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Abstract: The prediction of drug-target protein interaction (DTI) is a crucial task in the development
of new drugs in modern medicine. Accurately identifying DTI through computer simulations can
significantly reduce development time and costs. In recent years, many sequence-based DTI prediction
methods have been proposed, and introducing attention mechanisms has improved their forecasting
performance. However, these methods have some shortcomings. For example, inappropriate dataset
partitioning during data preprocessing can lead to overly optimistic prediction results. Additionally,
only single non-covalent intermolecular interactions are considered in the DTI simulation, ignoring
the complex interactions between their internal atoms and amino acids. In this paper, we propose a
network model called Mutual-DTI that predicts DTI based on the interaction properties of sequences
and a Transformer model. We use multi-head attention to extract the long-distance interdependent
features of the sequence and introduce a module to extract the sequence’s mutual interaction features
in mining complex reaction processes of atoms and amino acids. We evaluate the experiments on two
benchmark datasets, and the results show that Mutual-DTI outperforms the latest baseline significantly.
In addition, we conduct ablation experiments on a label-inversion dataset that is split more rigorously.
The results show that there is a significant improvement in the evaluation metrics after introducing
the extracted sequence interaction feature module. This suggests that Mutual-DTI may contribute to
modern medical drug development research. The experimental results show the effectiveness of our
approach. The code for Mutual-DTI can be downloaded from https://github.com/a610lab/Mutual-DTI.
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1. Introduction

Predicting and identifying DTI is of great significance in medicine and biology [1–3]. Measuring the
affinity with drugs and proteins in wet lab is the most expensive and time-consuming method. However,
these experiments are often expensive and time-consuming due to the complexity of molecules [4].
Virtual screening (VS) through computation can significantly reduce costs. Structure-based VS and
ligand-based VS, which are classical virtual screening methods, have achieved great success [5, 6].
Structure-based methods use 3-dimensional (3D) conformations of proteins and drugs for study of
bioactivity. The ligand-based method is based on the assumption that similar molecules will interact
with similar proteins [7]. However, the application of these methods is limited. For example, ligand-
based VS methods perform poorly when the molecule has a few known binding proteins and structure-
based VS methods cannot be executed when the 3D structure of a protein is unknown. Since the
accurate reconstruction of protein structures is still to be developed, the construction of 3D-free DTI
prediction methods has attracted increasing attention [8]. The machine learning approach considers
the chemical space, genomic space and their interactions in a specific framework and formulates the
DTI prediction as a classification problem following a feature-based and similarity-based approach.
Similarity-based approaches rely on the assumption that drugs with similar structures should have
similar effects, feature-based approaches construct a feature vector consisting of a combination of
descriptors for the drug and the protein as model inputs. Bleakley et al. [9] proposed a new supervised
method of inference to predict unknown drug-target interactions, which uses support vector machines
as local classifiers. Since then, a variety of machine learning-based algorithms have been proposed that
consider both composites and protein information in a unified model [10–19].

In recent years, the development of deep learning in drug discovery has been rapid. In comparison
to traditional machine learning, end-to-end models eliminate the need to define and compute descrip-
tors before modeling, providing different strategies and representations for proteins and drugs. Ini-
tially, manually specified descriptors were used to represent drugs and proteins, and a fully connected
neural network (FCN) was designed to make predictions [20]. Since descriptors are designed from
a single perspective and cannot be changed during the training process, descriptor-based approaches
cannot extract task-relevant features. Therefore, many end-to-end models have been proposed. Lee et
al. [21] proposed a model called DeepConv-DTI to predict DTI. The model uses convolution layer to
extract local residue features of generalized proteins. Tsubaki et al. [22] used different models to rep-
resent drugs and proteins from the perspective of considering the structure of drugs as graph structures.
Graph neural networks (GNN) were used to learn features from drug sequences, and convolutional
neural network (CNN) was used to train protein sequences. In order to consider deeper features be-
tween molecules, Li et al. [23] proposed a multi-objective neural network (MONN), which introduced
a gate recurrent unit (GRU) module to predict the affinity and can accurately determine the interaction
and affinity between molecules. Zamora-Resendiz et al. [24] defined a new spatial graph convolutional
network (GCN) architecture that employs graph reduction to reduce the number of training parameters
and facilitate the abstraction of intermediate representations. Ryu et al. [25] combined GCN with an
attention mechanism to enable GCN to identify atoms in different environments, which could extract
better structural features related to a target molecular property such as solubility, polarity, synthetic ac-
cessibility and photovoltaic efficiency, compared to the vanilla GCN. Ru et al. [26] combined the ideas
of adjacency and learning to rank to establish correlations between proteins and drugs using adjacency,
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and predicted the binding affinity of drugs and proteins using learning to rank methods to input fea-
tures into the classifier. Transformer is a model that uses a self-attention to improve the speed of model
training, and has achieved great success in the field of natural language processing. Wang et al. [27]
first extracted drug carriers by GNN, and then represented protein features by Transformer and CNN to
obtain remote interaction information in proteins by a one-sided attention mechanism. Chen et al. [28]
obtained the interaction features by Transformer decoder and proposed a more rigorous method for
data set partitioning. Ren et al. [29] presented a deep learning framework based on multimodal rep-
resentation and meta-path semantic analysis, which drugs and proteins are represented as multimodal
data and the relationships between them are captured by meta-path semantic analysis. However, most
of these methods only consider a single non-covalent interaction between drugs and proteins. In fact,
there is much more than one interaction between drugs and proteins.

Inspired by the Transformer decoder, which is able to extract long-range interdependent features
[28], this paper proposed a dual-pathway model for DTI prediction based on mutual reaction features,
called Mutual-DTI. The transformer’s decoder was modified to treat drugs and proteins as two distinct
sequences. Additionally, a module was added to extract mutual features that enable learning of the
complex interactions between atoms and amino acids. Figure 1 shows an overview of the entire net-
work. The dual pathway approach has also been applied in other field. For example, dual attention
matching (DAM) [30] was proposed to learn the global features from local features with self-attention
but ignored the mutual influence information between local features of two modalities.

In this paper, we captured the spatial and other feature information of drugs with a GNN and repre-
sented the protein features with a gated convolutional network. The drug features and protein features
were then input as two sequences into the Transformer decoder, which included the mutual feature
module. Different from DAM, the mutual feature module simultaneously considered the local fea-
tures of both drug molecules and proteins, which effectively extracted the interaction features between
two sequences. Finally, the drug-protein feature vector was input into the fully connected layer for
prediction. We expected the Mutual-DTI model to exhibit better performance and generality with the
addition of the mutual feature module. To validate this, we evaluated it on two benchmark datasets
and conducted ablation experiments on a more tightly delineated dataset [28]. The results showed
that Mutual-DTI exhibited better performance. We further visualized the attention scores obtained by
Mutual-DTI learning, and the results showed that the mutual feature module of Mutual-DTI helped to
reduce the search space of binding points.

2. Materials and methods

2.1. Drug model

GNN aggregates operations to extract node features in a graph. We represent drugs using a graph
structure where nodes represent atoms like carbon and hydrogen, and edges represent chemical bonds
like single and double bonds. We use the RDKit Python library* to convert a simplified molecular input
line entry system (SMILES) string into a two-dimensional drug molecular graph.

We define a drug graph by G = {V, E}, where V is the set of atomic nodes and E is the set of
chemical bond edges. Considering the small number of atomic and chemical bond types, we perform a
local breadth-first search for the nodes in the graph, where the search depth r is equal to the number of

*Website:http://www.rdkit.org/
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Figure 1. An overview of the entire network frame.
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hops of a particular node [22,31]. For example, we start searching from node vi, traverse the subgraph
of range r and record the information of all neighboring nodes and edges of node vi in the subgraph.
We define subgraph for node vi in the depth r range as follows:

Gsubr

i =
(
V subr

i , E subr

i

)
(2.1)

E subr

i = {emn|m, n ∈ N(i, r)} (2.2)

where N(i, r) is the set of nodes adjacent to vi in the subgraph Gsubr

i , including vi. emn is the edge
connecting vm and node vn.

According to the subgraph Gsubr

i , we can extract the corresponding chemical features, such as atomic
type, atomicity, aromaticity, etc. The details are shown in Table 1.

Table 1. Atomic characteristics and representation.

Feature Representation
atom type C, N, O, S, F, P, Cl, Br, B, H (onehot)
degree of atom 0, 1, 2, 3, 4, 5 (onehot)
number of hydrogens attached 0, 1, 2, 3, 4 (onehot)
implicit valence electrons 0, 1, 2, 3, 4, 5 (onehot)
aromaticity 0 or 1

We use the random initialized embedding of the extracted chemical features as the initial input to
the GNN. We denote the embedding of the n-th layer network node vi as f (n)

i ∈ Rd,In the GNN, we
update f (n)

i according to the following equation:

f (n)
i = σ

 f (n−1)
i +

∑
j∈N(i,r)

h(n−1)
i j

 (2.3)

where σ is the sigmoid function: σ(x) = 1/ (1 + e−x) and h(n−1)
i j is the hidden vector between nodes vi

and v j. This hidden vector can be computed by the following neural network:

h(n)
i j = ε

(
ω f (n)

i + b
)

(2.4)

where ε is the nonlinear activation function ReLU: ε (x) = max(0, x), ω ∈ Rd×d is the weight hy-
perparameter and b ∈ Rd is the deviation vector. After the GNN layer, we obtain the feature vector
c1, c2, c3, · · · , cl of a drug sequence, where l is the number of atoms in the sequence.

2.2. Protein model

A protein sequence consists of 20 amino acids. If we learn a protein sequence as a sentence,
there are only 20 kinds of words that make up the sentence. To increase the diversity of fea-
tures, based on the n-gram language model, we define the words in a protein sequence as n-gram
amino acids [22]. For a given amino acid sequence, we split it into repeated n-gram amino acid se-
quences. For example, we set n to 3, and the protein sequence MVV MNS L · · · TS QAT P is split into
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MVV,VV M,V MN,MNS , · · · ,TS Q, S QA,QAT, AT P, so that the variety of words composing the sen-
tence will be expanded to 203.

To ensure a reasonable vocabulary, we sets n to 3. For a given protein sequence S = a1a2a3 · · · aL,
where L is the length of the protein sequence and ai is the i-th amino acid. We split it into:

[a1a2a3] , [a2a3a4] , · · · , [aL−2aL−1aL]

We use ai:i+2 ∈ R
d to denote the d-dimensional embedding of the word [aiai+1ai+2]. We do the

initialize d-dimensional embedding of the protein sequence processed by the above method and then
input it into a gated convolution network with Conv1D and gated linear units [32]. We compute the
hidden layer according to Eq (2.5):

Li(X) = (X × ω1 + s) ⊗ σ (X × ω2 + t) (2.5)

where Li is the i-layer in the gated convolution network, X ∈ Rn×d1 is the input to the i-layer, ω1 ∈

Rd1×d2 , s ∈ Rd2 , ω2 ∈ R
d1×d2 and t ∈ Rd2 are the learning parameters, n is the length of the sequence.

d1, d2 are the dimensions of the input and hidden features respectively, σ is sigmoid function and ⊗ is
matrix product. The output of the gated convolution network is the final representation of the protein
sequence.

2.3. Mutual model

We extracted feature vectors of drug and protein sequences using the drug and protein modules and
inputted them into the Transformer decoder. The decoder learned mutual features, resulting in drug and
protein sequences with interaction features as output. Since the order of the feature vectors has no effect
on the DTI modeling, we remove the positional embedding in the Transformer. The key technology
of the decoder is the multi-headed self-attention layer. The multi-headed self-attention layer consists
of several scaled point-attention layers for extracting the interaction information between the encoder
and the decoder. The self-attention layer accepts three inputs, i.e., key K, value V and query Q, and
computes the attention in the following manner:

S el f attention(Q,K,V) = so f tmax
(

QKT

√
dk

)
V (2.6)

where dk is a scaling factor that depends on the number of layers. Considering the complex reaction
processes involving non-covalent chemical bonds within drugs and proteins, we added a module to
extract interaction features using a multi-headed self-attentive layer in the Transformer decoder. The
decoder takes the drug and protein sequences as inputs, enabling the extraction of drug- and protein-
dominated interaction features simultaneously. The module further extracts complex interaction feature
vectors between atoms and amino acids within the sequence, as depicted in Figure1.

After the interaction features are extracted by the decoder, we obtain the interaction feature matrices
D ∈ Rb×n1×d and P ∈ Rb×n2×d for the drugs and proteins. Where b is the batch size, n1, n2 is the number
of words and d is the feature dimension. Averaging over the different dimensions of the feature matrix
:

Da = mean(D, 1) (2.7)

Pa = mean(P, 1) (2.8)
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where mean(input, dim) is a mean operation that returns the mean value of each row in the given
dimension dim. The obtained feature vectors Da and Pa are concatenated and fed to the classification
block.

2.4. Classified block

The classification module consists of a multilayer fully connected neural network with an activation
function of ReLU and a final layer output representing the interaction probability ŷ. As a binary
classification task, we use binary cross-entropy loss to train Mutual-DTI:

Loss = −
[
ylogŷ + (1 − y)log (1 − ŷ)

]
(2.9)

Mutual-DTI was implemented with Pytorch 1.10.0. The original transformer model had 6 layers and
contained 512 hidden dimensions, we reduced the number of layers from 6 to 3, the number of hidden
layers from 512 to 10, the number of protein representations, atomi representations, hidden layers and
y interactions to 10 and the number of attention heads to 2, as this configuration achieves excellent
generalization capabilities. During training, we used the Adam optimizer [33] with the learning rate
set to 0.005 and the batch size set to 128.All settings and hyperparameters of Mutual-DTI are shown
in the Table 2.

Table 2. Hyperparameters of Mutual-DTI.

Name Value
Dimension of atom representation 10
Dimension of protein representation 10
Number of decoder layers 3
Number of hidden layers 10
Number of attention heads 2
Learning rate 5e-3
Weight decay 1e-6
Dropout 0.1
Batch size 128

3. Results

3.1. Performance on public datasets

The human dataset and the C.elegans dataset were created by Liu et al. [34]. These two datasets
comprise of compound-protein pairs, which include both negative and positive samples that are highly
plausible. The human dataset comprises 3369 positive interactions between 1052 unique compounds
and 852 unique proteins, while the C. elegans dataset comprises 4000 positive interactions between
1434 unique compounds and 2504 unique proteins. As shown in Table 3. We randomly divided into
training set, validation set and test set in the ratio of 8:1:1. In addition, we utilized AUC, precision and
recall as evaluation metrics for Mutual-DTI, and compared it with some traditional machine learning
methods on both the human and C. elegans datasets. These traditional machine learning methods for
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comparison are k-NN, RF, L2-logistic (L2) and SVM. their results are from the original paper [34].
The main results are shown in Figure 2. Mutual-DTI outperforms the machine learning methods under
both benchmark datasets.

Table 3. Summary of the datasets.

Dataset Drugs Proteins Interactions Positive Negative
Human 1052 852 6728 3369 3359
C.elegans 1434 2504 7786 4000 3786
GPCR 5359 356 15343 7989 7354
Davis 68 379 25772 7320 18452

In other experiments, we compare the proposed method with recent deep learning methods used
for DTI prediction. The methods are as follows: GNN-CPI [22], GNN-PT [27], TransformerCPI [28].
The main hyperparameters are set as follows:

GNN-CPI: vector dimensionality of vertices, edges and n-grams = 10, numbers of layers in gnn =
3, window size = 11, numbers of layers in cnn = 2, numbers of layers in output = 3.

GNN-PT: numbers of layers in gnn = 3, numbers of layers in output = 1, heads of attention = 2.
TransformerCPI: dimension of atom = 34, dimension of protein = 100, dimension of hidden = 64,

number of hidden layers = 3, heads of attention = 8.
The same settings of the original paper were used for all parameter settings. We used the same pre-

processing for the initial data of drugs and proteins. We preprocessed the dataset in the same way as in
previous experiments, and repeated the experiment three times using different random seeds. For each
repetition, we randomly split the dataset and saved the model parameters corresponding to the optimal
validation set AUC for each test set. The main results under the human dataset and the C. elegans
dataset are shown in Tables 4 and 5. On the human dataset, the average evaluation metrics of Mutual-
DTI are 0.984, 0.962 and 0.943 for AUC, precision and recall, respectively, which outperform the
other methods. On the C. elegans dataset, the average evaluation metrics AUC, precision and recall of
Mutual-DTI are 0.987, 0.948 and 0.949, respectively, which mostly outperform the other models. The
results suggest that Mutual-DTI can effectively learn informative features for predicting interactions
from both one-dimensional protein sequences and two-dimensional molecular maps, demonstrating its
generalizability across different datasets.

Table 4. Comparison between model and baseline on human dataset.

Methods AUC Precision Recall
GNN-CPI 0.917 ± 0.072 0.783 ± 0.061 0.889 ± 0.096
GNN-PT 0.978 ± 0.006 0.939 ± 0.010 0.934 ± 0.006
TransformerCPI 0.972 ± 0.005 0.938 ± 0.018 0.932 ± 0.001
Mutual-DTI 0.984 ± 0.001 0.962 ± 0.019 0.943 ± 0.016

3.2. Effectiveness of mutual feature module

To evaluate the importance of interactive feature modules, we propose two sub-models. The first
one is no-mutual block, which has no mutual feature module, another network with mutual feature
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(a)

(b)

Figure 2. In k-NN, RF, L2, SVM and Mutual-DTI of human dataset and C.elegans dataset,
AUC, accuracy and recall, where (a) is the human dataset and (b) is the C.elegans dataset.

Table 5. Comparison between model and baseline on C.elegans dataset.

Methods AUC Precision Recall
GNN-CPI 0.899 ± 0.104 0.850 ± 0.132 0.778 ± 0.192
GNN-PT 0.984 ± 0.007 0.940 ± 0.024 0.933 ± 0.014
TransformerCPI 0.984 ± 0.004 0.943 ± 0.025 0.951 ± 0.016
Mutual-DTI 0.987 ± 0.004 0.948 ± 0.018 0.949 ± 0.013
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module. In order to improve the accuracy of the experimental results, we evaluated a more strictly
divided GPCR dataset [28]. As shown in Table 3. The key to constructing this dataset is that the
drugs in its training set appear in only one class of samples (positive interaction or negative interaction
DTI pairs), and in the test set appear in only the opposite class of samples. This forces the model to
use protein information to learn interaction patterns and make opposite predictions for selected drugs,
which is more realistic.

Table 6 shows the prediction performance of the two models on the GPCR dataset. As shown in
the table, by comparing models with and without mutual features module, it can be concluded that
improvements can indeed be achieved using interaction features. This suggests the need to establish
correlations between drug and protein information in the DTI prediction extrapolation process. We
also conducted experiments on the Davis dataset, which contains 7320 positive and 18,452 negative
interactions. The Davis dataset we used was created by Zhao et al. [35]. As shown in Table 7, the model
with the interaction module included also showed superior performance on the unbalanced dataset.

Table 6. Comparison between the model and no-mutual on GPCR dataset.

Methods AUC Precision Recall
no-mutual-DTI 0.810 ± 0.023 0.704 ± 0.014 0.768 ± 0.030
Mutual-DTI 0.820 ± 0.014 0.699 ± 0.010 0.796 ± 0.046

Table 7. Comparison between the model and no-mutual on Davis dataset.

Methods AUC Precision Recall
no-mutual-DTI 0.886 ± 0.005 0.728 ± 0.023 0.654 ± 0.005
Mutual-DTI 0.900 ± 0.002 0.767 ± 0.013 0.680 ± 0.027

3.3. Robustness of model

In this section, we employed a three-dimensional surface plot to analyze the impact of model hy-
perparameters (atomic and protein dimensions) on the DTI prediction performance. Since these two
parameters are among the most important hyperparameters. We sampled values for atomic and protein
dimensions from 10 to 40, with a gap of 10 dimensions each time. For instance, the atomic dimen-
sion/protein dimension values were: 10/10, 10/20, 10/30, ..., 20/10, 20/20, ..., 40/30, 40/40, for a total
of 16 different settings, and experiments were conducted multiple times with different random seeds.
Other settings were the same as the previous experiments. As shown in the Figure 3, the x-axis repre-
sents the atomic dimension, the y-axis represents the protein dimension and the z-axis represents the
AUC obtained from the test set. From the results, it can be seen that under different dimension settings,
the surfaces are very smooth and the model exhibits good robustness.

3.4. Model interpretation

To demonstrate that the mutual feature module we introduced not only enhances the performance
of the model but also provides deeper interpretation, we conducted a case study. First, we applied a
Frobenius parametric solution to the protein feature vector matrix obtained by the Transformer decoder.
Next, we used the Softmax function to derive attention weights of the protein sequences, which were
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(a) (b)

Figure 3. 3D surface plots of different dimensions on two datasets, the x-axis represents the
atomic dimension, the y-axis represents the protein dimension and the z-axis represents the
AUC obtained from the test set. (a) is the human dataset and (b) is the C.elegans dataset.

then mapped onto the 3D structure of the complex to visualize the regions that are more efficient for
drug-protein reaction. The attention weights of the crystal structure of gw0385-bound HIV protease
D545701 (PDB:2FDD) are shown in Figure 4. The complex has a total of 12 binding sites. We have
marked the regions that received high attention more than 0.75 in red , and it can be found that a total
of 4 of the 12 binding sites received high attention scores, namely ASP-25, ALA-28, PRO-81 and
ALA82. The results show that Mutual-DTI helps to narrow down the search space of binding sites.

4. Discussion

Based on our prior experiments on robustness, it is evident that the model’s AUC slightly varies
when encoding and embedding atoms and proteins in various dimensions. Our inference is that the
GNN module, which learns the drug molecule characteristics, and the gated convolutional unit mod-
ule, which learns the protein features, can effectively extract feature information in the Mutual-DTI
model. This indicates that constructing drug and protein sequences into subgraphs via local breadth-
first search algorithms and constructing words via n-gram methods is reasonable. In the ablation ex-
periment, we discovered that removing the module that extracts mutual reaction features resulted in a
significant decrease in the model’s prediction accuracy. Our speculation is that the model only learns
each sequence’s individual feature information after learning drug and protein features, while DTI is a
dynamic process. Introducing the Mutual learning module treats drug and protein features as the main
body, and they dynamically focus on each other’s key parts in the learning layer, thus directly captur-
ing the interaction features of the two given sequences. By learning the interaction features, the model
obtains a deeper understanding of the DTI process and can more easily capture the crucial parts that
may contribute to the reaction when dealing with unknown drug and protein data, leading to superior
performance in predicting results.

From the perspective of model complexity analysis, Mutual-DTI has higher complexity compared to
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Figure 4. Attention weight of Protease (PDB: 2FDD).
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the networks that only use GNN(e.g., GNN-CPI). This is because we use a more complex self-attention
mechanism, which allows us to capture long-range dependencies between tokens in the sequence.
Compared to TransformerCPI, which is also based on Transformer, Mutual-DTI has lower complexity.
The rationale behind this is that, while Mutual-DTI takes into account two parallel multi-head attention
layers, the network’s number of attention heads is diminished from 8 to 2, and we devised a lower
hidden layer dimension. Consequently, this has notably curtailed the number of parameters in the
Mutual-DTI. These designs help Mutual-DTI better fit the training data while avoiding overfitting due
to excessive complexity.

5. Conclusions

In this paper, we present a Transformer-based network model for predicting DTI and introduce
a module for extracting sequence interaction features to model complex reaction processes between
atoms and amino acids. To validate the effectiveness of Mutual-DTI, we compare it with the latest
baseline on two benchmark datasets. The results show that Mutual-DTI outperforms the baseline. We
also evaluate Mutual-DTI on the label reversal dataset and observe a significant improvement with
the introduction of the mutual feature module. Finally, we map the attention weights obtained by
the mutual feature module to the protein sequences, which helps us better interpret the model and
determine the reliability of the predictions.

Although Mutual-DTI shows effective performance in predicting DTI, there is still room for im-
provement. The experimental results show a significant decrease in performance on the strictly limited
label inversion dataset compared to the human dataset and the C.elegans dataset. This suggests that the
feature extraction of sequences is very limited, and adding a 3D representation of molecules or proteins
may help extract more information.
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