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Abstract: Background: Ulcerative colitis (UC) is an idiopathic inflammatory disease with an increasing 
incidence. This study aimed to identify potential UC biomarkers and associated immune infiltration 
characteristics. Methods: Two datasets (GSE87473 and GSE92415) were merged to obtain 193 UC 
samples and 42 normal samples. Using R, differentially expressed genes (DEGs) between UC and 
normal samples were filtered out, and their biological functions were investigated using Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Promising biomarkers were 
identified using least absolute shrinkage selector operator regression and support vector machine 
recursive feature elimination, and their diagnostic efficacy was evaluated through receiver operating 
characteristic (ROC) curves. Finally, CIBERSORT was used to investigate the immune infiltration 
characteristics in UC, and the relationship between the identified biomarkers and various immune cells 
was examined. Results: We found 102 DEGs, of which 64 were significantly upregulated, and 38 were 
significantly downregulated. The DEGs were enriched in pathways associated with interleukin-17, 
cytokine–cytokine receptor interaction and viral protein interactions with cytokines and cytokine 
receptors, among others. Using machine learning methods and ROC tests, we confirmed DUOX2, 
DMBT1, CYP2B7P, PITX2 and DEFB1 to be essential diagnostic genes for UC. Immune cell 
infiltration analysis revealed that all five diagnostic genes were correlated with regulatory T cells, CD8 
T cells, activated and resting memory CD4 T cells, activated natural killer cells, neutrophils, activated 
and resting mast cells, activated and resting dendritic cells and M0, M1 and M2 macrophages. 
Conclusions: DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1 were identified as prospective 
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biomarkers for UC. A new perspective on understanding the progression of UC may be provided by 
these biomarkers and their relationship with immune cell infiltration. 

Keywords: ulcerative colitis; differentially expressed genes; LASSO regression model; support vector 
machine recursive feature elimination; bioinformatics 
 

1. Introduction  

Ulcerative colitis (UC) is a type of idiopathic, immune-mediated inflammatory bowel disease 
(IBD) with symptoms of diarrhea, abdominal pain and mucopurulent bloody stools [1]. The prevalence 
of IBD is more than 0.3% in numerous nations in North America, Oceania and Europe, being the 
highest in Norway: 505 UC cases per 100,000 people [2]. The mean annual healthcare cost per UC 
patient is approximately €2088, and its burden is increasing globally [3].  

The pathogenesis of UC, including infection details, role of the immune system and the 
environment and sensitive genes, has not been fully delineated yet [4]. UC treatment aims to induce 
and maintain remission. However, the management of UC is extremely difficult due to its poorly 
known etiology [1]. The establishment of novel diagnostic biomarkers that reflect the inflammatory 
damage to the intestinal mucosa is important for the timely diagnosis and treatment of UC. 

Recent high-throughput microarray analysis of specimens from patients and healthy subjects has 
allowed us to investigate various diseases at multiple levels, revealing the numerous genes activated 
in different tissues as well as their physiological and pathological states [5,6]. Bioinformatics and 
machine learning can be efficiently combined to analyze high-throughput microarray data to further 
explore disease mechanisms and identify potential biomarkers.  

Several studies have analyzed UC and IBD microarray data [7–9]. Zhang identified five genes as 
potential indicators for UC tissue biopsy and found the DUOX2/DUOXA2 and CXCL1/CXCR2 
pathways to be crucial in the development of UC [8]. Shi discovered that core differentially expressed 
genes (DEGs) found in UC are associated with inflammation and the immune response and that 
CXCR2 may indicate the degree of inflammation in UC patients [9]. These findings further reveal core 
features of UC pathogenesis. Further bioinformatic analysis of UC is now possible with the advances 
in bioinformatics technology and the application of machine learning to pathology. In this study, 
bioinformatic and machine learning analyses of microarray data were employed to identify prospective 
biomarkers for the diagnosis of UC. 

2. Materials and methods 

2.1. Microarray data 

The flowchart of analysis steps is shown in Figure 1. GSE87473 and GSE92415 were downloaded 
from Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) [10]. Expression data for GSE87473 
were generated using 106 cases of UC and 21 healthy controls, and data for GSE92415 were generated 
using 87 cases of UC and 21 healthy controls. Gene probe IDs in the matrix file were converted into 
international standard gene names using Perl. The two datasets were normalized and merged into a 
metadata cohort for subsequent integrated analysis using the “limma” package in R. Furthermore, the 
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“SVA” package in R was applied to remove batch effects. All gene expression data were subjected to 
log2 transformation.  

 

Figure 1. The flowchart of the analysis steps. 

2.2. Identification of DEGs 

Linear models from the “limma” package in R were used to identify DEGs between colon tissues 
from UC patients and healthy subjects. The Benjamini–Hochberg approach was used to control the 
false discovery rate. Genes with adjusted p < 0.05 and log2 (fold change) > 2 were considered as DEGs. 
Finally, the “ggplot2” and “pheatmap” packages were used to plot the volcano plots and heat map of 
the DEGs, respectively. 

2.3. Functional enrichment analyses 

Gene Ontology (GO) is a bioinformatics resource for annotating genomes with terms such as 
molecular functions, cellular components and biological processes. As a comprehensive database 
resource, the Kyoto Encyclopedia of Genes and Genomes (KEGG) aims to provide biological 
interpretation of high-throughput data or genomic data, ultimately helping identify functional and 
metabolic pathways. In this study, GO and KEGG enrichment analyses of DEGs were performed using 
the “clusterProfiler” package in R. p < 0.05 was considered to indicate significant enrichment of DEGs.  

2.4. Identification of diagnostic biomarkers 

Two machine learning methods were applied to the potential diagnostic criteria for predicting UC 
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status. Using the “glmnet” package in R, least absolute shrinkage selector operator (LASSO) 
regression was carried out to identify genes significantly associated with the discrimination between 
UC and healthy samples. Support vector machine (SVM) is a machine learning method that is 
frequently employed for classification and regression analysis. With the aim of preventing overfit, the 
optimum genes in the metadata cohort were filtered using recursive feature elimination (RFE). 
Consequently, SVM-RFE was used to filter acceptable features to discover the gene set with the highest 
discrimination capacity. 

To estimate the prediction value for UC diagnosis, the “pROC” package in R was used. Area 
under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated to judge 
the accuracy of the diagnostic biomarkers: The higher the AUC value is, the higher the accuracy.  

2.5. CIBERSORT analysis 

To reveal the differences in immune characteristics between UC patients and health individuals, 
the CIBERSORT algorithm in R was applied to evaluate the score distribution and differential 
expression of 22 immune cells in the gene expression profile. The advantages of using CIBERSORT 
for gene expression profiling data are the removal of unknown mixture content and the removal of 
artifacts through deconvolution, ultimately providing an estimate of the relative proportions of the 22 
immune cell subpopulations, which were displayed using the “ggpubr’’ package in R. The “ggplot2” 
package in R was applied to create a boxplot depicting the differences between the UC and normal groups. 

2.6. Statistical analysis 

Continuous variables were expressed as the mean ± standard deviation, whereas categorical 
variables were expressed as percentages. The Mann–Whitney U test or Kruskal–Wallis H test was used 
to compare between non-normal data, t-test or one-way analysis of variance was used for normally 
distributed data, and Fisher’s exact probability method or chi-squared test was used for supCount data. 
All data analyses in this study were performed in R, and a p-value < 0.05 was regarded as significant.  

3. Results 

3.1. UC-associated DEGs 

The two gene expression datasets included 193 UC cases and 42 healthy controls. In total, 102 
DEGs were identified from the expression data, including 64 upregulated genes and 38 downregulated 
genes. Figure 2 depicts the heatmap and volcano plot for the discovered DEGs. 
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A                                  B 

Figure 2. Heatmap and volcanic graphic for differentially expressed genes (DEGs). (A) 
DEG heat map. The red and green colors represent upregulated and downregulated DEGs, 
respectively. Each row represents one DEG, while each column represents one sample. (B) 
Volcano plot for DEGs. Green and red plot points denote downregulated and upregulated 
DEGs, respectively. 

3.2. GO and KEGG analysis of overlapping DEGs 

GO analysis revealed that DEGs associated with antimicrobial humoral immune response, 
humoral immune response, reaction to molecule of bacterial origin and neutrophil chemotaxis were 
considerably enriched (Figure 3A). KEGG analysis showed that DEGs were significantly enriched in 
pathways involving interleukin-17 (IL-17), cytokine–cytokine receptor interaction, rheumatoid 
arthritis, viral protein interaction with cytokine–cytokine receptor, Staphylococcus aureus infection 
and others (Figure 3B). 
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A  B 

Figure 3. (A) Gene Ontology (GO) enrichment analysis. (B) Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis. The size of the dot represents the number of 
enriched genes. The terms with p < 0.05 are shown in the figure. 

3.3. Determination of diagnostic biomarkers 

To identify potential biomarkers for UC, two different arithmetic methods were used. LASSO 
regression identified 13 variables as diagnostic markers for UC (Figure 4A). SVM-RFE was used to 
determine a subset of 10 DEG features (Figure 4B). Five features that overlapped between the two 
arithmetic methods—DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1—were finally selected as key 
genes in UC development (Figure 4C). 
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A                                    B 

 

C 

Figure 4. Selection of candidate diagnostic markers for ulcerative colitis (UC). (A) 
Screening of tuning features in the least absolute shrinkage selector operator (LASSO) 
model. (B) A plot of biological marker screening using the support vector machine-
recursive feature elimination (SVM-RFE) arithmetic. (C) Venn diagram displaying five 
shared biomarkers identified by LASSO and SVM-RFE.  

3.4. The expression and significance of diagnostic markers for UC 

The expression levels of DUOX2 and DMBT1 were significantly higher in UC samples than in 
healthy samples, while those of CYP2B7P, PITX2 and DEFB1 were significantly lower in UC samples 
(Figure 5). 



10748 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10741–10756. 

   

A  B  C  

  

 

D  E   

Figure 5. The expression significance of diagnostic markers for UC. 

ROC curve analysis was carried out to determine the utility of these diagnostic markers. The 
AUC values for DUOX2, CYP2B7P, PITX2, DEFB1 and DMBT1 were 0.985, 0.966, 0.968, 0.966 
and 0.896, respectively, indicating that all of them displayed a strong ability to distinguish UC cases 
from normal samples (Figure 6). 
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A  B  C  
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Figure 6. Receiver operating characteristic (ROC) assays for diagnostic markers in UC. 

3.5. Characterization of immune cell infiltration in UC patients 

CIBERSORT was used to elucidate the relative proportions of 22 immune cells in UC and normal 
tissues, as well as their relationships with one another (Figure 7A,B). Differences were observed in the 
levels of memory B cells, CD8 T cells, activated and resting memory CD4 T cells, activated natural 
killer (NK) cells, neutrophils, activated and resting mast cells, activated and resting dendritic cells and 
M0, M1 and M2 macrophages. 
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Figure 7. (A) The overall proportions of immune cells in each sample from the 
discovery cohort. (B) The correlation heatmap of 22 immune cells; red and blue denote 
positive and negative correlations, respectively. The correlation is higher when the hue 
is darker. (C) Comparison of immune infiltration rates between the UC (red) and 
healthy control (blue) groups. 

3.6. Diagnostic biomarkers were associated with the level of immune cell infiltration 

The associations between diagnostic marker expression and immune cell infiltration were 
investigated in greater detail. All five DEGs were correlated with regulatory T cells, CD8 T cells, 
resting and activated memory CD4 T cells, activated NK cells, neutrophils, resting and activated mast 
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cells, M0, M1 and M2 macrophages and resting and activated dendritic cells. DUOX2, DMBT1, 
CYP2B7P, PITX2 and DEFB1 may be implicated in the progression of UC by modulating several 
immune cells.  

  

A  B  

  

C  D  

 

 

E  

Figure 8. The correlations between the five core DEGs and immune cells.  
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4. Discussion 

UC is a common type of IBD with various degrees of mucosal lesions and recurrent episodes [11]. 
By definition, UC is considered to be limited to the superficial layer of the rectal and colonic mucosa, 
but given its proximal expansion and effects on colonic function, it should actually be viewed as a 
progressive condition with a dismal prognosis [12]. Prompt diagnosis and treatment are crucial for 
patients with UC, but such early diagnostic tools are still absent from clinical practice. Based on our 
examination of the two Gene Expression Omnibus datasets, we could highlight 102 DEGs that 
distinguished UC samples from healthy controls. Analysis of these DEGs using GO terms revealed 
that they were disproportionately involved in processes related to neutrophil chemotaxis, response to 
molecules of bacterial origin, humoral immune response and antimicrobial peptide-mediated 
antimicrobial humoral immune response. These DEGs were primarily implicated in pathways 
associated with IL-17, cytokine–cytokine receptor interaction, rheumatoid arthritis, viral protein 
interaction with cytokine–cytokine receptor and S. aureus infection, as shown by KEGG analysis. 
These findings suggest that these DEGs are actively engaged in immunological processes and may be 
critical for the development of UC. 

From the initial screen of 102 DEGs, two machine learning techniques identified five genes as 
potential diagnostic biomarkers for UC. Dual oxidase 2 (DUOX2) is a member of the nicotinamide 
adenine dinucleotide phosphate oxidase family. It is expressed apically in the epithelial cells of the 
ileum and colon, where it catalyzes the generation of reactive oxygen species during normal cellular 
processes and phagocytosis [13]. DUOX2 can regulate the interaction between the intestinal 
microbiota and the mucosa while maintaining the normal intestinal mucosal barrier function [8,14]. 
Deleted in malignant brain tumors 1 (DMBT1) is an innate immune protein expressed on the mucosal 
surfaces of various human tissues, particularly throughout the luminal gastrointestinal tract [15,16]. It 
promotes epithelial differentiation and angiogenesis. Cytochrome 2B7P (CYP2B7P) is a pseudogene 
from the cytochrome P450 family. Its involvement in disease progression has been rarely reported [17]. 
Paired like homeodomain 2 (PITX2) contributes to intestinal formation and symmetry through 
multiple signaling pathways [18,19]. Due to its importance in DNA methylation and tumor immune 
infiltration, it may be connected to an increased risk of carcinogenesis in UC patients [20,21]. Beta-
defensin 1 (DEFB1) is an antimicrobial peptide associated with surface resistance of epithelial cells to 
microbial invasion. Downregulation of DEFB1 leads to an impaired intestinal mucosal barrier function, 
which is closely related to the development of UC [22,23]. ROC assays confirmed the strong ability 
of these five diagnostic genes to screen UC specimens from normal specimens, verifying their promise 
as prospective biomarkers for UC.  

Recent evidence highlights the critical role of immune cell infiltration in the onset and progression 
of UC. Dendritic cells and macrophages present antigens and secrete several proinflammatory 
cytokines, inducing a Th2 cell immune response [24,25]. Compared with healthy controls, UC patients 
had a lower percentage of Foxp3+CD4+ T cells within their peripheral blood mononuclear cell 
population [26], an accumulation of activated neutrophils in the circulation and colonic tissue [27] and 
NK cells with impaired mitochondrial function and attenuated killing ability [28]. The intestinal T cell 
infiltrates in UC patients were richer in CD4+, regulatory and central memory T cells, while the 
proportions of CD8+ and CD103+ T cells were lower [29]. The evolutionary direction of colonic T 
cells in UC patients is in the GZMK+TNF+ effector state and in the immunomodulatory characteristic 
with clonally expanded IL-26 state. The imbalance in their evolutionary expressions may promote 
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intestinal tissue destruction [30]. Mast cells are engaged in regulating intestinal mucosal permeability 
and barrier function, and their degranulation has been linked to the etiology of UC [31,32]. In the 
absence of IL-10 signaling, macrophages promote the progression of UC by activating NOD-like 
receptor pyrin domain-containing 3 inflammasome and enhancing proinflammatory cytokine 
production [33]. 

Assessing the extent and diversity of immune cell infiltration offers insights into the molecular 
mechanisms underlying UC and helps identify new immunotherapeutic targets. Regulatory T cells, 
CD8 T cells, resting and activated memory CD4 T cells, activated NK cells, neutrophils, resting and 
activated mast cells, M0 M1 and M2 macrophages and resting and activated dendritic cells were all 
associated with the five core DEGs in this study, suggesting that these genes may play a role in the 
pathogenesis of UC by forming close connections with immune cells. 

To assist the early diagnosis and to further characterize the pathogenesis of UC, LASSO 
regression and SVM-RFE were used to screen potential biomarkers, while CIBERSORT was used to 
profile the immune cell infiltrates in UC, which has been rarely reported in the past. This study has 
some limitations. First, molecular biology experiments or large-scale clinical trials were not performed 
to validate the diagnostic efficacy of the five core genes. Second, this study only establishes a 
correlation between UC and immune cells, not a causal relationship. More convincing evidence is 
required to reveal the intricate interactions between immune cells and genes.  

Computational biology research provides new ideas and prospects for biological experiments in 
the study of UC [9]. Computational biology techniques are evolving, and microRNAs (miRNAs) and 
long noncoding RNAs (lncRNAs) may be the future direction for UC biomarker research. In recent 
years, several new biocomputational models have been developed, including graph convolutional 
neural networks and conditional random fields [34], logistic matrix factorization with neighborhood 
regularized [35] and a network distance analysis model for predicting lncRNA–miRNA associations [36]. 
Applying these new models to UC research will help reveal the critical role of miRNA–lncRNA 
interactions and their functions in the pathogenesis of UC. Deep learning algorithms are also improving 
constantly [37,38]. The use of updated bioinformatic analysis tools offers an in-depth understanding 
of the essential characteristics of UC. 

5. Conclusions 

This study identified five candidate genes—DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1—
as prospective biomarkers for UC, offering new insight into the development of the disease. 
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