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Abstract: This study aimed to explore the spatio-temporal distribution characteristics and risk factors
of hepatitis B (HB) in 14 prefectures of Xinjiang, China, and to provide a relevant reference basis
for the prevention and treatment of HB. Based on HB incidence data and risk factor indicators in 14
prefectures in Xinjiang from 2004 to 2019, we explored the distribution characteristics of the risk of HB
incidence using global trend analysis and spatial autocorrelation analysis and established a Bayesian
spatiotemporal model to identify the risk factors of HB and their spatio-temporal distribution to fit and
extrapolate the Bayesian spatiotemporal model using the Integrated Nested Laplace Approximation
(INLA) method. There was spatial autocorrelation in the risk of HB and an overall increasing trend
from west to east and north to south. The natural growth rate, per capita GDP, number of students,
and number of hospital beds per 10,000 people were all significantly associated with the risk of HB
incidence. From 2004 to 2019, the risk of HB increased annually in 14 prefectures in Xinjiang, with
Changji Hui Autonomous Prefecture, Urumqi City, Karamay City, and Bayangol Mongol Autonomous
Prefecture having the highest rates.

Keywords: hepatitis B; Bayesian spatiotemporal model; INLA method; risk factor

1. Introduction

In this study, we aimed to (i) identify the spatial and temporal patterns of HB disease from 2004 to
2019 in Xinjiang, China, (ii) determine the risk factors for HB disease, and (iii) determine how the risk
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of each disease varies spatially and temporally.

HB is a widely spread infectious illness that poses a major threat to human health [1, 2]. Ac-
cording to a 2006 survey, hepatitis B virus (HBV) infection in China accounts for almost 1/3 of all
HBV-infected individuals globally, and the HB pandemic is quite serious. The northwestern region of
China has a high prevalence of HB, and its incidence is increasing [3]. Xinjiang, located in northwest
China, is one of the provinces with a high prevalence of HB. In 2019, Xinjiang ranked first in the
incidence of officially reported cases (176.325/100,000) and third in the death rate of viral hepatitis
(0.0402/100,000) [4].

To provide a reference for effective prevention and control strategies for HB epidemics, Gao et
al. [5] used descriptive epidemiological methods to analyze the prevalence of HB epidemics and dis-
cussed the distribution of patient populations and morbidity. Wang et al. [6] conducted a systematic
review and meta-analysis to better understand the epidemiology of HB in the general Chinese popula-
tion. Wang et al. [7] studied the nationwide spatiotemporal distribution of HB and found that Xinjiang
is a high-value cluster area. Zhu et al. [8] explored the temporal trends in viral hepatitis and examined
the spatial clustering of viral hepatitis in China. Many studies have demonstrated that HB endemic-
ity is associated with socioeconomic and demographic factors, access to healthcare, etc. Sagnelli et
al. [9] indicated that improved socioeconomic conditions, improved hygiene standards and reduced
family size were the main reasons for the reduced incidence of HB in Italy. Ochola et al. [10] studied
the relationship between HBV infection and poverty in sub-Saharan Africa and Uganda and showed
a negative correlation between the wealth index and HBV infection. Kinfe et al. [11] found that edu-
cational status is a risk factor for HB infection. Zhang et al. [12] demonstrated that adequate hospital
beds are essential for disease control and eradication. Some scholars have focused on the epidemi-
ology of HB within certain regions in terms of age-specific, sex-specific, large-scale spatio-temporal
distribution characteristics nationwide, or risk factors for HB infection; however, few have analyzed
it from a spatio-temporal perspective and integrated the impact of risk factors on the HB epidemic
in Xinjiang. Therefore, in this study, global trend analysis and spatial autocorrelation methods were
used to analyze the prevalence of HB epidemics and to discuss the distribution of morbidity risk. A
spatio-temporal model was developed to investigate the risk factors and spatio-temporal heterogene-
ity of HB incidence in Xinjiang by selecting four risk factors: number of beds (per 10,000 people),
per capita gross domestic product (per capita GDP), number of school students and natural growth
rate. For spatiotemporal models, non-Bayesian modeling methods include Geographically and Tem-
porally Weighted Regression (GTWR) [13] and spatiotemporal panel data models [14]. The Bayesian
spatiotemporal model can consider the prior information and uncertainty of the model parameters
compared to the non-Bayesian model, and the model can study the spatiotemporal patterns of disease
variation and relate them to relevant pathogenic factors. For such models, Markov Chain Monte Carlo
(MCMC) methods are typically used to estimate parameters. Compared to the MCMC method, the
integrated nested Laplace approximation (INLA) method has more powerful computing capabilities
without losing accuracy [15]. Therefore, the INLA method was used to estimate the parameters of
Bayesian spatiotemporal models. Currently, the method has been embedded in a variety of models,
such as generalized linear mixed models [16] and binary logit mixed models [17], which are widely
used in various fields, such as soil organic matter changes. Sun et al. [18] compared the nested Laplace
approximate stochastic partial differential equation (INLA-SPDE) model with a Bayesian maximum
entropy approach to predict detailed spatio-temporal variations in sampling periods, and the predic-
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tions derived from INLA-SPDE were found to be more accurate. Using the INLA-SPDE method,
Marie et al. [19] found that juveniles and adults of Lutjanus synagris have patchy distributions along
the Rio Grande do Norte coast and are mainly influenced by environmental predictors such as water
depth and sea surface temperature. Lezama-Ochoa et al. [20] used the INLA-SPDE to predict the oc-
currence of Mobula mobular in the Eastern Pacific Ocean (EPO). Iulian et al. [21] predicted cancer
growth in space and time using a Bayesian spatiotemporal model. Froelicher et al. [22] used the spatial
age-period-cohort method to study breast cancer incidence in the Portuguese region. Ben et al. [23]
used R-INLA to find that weather had different effects on six honeybee diseases and that the risk of
disease varied spatially. Bie et al. [24] used a spatio-temporal model and the INLA algorithm to inves-
tigate seven influences on the relative risk of tuberculosis in China and the impact of spatio-temporal
distribution. The INLA method is a fast computational method for Bayesian inference proposed by
Rue in 2009 [15]. The MCMC method tends to exhibit poor performance because the components
of the latent field are strongly dependent on each other, and the vectors of the hyperparameters and
latent field are also strongly dependent, especially when the dimension n is large [25]. The INLA
method solves both problems in three steps. The first step approximates the posterior margin of the
vector of hyperparameters using the Laplace approximation. The second step computes the Laplace
approximation or simplified Laplace approximation for selected values of the vector of hyperparame-
ters to improve the Gaussian approximation. The third step combines the two previous methods using
numerical integration.

This article is organized as follows: Section 1 contains the Introduction. Section 2 describes the
materials and methods used in the study. Section 3 presents the results from the risk factors of HB,
spatial and temporal. Section 4: Discussion of the results. Finally, Section 5 concludes the paper.

2. Materials and methods

2.1. Data sources

The number of HB monthly incidence cases in 14 prefectures in Xinjiang from 2004/1 to 2019/12
(Figure 1) was obtained from the infectious disease information management system of the Xinjiang
CDC. Incidence data were counted by year for use in subsequent studies.

To study the factors influencing the risk of HB, socio-demographic, socio-economic and health-
care data from 14 prefectures in Xinjiang were gathered and organized from 2004 to 2019. socio-
demographic information included the natural growth rate (birth rate-death rate), the total number of
students in higher education and general secondary vocational schools (persons, abbreviated as the
number of students) and socio-economic information, including per capita gross domestic product (per
capita GDP) (yuan). The healthcare information included the number of hospital beds per 10,000 peo-
ple (abbreviated as the number of beds). The four indicators are the factors influencing the risk of HB
incidence in this study and are denoted by Xk(k = 1, ..., 4).

2.2. Methods

2.2.1. Statistical spatial analysis

Global trends and spatial autocorrelation analyses were used to explore the distribution characteris-
tics of HB risk. Trend analysis is the transformation of points in the study area into a three-dimensional
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Figure 1. Distribution of the number of new HB cases per month in 14 prefectures from
2004 to 2019.

map with specific attribute values as heights and the analysis of global trends in the dataset from dif-
ferent perspectives.

Spatial autocorrelation reflects the spatial distribution of an attribute value within an entire region
[26]. Global Moran’s I was applied to the Geoda environment to examine the spatial distribution of
HB prevalence in all prefectures within the study area. A global Moran’s I index between −1 and +1
indicates whether the spatial distribution of a disease is clustered (> 0), dispersed (< 0), or random
(= 0).

2.2.2. Bayesian spatiotemporal model

Bayesian spatiotemporal models allow for a more accurate estimation of disease risk, analysis of
spatiotemporal evolution patterns and relationships with known explanatory variables, and are now
widely used in disease spatial data modeling and disease mapping [27, 28].

The model assumes that Yit denotes the number of HB patients in region i (i = 1, ..., 14) in year t (t =

1, ..., 16). In general, the disease incidence data obey a Poisson distribution, i.e., Yit ∼ Poisson (λit),
then we have E(Yit) = λit = Eitθit, Eit denotes the expected number of cases in region i in year t, θit

denotes the relative risk of HB incidence, denotes the ratio of the actual number of incidences to the
expected number of incidences in region i in year t. Assuming that k factors influence the development
of HB, a Bayesian spatiotemporal model is constructed using logit link function, which is expressed as
follows:

log (θit) = b0 +
∑

k

βkXkit + ui + vi + γt + ϕt. (1)

Equation (1) is denoted as Model 1, where log(θit) is a linear predictor, b0 denotes the average log
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relative risk, and Xkit is the kth (k = 1, ..., 4) covariates, βk is the coefficient of the kth covariate. ui obeys
the proper conditional autoregressive (CAR) [29], which indicates the spatial structure effect and re-
flects the existence of spatial autocorrelation among neighboring spatial units of the 14 prefectures in
Xinjiang. vi follows a normal distribution, which indicates spatial unstructured effects and can reflect
other random effects caused by non-spatial factors. ui and vi can be considered as hidden variables
for region i, which are related and unrelated to the location of the region, respectively. γt follows the
second-order wandering model [24], indicating that the temporal structure effect, representing unde-
termined features in the tth year, has a temporal structure. ϕt obeys the normal distribution, indicating
a temporal unstructured effect, indicating that the undetermined features in the tth year do not have a
temporal structure. γt and ϕt can be regarded as hidden variables in year t that are related and unrelated
to the location of year t respectively.

According to the description above, the distributions of ui, vi, γt and ϕt take the following forms:

ui | u−i ∼ N

 1
Mi

n∑
j=1

ai ju j,
1

Miτu

 ,
γt | γt−1, γt−2 ∼ N

(
2γt − 1 + γt − 2, σ2

)
,

vi ∼ N
(
0,

1
τv

)
, ϕt ∼ N

(
0,

1
τϕ

)
,

where u−i denotes the remaining regions except for i, Mi = #N(i) is the number of neighbors of region
i, N(i) is the region adjacent to region i, τu is the precision of the spatially structured effect, τv is the
precision of the spatially unstructured effect and τϕ is the precision of the temporally unstructured
effect [30].

The hidden Gaussian field contains all the hidden variables including the linear combination of
the quantity to be estimated and the independent variables, so model 1’s hidden Gaussian field
Z = {θ, b,β,u, v,γ,ϕ} and the model hyperparametric vector ψ =

{
ψu

}
, which is distributed a pri-

ori as logψ ∼ logGamma(1, 0.001). It was proposed by Knorr-Held L [31] and avoids the problem
of sensitive parameter estimates caused by poorly chosen hyperparameter prior distributions. The R
package, INLA, was used to set the prior distribution and estimate the model.

In contrast to Model 1, Model 2 is set up without temporal and spatial effects, that is, a generalized
additive regression model [32], which is expressed as follows:

log (θit) = b0 +
∑

k

βkXkit. (2)

The optimal model was selected for the HB risk impact factor analysis based on the deviance infor-
mation criterion (DIC) [31], which has a smaller value and better model fit.

The INLA applies a hidden Gaussian model that requires the hidden field Z to be a Gaussian Markov
random field. The hidden Gaussian model is essentially a Bayesian hierarchical model that can be
divided into the following structures:

The first level is the likelihood structure; the variable y follows an exponential family distribution,
ψ1 is the hyperparameter in the likelihood function and is usually the precision parameter of the distri-
bution that y obeys

y | Z, ψ1 ∼
∏

π (y | Z, ψ1) ,
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The second level of the structure is the hidden variable distribution, which must obey a normal
distribution and satisfy the conditions of a Gaussian Markov random field; ψ2 is the hyperparameter in
the Z prior distribution, which is generally the precision parameter in the prior distribution:

Z | ψ2 ∼ N
(
µ(ψ2),Q−1(ψ2)

)
,

The third level is the prior distribution of hyperparameters ψ. The hyperparameter vector is assumed
to have a distribution of ψ ∼ π(ψ),ψ = (ψ1, ψ2).

Based on the Bayesian statistical inference [33], the joint posterior distribution of the parameters
and hyperparameters in the model can be obtained as follows:

π(Z,ψ | y) ∝ π(ψ)π(Z | ψ)
∏

π (yi | Zi,ψ) ,

The objective of the INLA is to compute the posterior marginal distributions π (Zi | y) and π
(
ψ j | y

)
of the parameters and hyperparameters, which can be obtained using Bayesian inference from, as
follows:

π (Zi | y) =

∫
π(Z,ψ | y)dψ =

∫
π (Zi | ψ, y) π(ψ | y)dψ, (3)

π
(
ψ j | y

)
=

∫
π(ψ | y)dψ− j. (4)

where ψ− j denotes the remaining hyperparameters except for ψ j. Using the INLA method, Equations
(3) and (4) can be calculated quickly. The INLA method was previously described [15].

3. Results

3.1. Characteristics of the distribution of the risk of HB

Table 1 shows the risk of HB in 14 localities in Xinjiang, with specific prefectures listed in the
table where the risk of HB was greater than 1 (i.e., the actual number of cases was greater than the
expected number of cases). It can be seen that the high incidence of the epidemic is concentrated in
Urumqi City, Kashgar Prefecture and Bayangol Mongol Autonomous Prefecture. From 2004 to 2019,
the risk of HB increased from 1.07 to 1.45 in Aksu Administrative Prefecture, and from 0.86 to 1.65
in Kashgar Prefecture among all prefectures. The risk of HB in Hami City, Karamay City, Tacheng
Prefecture, Turpan City and Ili Kazakh Autonomous Prefecture showed a decreasing trend. The risk
of HB in Hotan Prefecture was low (approximately 0.4) in all years. No clear trend was observed in
the other prefectures.

The average risk of developing HB from 2004 to 2019 was greater than 1 for Aksu Administrative
Prefecture, Bayangol Mongol Autonomous Prefecture, Changji Hui Autonomous Prefecture, Kashgar
Prefecture, Kizilsu Kirgiz Autonomous Prefecture and Urumqi City, and the average risk of developing
HB in Bayangol Mongol Autonomous Prefecture and Urumqi City exceeded two.

The average risk of morbidity and spatial trend analyses across Xinjiang are shown in Figure 2. The
x-axis points east, with the green curve indicating the east-west direction, and the y-axis points north,
with the blue curve indicating the north-south direction. The z-axis is the onset risk value, which is
given by the height of the rod. The risk of HB in Xinjiang tended to increase from west to east and
from north to south, with a clear stepwise distribution.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10678–10693.
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Table 1. Prefectures with a risk of HB > 1 in Xinjiang from 2004 to 2019.

Years Prefectures
2004 Aksu, Changji, Karamay, Kizilsu Kirgiz, Ili Kazakh
2005 Aksu, Changji, Karamay, Kizilsu Kirgiz, Urumqi, Ili Kazakh
2006–2007 Bayangol, Changji, Tacheng, Urumqi
2008–2010 Bayangol, Changji, Urumqi
2011 Bayangol, Changji, Kashgar, Urumqi
2012–2013 Bayangol, Kashgar, Urumqi
2014 Altay, Bayangol, Kashgar, Urumqi
2015–2019 Aksu, Bayangol, Kashgar, Urumqi

Figure 2. Analysis of spatial trends in 14 prefectures in Xinjiang from 2004 to 2019.

3.2. Spatial pattern of HB Risk

A global autocorrelation analysis was conducted on the rate of HB in Xinjiang from 2004 to 2019,
in which there was a positive spatial correlation between 2006 and 2012, 2014–2015, and 2018, with a
global Moran’s I index ranging from 0.146 to 0.349 for each year (Table 2); the global Moran’s index
was greater than 0 and p < 0.05. Therefore, it is necessary to conduct studies using spatio-temporal
models.

3.3. Model selection

Because DIC can integrate the model’s goodness of fit and complexity, it is currently the most
frequently used metric for comparison of model fit in Bayesian spatiotemporal models. Table 3 shows
that the DIC value of Model 1 is reduced by 364,351.95, relative to Model 2, that is, Model 1 fits
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Table 2. Global spatial autocorrelation analysis of HB incidence in Xinjiang from 2004 to
2019.

Years Moran’s I p-Value Years Moran’s I p-Value

2004 -0.025 0.211 2012 0.206 0.048
2005 0.132 0.065 2013 0.117 0.069
2006 0.169 0.040 2014 0.164 0.049
2007 0.226 0.042 2015 0.218 0.043
2008 0.311 0.019 2016 0.094 0.084
2009 0.349 0.011 2017 0.111 0.086
2010 0.223 0.035 2018 0.146 0.043
2011 0.276 0.019 2019 0.131 0.079

Note: Moran′s I > 0 and p < 0.05 represent the clustered pattern of HB.

better. Therefore, a Bayesian spatiotemporal model that includes spatial and temporal effects better
fits the characteristics of the HB data from 2004 to 2019 in Xinjiang. Model 1 is investigated in the
following sections.

Table 3. Evaluation index of risk model of HB incidence in 14 prefectures of Xinjiang.

Model Expression DIC
model 1 log (θit) = b0 +

∑
k βkXkit + ui + vi + γt + ϕt 30,791.05

model 2 log (θit) = b0 +
∑

k βkXkit 395,143

3.4. Influencing factors

Table 4 shows the posterior estimates of the regression coefficients of the influencing factors and
RR. The relative risk of each factor is RR = exp(β) (the logarithm of θit is taken in Model 1, so
the logarithm needs to be converted to an exponent when calculating relative risk, as below), where
β is the regression coefficient of the relevant component. The results indicated that the risk of HB
incidence was positively related to the natural growth rate and the number of beds and negatively
correlated with the number of students and per capita GDP. The posterior means of the regression
coefficients for the natural growth rate and the number of beds were 0.041 and 0.192, respectively,
with corresponding relative risks of 1.04 (95% CI:1.04–1.04), and 1.21 (95% CI:1.20–1.22). Each
unit increase in the variable was associated with a relative risk increase of 0.04 (95% CI:0.04–0.04),
and 0.21 (95% CI:0.20–0.22). The posterior means of the regression coefficients for the number of
students and per capita GDP were -0.042 and -0.356, respectively, with corresponding relative risks
of 0.96 (95% CI:0.95–0.96), and 0.70 (95% CI:0.69–0.71). Each unit increase in the variable was
associated with a relative risk decrease of 0.04 (95% CI:0.04–0.05), and 0.30 (95% CI:0.29–0.31).

3.5. Spatial distribution

The relative spatial risk is RRspatial = exp(u + v), and the relative risk of the sum of spatial ef-
fects (u + v) is shown in Table 5: In this study, the risk of HB incidence was divided into four levels:
low, medium, medium-high and high risk. The low-risk areas were Hotan Prefecture, Turpan City,
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Table 4. Posterior estimates of the regression coefficients of each variable and their RR.

variable Mean (confidence interval) Variance RR (confidence interval)
natural growth rate 0.041 (0.038, 0.044) 0.001 1.04 (1.04, 1.04)
the number of students -0.042 (-0.047, -0.036) 0.003 0.96 (0.95, 0.96)
per capita GDP -0.356 (-0.365, -0.346) 0.005 0.70 (0.69, 0.71)
The number of beds 0.192 (0.183, 0.201) 0.005 1.21 (1.20, 1.22)

Note: RR(relative risk) = exp(β), β is the regression coefficient.

Hami City and Bortala Mongol Autonomous Prefecture, whereas the high-risk areas were Changji
Autonomous Prefecture, Urumqi City, Karamay City and Bayangol Mongol Autonomous Prefecture.
To prevent the epidemic from becoming more serious, relevant disease control departments should de-
velop different epidemic prevention and control measures based on the incidence risk levels, pay close
attention to the development dynamics of the HB epidemic in high-risk areas, and perform better mon-
itoring of the epidemic in the three medium-high-risk areas of Tacheng Prefecture, Kashgar Prefecture
and Aksu Administrative Prefecture.

Table 5. Distribution of spatial relative risk RRspatial.

the risk of HB incidence level RR is located in the interval Location prefectures

low-risk [0.32, 0.79]
Hotan Turpan Hami Bortala
0.32 0.64 0.72 0.79

medium-risk (0.79, 0.98]
Ili Kazakh Altay Kizilsu Kirgiz
0.81 0.93 0.91

medium-high-risk (0.98, 1.35]
Tacheng Kashgar Aksu
1.03 1.15 1.09

high-risk (1.35, 2.45]
Changji Urumqi Karamay Bayangol
1.42 1.74 1.86 2.45

Note: RRspatial = exp(u + v), (u + v) is the spatial effects.

3.6. Temporal distribution

The relative risk at time RRtemporal = exp(γ + φ), which is the sum of the time impacts of (γ + φ)
relative risk (Figure 3). The overall risk of HB in Xinjiang from 2004 to 2019 showed an increasing
trend, reaching 1.12 in 2018. The unstructured effect curve fluctuates at 1, while the structured effect
curve displays an upward trend. From 2004 to 2014, the risk of HB incidence ranged from 1, except in
2005 and 2013, with the lowest relative risk of 0.92 in 2009.

4. Discussion

The selection of indicators is very important and can affect the results of the study. For disease
prevalence, which was initially determined by the number of cases, the method simply marks the
number of new cases in each area on the map, and the indicator selected in this study is the risk of
incidence (the ratio of the actual number of cases to the expected number of cases). The data were
divided into intervals by the minimum, first quartile, median, third quartile and maximum values of
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Figure 3. Distribution of RRtemporal from 2004 to 2019.

the two indicators of incidence and risk of incidence, and the data were divided into four intervals.
Using the number of new cases as the study indicator, Aksu Administrative Prefecture, Ili Kazakh
Autonomous Prefecture, Kashgar Prefecture, and Urumqi City were the areas with the most severe HB
epidemics. The high-risk areas were Changji Autonomous Prefecture, Urumqi City, Karamay City and
Bayangol Mongol Autonomous Prefecture, with the risk of incidence used as the study index.

There were 67,199 new cases in Aksu Administrative Prefecture and 63,377 new cases in Bayan-
gol Mongol Autonomous Prefecture in 16 years, and the incidence of HB was more serious in Aksu
Administrative Prefecture. However, the average annual population of Aksu Administrative Prefecture
is 2,401,336 and that of Bayangol Mongol Autonomous Prefecture is 1,278,448. Therefore, it is not
appropriate to use the number of cases to determine the prevalence of HB in different populations in
different regions. Therefore, this study relied on the risk of HB incidence, which was unaffected by
socio-demographic characteristics of the region.

Therefore, this study used this indicator to conduct global trend and spatial autocorrelation analyses
and established a Bayesian spatiotemporal model to explore the factors influencing the risk of HB
disease in Xinjiang and its spatio-temporal characteristics. The results indicated that the risk of HB
incidence was positively related to the natural growth rate and the number of beds, and negatively
correlated with the number of students and per capita GDP.

HB is mainly transmitted from mother to child, through sexual contact and daily life contact. As
the natural population growth rate increases, so does the population density, increasing the likelihood
of mother-to-child and daily-life contact transmission.

The number of beds was positively associated with HB incidence, which was the opposite of the
finding of the study by Sun et al. [34]. This could be explained by the fact that our study was based
only on the Xinjiang region (14 prefectures), whereas Sun et al. covered all the geographical areas of
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China. Medical resources and economics have been found to affect diseases [35, 36]. A high-quality
and accessible healthcare system always leads to improved health status in the country, hospitals and
other health facilities that are beneficial for HB patients. This problem was also found in the GDP, the
level of vaccines and medical care.

The higher the per capita GDP, the lower the risk of HB incidence. Vaccination against HB is an
important tool and effective measure for HB prevention and control. China’s gross domestic product
(GDP) has been growing rapidly in recent years, and as the economy has progressed, the risk of HB
incidence has decreased as the HB vaccination rate has increased. The World Health Organization has
divided the world into three endemic zones—high, medium and low—based on the differences in the
prevalence of hepatitis B worldwide. Areas with hepatitis B surface antigen (HBsAg) levels above 8%
are considered highly endemic, those with HBsAg levels in the range of 5–7.99% are considered mod-
erately endemic, and those with HBsAg levels in the range of 2–4.99% are classified as low endemic
areas for HB [37]. Because of vaccination and other efficient prevention and control efforts, the coun-
try moved from a highly endemic (HBsAg positivity rate: 9.8 %) to a lowly endemic zone (HBsAg
positivity rate: 2.60%) for HB in 2014 [38]. This illustrates the economic benefits of HBV vaccines,
epidemic prevention and control [39]. This also reflects the disparity in access to health services be-
tween poor and wealthy communities, as areas with a higher GDP are likely to have more adequate
medical facilities and resources, higher vaccination rates and a lower HB incidence.

In addition, according to our findings, the number of students was negatively associated with the
risk of developing HB. This may imply that education impacts the incidence of HB, and a prevention
campaign on HB in schools can make students fully aware of the dangers of infectious diseases, ways
of transmission and knowledge of effective self-protection, thus reducing the risk of disease. It has
been found that increased awareness and education are effective in reducing the outbreak [11, 40].

The spatial autocorrelation results from 2004 to 2019 showed spatially positive correlations for
HB distribution in 2006–2012, 2014–2015 and 2018, with the strongest spatial correlations found in
2009. The risk of HB varies among the regions, with an increasing trend from west to east and north
to south. High-risk areas included the Changji Autonomous Prefecture, Urumqi City, Karamay City
and Bayangol Mongol Autonomous Prefecture. This may be related to population density, health
conditions and socioeconomic factors. The seriousness of the HB epidemic in the Bayangol Mongol
Autonomous Prefecture may have been influenced by economic conditions, lack of human resources
for prevention and control, inadequate medical resources and low awareness of the population about
disease prevention. In addition, living habits and conditions such as transportation also contribute to
the high incidence of epidemics in the southern region [41]. Urumqi City is the capital of a prefecture-
level city in the Xinjiang Uyghur Autonomous Region and is an important integrated transport hub
with a highly mobile population that is more likely to be exposed to HB and, therefore, at higher risk
in these areas. The populations in Bortala Mongol Autonomous Region, Hami City and Turpan City
account for only 2.18%, 2.56% and 2.91% of the total population of Xinjiang, respectively. Due to the
sparse population and low mobility, there is a lower risk of HB infection in these areas.

From 2004 to 2019, the overall risk of HB incidence in Xinjiang increased; therefore, future atten-
tion should be paid to high-risk areas in Xinjiang, as well as targeted epidemic prevention and control
to reduce the risk of HB incidence.

Analysis of the Bayesian spatiotemporal model developed in this study allows authorities to tailor
HB epidemic prevention and control strategies for each region’s economic development, population
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size, and healthcare, thereby accelerating the achievement of the World Health Organization’s goal of
eliminating viral hepatitis infection by 2030, which was announced in 2016 [42].

Although this study was a spatio-temporal analysis of the risk factors of HB in the Xinjiang region,
some limitations should be acknowledged. First, the study was conducted at the prefecture level be-
cause data were not available on a finer geographical scale for Xinjiang. As a result, differences within
counties were not examined. Second, it is limited to using the number of people in schools to consider
whether they are educated and only counts the number of people in each school in Xinjiang. The ed-
ucational attainment of the entire population should be investigated. Family size, sexual transmission,
and mother-to-child transmission are also influential factors in the development of HB. However, these
indicators were not included in this study. If these risks of developing HB were considered, the results
might have been more accurate. Further studies should explore the main types and characteristics of
HB incidence in Xinjiang districts and counties; collect information on the age, sex and occupation
of HB patients; analyze the factors influencing the prevalence of HB; and compare the heterogeneity
among the districts and counties. It is possible to identify key populations and provide a quantitative
basis for assigning appropriate prevention and control measures.

5. Conclusions

The INLA method can be used to embed spatio-temporal models. The R-INLA package can be
applied to study spatial epidemiology, including the analysis of factors influencing diseases and their
spatial and temporal distributions. The construction of a spatial conditional autoregressive prior in the
model can effectively explore the spatial correlation and heterogeneity of the data, and the construction
of a second-order wander can effectively explore the changes in the risk of HB incidence over time.

This study found that (i) there was spatial heterogeneity in the risk of HB incidence in Xinjiang; (ii)
the risk of HB incidence tended to increase from west to east and from north to south; (iii) factors such
as the number of hospital beds, per capita GDP, the number of students and natural growth rate may
have an impact on the incidence of HB; (iv) from 2004 to 2019, the risk of HB incidence increased year
by year in Xinjiang; and (v) among the 14 prefectures, the risk of incidence was highest in Changji Hui
Autonomous Prefecture, Urumqi City, Karamay City and Bayangol Mongol Autonomous Prefecture.

Our findings suggest that HB control measures should focus on these factors in high-risk areas to
allocate public health resources more precisely and reduce the burden of HB. Therefore, epidemic
prevention and control policies should further be improved according to the risk of morbidity in each
region, combined with the influencing factors.
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