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Abstract: Federated learning (FL) is a distributed machine learning technique that allows multiple
devices (e.g., smartphones and IoT devices) to collaborate in the training of a shared model with
each device preserving the privacy of its local data. However, the highly heterogeneous distribution
of data among clients in FL can result in poor convergence. In addressing this issue, the concept
of personalized federated learning (PFL) has emerged. PFL aims to tackle the effects of non-
independent and identically distributed data and statistical heterogeneity and to achieve personalized
models with rapid model convergence. One approach is clustering-based PFL, which utilizes group-
level client relationships to achieve personalization. However, this method still relies on a centralized
approach, whereby the server coordinates all processes. To address these shortcomings, this study
introduces a blockchain-enabled distributed edge cluster for PFL (BPFL) that combines the benefits
of blockchain and edge computing. Blockchain technology can be used to enhance client privacy and
security by recording transactions on immutable distributed ledger networks, thereby improving client
selection and clustering. The edge computing system offers reliable storage and computation such that
computational processing is locally performed in the edge infrastructure to be closer to clients. Thus,
the real-time services and low-latency communication of PFL are improved. However, further work is
required to develop a representative dataset for the examination of related types of attacks and defenses
for a robust BPFL protocol.
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1. Introduction

The emergence of the Internet of Things (IoT) and the widespread utilization of mobile devices
with advanced computing capabilities have instigated the need for large-scale data acquisition. These
data can be harnessed to train advanced artificial intelligence (AI) models that can provide various
smart services, benefiting society in diverse aspects. Nevertheless, traditional data acquisition models
that rely on centralized machine learning models entail security and privacy challenges and reduce
participation in data contribution. Moreover, with the recent establishment of data privacy
preservation regulations, such as the General Data Protection Regulation [1] and the Health Insurance
Portability and Accountability act [2], the need for privacy-preserving AI has been continuously
growing. Hence, federated learning (FL), which allows clients to train their data collaboratively
without exposing their private data to each other, has become more prevalent as a promising approach
for tackling privacy-preserving AI issues. The introduction of FL was first used by Google for
Gboard’s next-word prediction [3]. Subsequently, empowered by the success of Gboard, the
utilization of FL was promoted in a myriad of applications, such as healthcare [4], industrial IoT [5],
vehicular networks [6], finance [7] and so forth.

Despite the benefits of general FL, the federated averaging (FedAvg) [8] approach, has suffered
from poor convergence from the highly heterogeneous and non-independent nature of data
distributions across clients [9]. A global model is trained using data from multiple clients; however,
the data from each client are not necessarily identically distributed. This approach can lead to poor
model performance for certain clients, whereby the negative impact can lead to the reluctance or
refusal of clients to participate in the FL training process. Thus, the concept of personalized federated
learning (PFL), as a variation of FL, was developed to alleviate the impact of non-identically and
independently distributed (non-IID) data and statistical heterogeneity issues for the efficient creation
of tailored models. PFL addresses these problems by personalizing the model for each client,
considering the specific characteristics of their data. Moreover, it allows for better performance and
increases clients’ FL participation.

One approach to PFL is clustering-based PFL [10], which enables personalization using a
multi-model approach with group-level client interactions. By mapping client associations, this
approach facilitates the learning of personalized models by each client in conjunction with affiliated
clients within similar clusters. However, the existing cluster-based PFL method still depends on the
centralized strategy where the server orchestrates all processes and requires high communication,
incurring computational costs. To address these shortcomings, this study introduces a
blockchain-enabled distributed edge cluster for PFL (BPFL) that exploits the benefits of two
cutting-edge technologies, blockchain and edge computing, which have the potential to revolutionize
the way data are stored, processed, and shared. Specifically, in clustering-based PFL, the integration
of blockchain and edge computing enables the creation of clusters based on real-time data,
eliminating the need for a central authority to manage and process the data, thereby providing a robust
and decentralized solution for data management and processing. In this study, blockchain is used to
enrich client privacy and security by recording all transactions in immutable distributed ledger
networks to enhance efficient client selection and clustering. Blockchain can be utilized to establish a
decentralized network of devices, where each device maintains a copy of the same data, making the
process more resilient to data loss or tampering. Likewise, to offer appropriate storage and
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computation of PFL, we employ an edge computing system, where computational processing is
locally performed in the edge infrastructure of PFL to be nearer to clients as data providers. Thus, this
approach allows for faster and more efficient data processing and provides proper computation
capability by improving real-time services while reducing the latency and bandwidth requirements
of PFL.

This paper is organized as follows. Section 2 provides background knowledge related to edge-AI,
FL challenges, and blockchain. Section 3 explains the current works related to PFL. In Section 4,
we present the proposed model which is based on a distributed edge cluster for PFL. In Section 5,
numerical results of BPFL are discussed, and several related concerns are explored. Finally, Section 6
concludes the paper.

2. Background

2.1. The emergence of edge-AI

In 2014, the European Telecommunications Standards Institute introduced the concept of edge
computing to optimize the user experience through low latency, high bandwidth, and real-time
communication capabilities [11]. Edge computing leverages local infrastructure to enhance response
speed and minimize transmission latency during the transaction process by strategically placing the
servers in the edge network [12], thus emphasizing proximity to end users [13]. Whereas, edge-AI,
also known as edge intelligence, offers the utilization of AI technologies at the perimeter of a network
as opposed to a centralized cloud infrastructure. Specifically, data collection, processing,
transmission, and utilization occur at the network edge. The approach enables model training across
network nodes, allowing the preservation of privacy and confidentiality [14, 15]. Moreover, this
approach can enhance the responsiveness and efficiency of the system by decreasing the volume of
data that needs to be transmitted over the network [16–18]. Edge-AI has been increasingly gaining
popularity in recent years in both industry and academia. Leading companies such as Google,
Microsoft, Intel, and IBM have initiated pilot projects to showcase the benefits of edge computing in
the last mile of AI [19].

2.2. Federated learning

The traditional client-server architecture in machine learning involves training on a server, with
clients providing the data. However, this approach raises privacy concerns. Clients serve only as
providers of data, whereas the server also undertakes the task of data training and aggregation.
Various concerns are associated with this classical machine learning strategy, in particular, regarding
user privacy. To address this issue, Google introduced FedAvg, a novel communication-efficient
optimization algorithm for FL. FedAvg, as outlined in [8], is an efficient method for the
distribution-based training of models, allowing distributed mobile devices to collaborate in model
training without centralizing the training data and keeping local data stored on mobile devices,
thereby improving privacy by blocking access to local data. It also reduces the number of
communication rounds, making it more efficient than conventional distributed methods.

In the FedAvg algorithm, the server, acting as a model provider, initially sends the global model to
the clients. Each client, as a participant user, downloads the global model from the central server,
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generates a model update by training the current global model on local data, and subsequently
uploads the trained model to the aggregator server. The central server, then acting as an aggregator,
gathers and aggregates all model updates from the clients to produce a new global model for the next
iteration. Thus, FedAvg significantly enhances client privacy by blocking attacks from straightforward
access to the local training data, as cited in [20]. FedAvg is much more communication-efficient than
conventional distributed stochastic gradient descent because of fewer communication rounds.
Furthermore, FedAvg frequently leads to improved performance, as demonstrated in various
learning-related issues such as predictive models in health, low latency vehicle-to-vehicle
communication, vocabulary estimation, and next-word prediction, as cited in [3, 21–23].

2.3. The effect of heterogeneous data in Federated learning

FL offers numerous benefits for various practical applications. However, the highly heterogeneous
data distribution among clients also poses several challenges, leading to a lack of personalization and
poor convergence. Specifically, the data distribution among clients is highly non-IID, which makes
it challenging to train a single model with effective performance for all clients. The non-IID data
also significantly affect the accuracy of FedAvg. Since the distribution of each local dataset differs
significantly from the global distribution, the local objectives of each client are incompatible with the
global optimum, which leads to a drift in local updates, causing each model to be updated towards its
own local optimum, which may be far from the global optimum [24]. Especially if there are many
significant local updates (i.e., an enormous number of local epochs), the averaged model might also be
far from the global optimum [25, 26]. Consequently, the convergence of the global model provides a
substantially less accurate solution than that associated with the IID setting.

2.4. Blockchain: Distributed ledger technology

In 2008, Bitcoin, a digital currency system based on blockchain technology, was proposed by
Nakamoto for financial transactions. Blockchain is a technology that enables participating nodes to
share and validate transactions on a network, which are then imprinted with timestamps and stored in
an unchangeable database using a specific consensus mechanism. Blockchain has three primary
features: decentralized storage, a distributed ledger, and the ability to support distributed services
through the use of smart contracts [27]. Because of these benefits, many researchers from various
fields are currently exploring the development of blockchain technology. The advantages of
blockchain include anonymity and privacy for users, the immutability of stored data, a decentralized
approach that eliminates single points of failure, transparency of transactions, as well as trustful and
distributed transactions that do not require a central authority [5]. The feature of immutability ensures
that data cannot be deleted or modified from the network, whereas the decentralized approach allows
for open participation, provides immunity from particular attacks, and eliminates single points of
failure, resulting in consistent, reliable, and widely accessible data, timestamped for recorded
transactions. In addition, every user has access to transparent transactions, thereby enabling every
node to share and validate transactions in a distributed manner [28].
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3. Related works

PFL learning emerged as a response to the problems caused by the non-IID data distribution and
statistical heterogeneity of the current FL. The use of FedAvg-based methods for non-IID data result
in a decrease in accuracy due to client drift. To overcome these issues, two strategies have been
proposed in [29], i.e., the global model personalization strategy, which involves training a single
global model, and personalized model learning strategies, which involve training PFL models
individually. Most personalization methods for the global FL model typically involve two distinct
processes [30]: creating a global model through collaboration or using private client information to
personalize the global model [31]. Essentially, PFL uses FedAvg as the standard approach for general
FL training settings, with the added step of personalizing the global model using local client data after
training. The personalized model strategy for learning aims to achieve PFL by applying different
learning algorithms and modifying the FL aggregation process through similarity and
architecture-based approaches. Furthermore, PFL seeks to train personalized models for a group of
clients by utilizing the non-IID nature of all clients’ private data while maintaining their privacy.
Thus, to improve the practicality of PFL, the work in [32] suggested that the following three goals be
simultaneously addressed: achieving rapid model convergence in a reduced number of training
rounds, improving personalized models that benefit a large number of clients, and creating more
accurate global models that aid clients with limited private data for personalization.

Recently, research on PFL has been gaining popularity as it aims to address one of the main
challenges of current FL. One of the earliest works on PFL was the manager, owner, consultant,
helper, approver (MOCHA) framework which was proposed in 2017, as a multi-task learning
approach [9]. MOCHA simultaneously learns client task settings and a similarity matrix, to address
the issue of federated multi-task learning. The distributed multi-task issues addressed by MOCHA
include fault tolerance, stragglers, and communication limitations. In addition, the authors of [10]
proposed a context-based client clustering approach to facilitate multiple global models and handle
changes in client populations over time. In this approach, FL models are trained for each
homogeneous group of clients, whereby clients are divided into clusters based on the cosine similarity
of the gradient updates from the clients. There are multiple methods for implementing the PFL
framework, such as data augmentation [33], meta-learning [32], transfer learning [34], and
fine-tuning [25]. It is worth noting that this study focuses on context-based client clustering with a
multi-task approach.

4. Distributed edge cluster for PFL

In this section, we introduce the BPFL approach, which combines the benefits of edge computing
and blockchain technology to enable PFL through distributed edge clusters. Unlike traditional
methods that rely on a single global model, our approach utilizes a multi-model approach with
group-level client associations to achieve personalization. Blockchain technology is employed to
securely store these models in a distributed manner with smart contracts to improve efficient client
selection and clustering through the evaluation of client relationships. The proposed model utilizes a
consortium blockchain to ensure that the participating edge clusters are preselected based on their
trustworthiness, thereby enhancing the security and reliability of the overall system. Consortium
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blockchain guarantees the authenticity of the transactions and mitigates the risk of eavesdropping,
tampering, and compromising of the BPFL network edge servers by malicious clients. To verify the
validity of the transaction, we employed the proof of training quality concept, where the accuracy of
the local model is the primary verification parameter [35]. Moreover, edge computing servers were
utilized to reduce communication and computation costs by providing local storage, communication,
and computation capabilities, allowing the computational processing to be conducted closer to clients
as data providers. As illustrated in Figure 1, the proposed model comprises the steps of system
initialization, collaborative edge cluster establishment, personalized local training models, and
personalized global model aggregation. The specific procedures are explained in further detail as
follows.

Figure 1. Distributed edge cluster for personalized federated learning.

4.1. System initialization

The initial model parameters of the global model (θin) are stored in a distributed ledger blockchain
(which can be integrated with off-chain storage, e.g., the InterPlanetary File System (IPFS)) as the
initial learning model process. It is maintained by edge servers that are placed throughout clusters.
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Then, the number of K clients (Ck) need to register to the BPFL system by sending asset statement
(refers to [36]) validation with their pseudo-public key address Pubps

C through Eq (4.1).

T x Ck(Asset) = Pubps
Ck
→

{(
PubCk Asset = PubHash(Ck Asset),

β j Ck =
(
Hash( j).PubHash(Ck Asset))Hash(Ck Asset)

)
, ”Asset sum”

}
,

where, Pubps
Ck
∈
{
Pub1

S ec C, Pub2
S ec C, ..., Pubk

S ec C} (4.1)

Equation (4.1) describes the process of recording a client’s asset information in the system, which
includes the client’s public key related to the asset pseudonym PubCk Asset, as evidence that the client
owns the asset β j Ck, and general asset information “Asset sum” (e.g., its format, topic, and data
size). The public key and ownership proof are essential for verifying that the client owns the asset and
keeping the asset information anonymous. These elements are created using a secure hash function
Hash(Ck Asset) to map the client’s assets into unique public and private keys Pubk

S ec C to maintain
the client’s anonymity. In short, only validated clients can download θin and access the BPFL system.

4.2. Collaborative edge cluster establishment and personalized local training models

In this step, BPFL can distinguish incongruent clients after converging to a stationary point [10]
as well as generate a multi-model method (θk) that is maintained by distributed edge servers. Hence,
according to the client’s asset statement, the collaborative edge clusters (ECli) are established based
on the client’s data distribution (Dk) similarity, where their datasets are non-IID. In this sense, BPFL
splits the clients into two clusters (ECl1, ECl2) in a manner that optimizes the minimization of the
maximum similarity between clients belonging to different clusters (see Eq (4.2)). Additionally, the
group-level client similarity (δ) can be counted using specific partition techniques, such as Euclidean
distance, cosine similarity, and Gaussian mixture. Our model relies on the cosine similarity technique
(see Eq (4.3)).

ECl1, ECl2 ← arg min
ECL1∪ECL2

(max δECl1,ECl2) (4.2)

δC1,C2 := δ(wp
1 ,w

p
2) :=

(wp
1 ,w

p
2)∥∥∥wp

1

∥∥∥ ∥∥∥wp
2

∥∥∥ (4.3)

In the p−th iteration, Ck in each ECli downloads global parameter θp
i from the blockchain and

performs local training using their datasets Dk to obtain a personalized model (wp
k ) owned by client Ck

by using the following formula [37]:

wp
k = arg min

w∈Rd
Fi (w) +

µ

2αp
∥w − θp

k ∥ (4.4)

where Fi is a loss function associated with the i−th data point on Ck; w ∈ Rd encodes the parameters
of local model w, µ represents the regularization parameter, and αp is the step size of gradient descent
in iteration p.
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Algorithm 1 A summary of the BPFL algorithm. Di is the local datasets; K number of clients Ck;
number of iteration, p; E is the number of local epochs; and η is learning rate.

1: procedure EdgeServerUpdate:
2: ECLi initialize θin *the initial models are stored in the blockchain
3: for each round p = 1,2, ..., P do
4: CK ← max(T x Ck(Asset))
5: ECl1, ECl2 ← arg minECL1∪ECL2(max δECl1,ECl2) *similarity-based clients clustering
6: for each client i ∈ CK in parallel do
7: wp

k ← UserUpdate(i,wp) *∀ updates the personalized model
8: θ

(p+1)
i ← θ

p
i +
∑k

i=1
|Dk |

|D| w
p
k *aggregating the gathered models

9: end for
10: end for
11: end procedure
12: procedure ClientUpdate:(i,wp)
13: //Executes on client i
14: wp

k ← wp

15: for each local epoch j from 1 to E do
16: for each batch b = {x, y} of Di do
17: wp

k ← arg minw∈Rd Fi (w) + µ

2αp
∥w − θp

k ∥; *∀ local training of personalized model
18: end for
19: end for
20: return wp

k for aggregation
21: end procedure
22: procedure Incentive Mechanism(Incv Ck) *incentivized using Ethereum platform
23: ECLi collects the list of participating clients C1,C2, ...,Ck

24: for C1,C2, ...,Ck; ECLi do
25: ECLi ← ConfirmTransaction H(wp

1 ,w
p
2 , ...,w

P
k ) *ECLi has the list of clients

26: Incv Ck are given to C1,C2, ...,Ck *the rewards are distributed to the clients
27: end for
28: end procedure

4.3. Personalized global model aggregation and incentive distribution

After the clients collaboratively upload their wp
k to the distributed edge cluster, the cluster global

model aggregation is executed as follows:

θ
(p+1)
i = θ

p
i +

k∑
i=1

|Dk|

|D|
wp

k (4.5)

where θ(p+1)
i is a new personalized global model obtained for the next iteration (p + 1). In this step, all

participants in the BPFL system can download θ(p+1)
i through the distributed ledger blockchain.

Consequently, iterations continue until the model achieves precise accuracy or reaches the maximum
number of iterations. Finally, clients are incentivized through the implementation of a smart contract
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blockchain, whereby they are rewarded for fulfilling the transaction requirements of the BPFL
platform. The incentive, represented by Incv Ck, is calculated based on the following formula [38]:

Incv Ck =
∑

i

contribCk · θ
(p+1)
i (4.6)

where contribCk is the contribution of client Ck to θ(p+1)
i . Later, Incv Ck is automatically distributed

to participating clients once θ(p+1)
i has been generated, thus providing a decentralized and responsive

system. A summary of the BPFL framework can be found in Algorithm 1.

Figure 2. Training loss of 50 epochs for MLP and CNN models.
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5. Numerical results and discussion

5.1. Implementation

This section describes the implementation of the proposed model which forms a distributed edge
clustering framework to realize PFL by leveraging the merits of blockchain and EC. The modified
National Institute of Standards and Technology (MNIST) [39] datasets were used with 10.000 images
for the test set and 60.000 images for the training set. Our preliminary research compared the
performance of IID and non-IID data distributions among clients through two different models of
MNIST, i.e., a basic two-layer multilayer perceptron (MLP; also known as MNIST 2NN) and a
convolutional neural network (CNN) comprising two 5 × 5 convolution layers. Figure 2 shows the
loss from 50 epochs of training with a learning rate of 0.01 for both MLP and CNN models. The loss
in the non-IID setting is higher than that of IID because of the unbalanced and highly heterogeneous
nature of client data. The impact of non-IID data is further reflected in poor convergence and a
decline in performance accuracy, as depicted in Figure 3. The accuracy is observed to be at its lowest
at epoch 5, reaching 61.48%, as opposed to an accuracy of 95.03% in the IID setting.
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Figure 3. Accuracy performance results on IID and Non-IID setting.

To create a BPFL framework that leverages blockchain technology, we adopted a consortium
setting [40] that harnesses the power of blockchain to perform decentralized PFL transactions, assess
participant contributions to the global model with transparency, and establish a decentralized
incentive system. The distribution of edge cluster contributions towards generating the global PFL
model based on the Ethereum platform is depicted in Figure 4. We designed three distinct
collaborative ECLi edge clusters, ECL1, ECL2, and ECL3, which work collaboratively to train FL
models using their personalized models and local datasets. Upon creating a new personalized global
model, the incentive is distributed to the edge clusters based on the recorded contribution of each
cluster in the blockchain’s distributed ledger. Figure 5 shows that, on average, BPFL achieves better
performance accuracy than existing works. In summary, BPFL seeks to motivate clients possessing

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10725–10740.



10735

heterogeneous data to actively participate in preserving PFL and improve system performance.
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Figure 4. Distribution of edge cluster contributions towards generating the global model
PFL based on Ethereum platform.
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5.2. Discussion

The study of PFL is the latest trend addressing the issue of statistical heterogeneity of non-IID data
distributions, which is one of the primary challenges of the existing FL approach. Even though the
PFL approach is advantageous compared to the general FL framework of FedAvg, there are some
significant challenges, especially regarding the data privacy risk of clients during the model training
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process. Therefore, to enhance security and privacy in PFL, we introduced BPFL, which exploits the
concept of distributed edge clusters to leverage the merits of edge computing and blockchain
technology. Table 1 provides a theoretical summary of the advantages of BPFL compared to current
PFL clustering techniques.

Table 1. Summary of BPFL advantages compared to current PFL techniques.

Key parameters Smith et al. [9] Sattler et al. [10] This work
Computation and communication cost High High Low
Works on non-convex setting No Yes Yes
Multiple global model setting Not investigated Not investigated Yes
Distributed edge cluster Not applied Not applied Yes
Privacy guarantees Not investigated Yes Yes
Asset statement Not applied Not applied Yes
Incentive mechanism Not applied Not applied Applied

Nevertheless, to strengthen and achieve a robust PFL technique, further work is required to
investigate the potential attacks and defenses originating from the more complex protocols and
structures of PFL. To protect the client’s sensitive data from various threats, several privacy
techniques might be leveraged, such as differential privacy, homomorphic encryption, secure
multiparty computation, and a trusted execution environment. In addition, the development of a
reliable incentive mechanism can be studied to maintain fairness and motivate client contributions.
The scalability of blockchain is another aspect that requires attention. The main issue with a fully
distributed ledger network is that every node must agree on the complete state of the ledger, which
leads to challenges such as limited scalability and longer transaction delays as the network expands.
However, representative datasets are essential for developing the PFL field. Datasets with more
modalities (sensor signals, video, and audio) and involving a more comprehensive assortment of
machine learning tasks from practical applications are required to further PFL research. Additionally,
performance benchmarking is another critical aspect for the long-term expansion of the PFL research
domain.

6. Conclusions

This study introduced a blockchain-enabled distributed edge cluster approach for PFL, exploiting
the benefits of blockchain and edge computing. Blockchain protects client privacy and security by
recording all transactions in immutable distributed ledger networks, thereby enhancing efficient client
selection and clustering. Similarly, an edge computing system offers appropriate storage and
computation, whereby computational processing is locally performed in the edge infrastructure to be
nearer to clients. Thus, this system provides proper computation capability and improves real-time
services and low-latency communication of PFL. As challenges for future study directions in the PFL
field, privacy-preserving, trustworthy PFL, as well as representative datasets and benchmarks are
suggested.
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