mast cells, activated and resting dendritic cells and
MO, M1 and M2 macrophages.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10741-10756.



10750

<
Beslisnaive [

1
Boelsmerory [
Plasma cells | ] 02
T cells CDB | ]
T eells CD4 naive [ | 06

T cells CD4 memory resting .
T cells D4 memory activated | | Loa
T cells follieular helper .
T cells regulatory (Tregs) .
T cells gamma delia [ ]
NK cells resting | |

NK cells activated ]
Monccytes | ]
Macroghages M0 H» 02
Macraphages M1
M2 ] B 04

W scenae [ Teotecot ey oy [l Sk osterseting [ mocropnagesne [l sosroeme Nemal samples /' UG samlee. Dendritic cells resting | ]

| Rl M I et Dendific cells activated L
W rosnacos [ voowenourneper [ oooos [ Denoreceats oot 08

W rencos [T L | [ Mast cells resting || .-
I vesnscosnen [ 0 | | Mast cells activated ... o8
1

H
13
£
3
&

Eosinaphils
Neutrophils [ ]

p=0.0591 @ Normal samples
# OA samples

04 <0001

p<0.001
03 D001 0001 p<0001

0<0.001

p=0.0012

Fraction

p=0.0822]

i

=0 215¢ oo peadat

0001
0000 Pl
0.1 p=0.3 7 o<0.001] | P01548 ’ peo.0

B p<0.001
h p =0.6701

@@@f}&@@f’ﬂfﬁg@ @@é‘*@e&“é&qf"‘

g“;@"a‘;&ie cue \'ﬁj}#*",ﬁa&‘\

ﬁ\s
St

e
o

C

Figure 7. (A) The overall proportions of immune cells in each sample from the
discovery cohort. (B) The correlation heatmap of 22 immune cells; red and blue denote
positive and negative correlations, respectively. The correlation is higher when the hue
is darker. (C) Comparison of immune infiltration rates between the UC (red) and
healthy control (blue) groups.

3.6. Diagnostic biomarkers were associated with the level of immune cell infiltration
The associations between diagnostic marker expression and immune cell infiltration were

investigated in greater detail. All five DEGs were correlated with regulatory T cells, CD8 T cells,
resting and activated memory CD4 T cells, activated NK cells, neutrophils, resting and activated mast
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cells, MO, M1 and M2 macrophages and resting and activated dendritic cells. DUOX2, DMBT],
CYP2B7P, PITX2 and DEFB1 may be implicated in the progression of UC by modulating several
immune cells.
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Figure 8. The correlations between the five core DEGs and immune cells.
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4. Discussion

UC is a common type of IBD with various degrees of mucosal lesions and recurrent episodes [11].
By definition, UC is considered to be limited to the superficial layer of the rectal and colonic mucosa,
but given its proximal expansion and effects on colonic function, it should actually be viewed as a
progressive condition with a dismal prognosis [12]. Prompt diagnosis and treatment are crucial for
patients with UC, but such early diagnostic tools are still absent from clinical practice. Based on our
examination of the two Gene Expression Omnibus datasets, we could highlight 102 DEGs that
distinguished UC samples from healthy controls. Analysis of these DEGs using GO terms revealed
that they were disproportionately involved in processes related to neutrophil chemotaxis, response to
molecules of bacterial origin, humoral immune response and antimicrobial peptide-mediated
antimicrobial humoral immune response. These DEGs were primarily implicated in pathways
associated with IL-17, cytokine—cytokine receptor interaction, rheumatoid arthritis, viral protein
interaction with cytokine—cytokine receptor and S. aureus infection, as shown by KEGG analysis.
These findings suggest that these DEGs are actively engaged in immunological processes and may be
critical for the development of UC.

From the initial screen of 102 DEGs, two machine learning techniques identified five genes as
potential diagnostic biomarkers for UC. Dual oxidase 2 (DUOX2) is a member of the nicotinamide
adenine dinucleotide phosphate oxidase family. It is expressed apically in the epithelial cells of the
ileum and colon, where it catalyzes the generation of reactive oxygen species during normal cellular
processes and phagocytosis [13]. DUOX2 can regulate the interaction between the intestinal
microbiota and the mucosa while maintaining the normal intestinal mucosal barrier function [8,14].
Deleted in malignant brain tumors 1 (DMBT1) is an innate immune protein expressed on the mucosal
surfaces of various human tissues, particularly throughout the luminal gastrointestinal tract [15,16]. It
promotes epithelial differentiation and angiogenesis. Cytochrome 2B7P (CYP2B7P) is a pseudogene
from the cytochrome P450 family. Its involvement in disease progression has been rarely reported [17].
Paired like homeodomain 2 (PITX2) contributes to intestinal formation and symmetry through
multiple signaling pathways [18,19]. Due to its importance in DNA methylation and tumor immune
infiltration, it may be connected to an increased risk of carcinogenesis in UC patients [20,21]. Beta-
defensin 1 (DEFB1) is an antimicrobial peptide associated with surface resistance of epithelial cells to
microbial invasion. Downregulation of DEFB1 leads to an impaired intestinal mucosal barrier function,
which is closely related to the development of UC [22,23]. ROC assays confirmed the strong ability
of these five diagnostic genes to screen UC specimens from normal specimens, verifying their promise
as prospective biomarkers for UC.

Recent evidence highlights the critical role of immune cell infiltration in the onset and progression
of UC. Dendritic cells and macrophages present antigens and secrete several proinflammatory
cytokines, inducing a Th2 cell immune response [24,25]. Compared with healthy controls, UC patients
had a lower percentage of Foxp3+CD4+ T cells within their peripheral blood mononuclear cell
population [26], an accumulation of activated neutrophils in the circulation and colonic tissue [27] and
NK cells with impaired mitochondrial function and attenuated killing ability [28]. The intestinal T cell
infiltrates in UC patients were richer in CD4+, regulatory and central memory T cells, while the
proportions of CD8+ and CD103+ T cells were lower [29]. The evolutionary direction of colonic T
cells in UC patients is in the GZMK+TNF+ effector state and in the immunomodulatory characteristic
with clonally expanded IL-26 state. The imbalance in their evolutionary expressions may promote
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intestinal tissue destruction [30]. Mast cells are engaged in regulating intestinal mucosal permeability
and barrier function, and their degranulation has been linked to the etiology of UC [31,32]. In the
absence of IL-10 signaling, macrophages promote the progression of UC by activating NOD-like
receptor pyrin domain-containing 3 inflammasome and enhancing proinflammatory cytokine
production [33].

Assessing the extent and diversity of immune cell infiltration offers insights into the molecular
mechanisms underlying UC and helps identify new immunotherapeutic targets. Regulatory T cells,
CD8 T cells, resting and activated memory CD4 T cells, activated NK cells, neutrophils, resting and
activated mast cells, MO M1 and M2 macrophages and resting and activated dendritic cells were all
associated with the five core DEGs in this study, suggesting that these genes may play a role in the
pathogenesis of UC by forming close connections with immune cells.

To assist the early diagnosis and to further characterize the pathogenesis of UC, LASSO
regression and SVM-RFE were used to screen potential biomarkers, while CIBERSORT was used to
profile the immune cell infiltrates in UC, which has been rarely reported in the past. This study has
some limitations. First, molecular biology experiments or large-scale clinical trials were not performed
to validate the diagnostic efficacy of the five core genes. Second, this study only establishes a
correlation between UC and immune cells, not a causal relationship. More convincing evidence is
required to reveal the intricate interactions between immune cells and genes.

Computational biology research provides new ideas and prospects for biological experiments in
the study of UC [9]. Computational biology techniques are evolving, and microRNAs (miRNAs) and
long noncoding RNAs (IncRNAs) may be the future direction for UC biomarker research. In recent
years, several new biocomputational models have been developed, including graph convolutional
neural networks and conditional random fields [34], logistic matrix factorization with neighborhood
regularized [35] and a network distance analysis model for predicting IncRNA-miRNA associations [36].
Applying these new models to UC research will help reveal the critical role of miRNA—IncRNA
interactions and their functions in the pathogenesis of UC. Deep learning algorithms are also improving
constantly [37,38]. The use of updated bioinformatic analysis tools offers an in-depth understanding
of the essential characteristics of UC.

5. Conclusions

This study identified five candidate genes—DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1—
as prospective biomarkers for UC, offering new insight into the development of the disease.
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