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Abstract: This paper presents a magnetic resonance image deblurring and denoising model named
the isotropic total variation regularized least absolute deviations measure (LADTV). More specifically,
the least absolute deviations term is first adopted to measure the violation of the relation between
the desired magnetic resonance image and the observed image, and to simultaneously suppress the
noise that may corrupt the desired image. Then, in order to preserve the smoothness of the desired
image, we introduce an isotropic total variation constraint, yielding the proposed restoration model
LADTV. Finally, an alternating optimization algorithm is developed to solve the associated minimiza-
tion problem. Comparative experiments on clinical data demonstrate the effectiveness of our approach
to synchronously deblur and denoise magnetic resonance image.

Keywords: magnetic resonance image restoration; image deblurring; image denoising; least absolute
deviations; isotropic total variation

1. Introduction

Magnetic resonance (MR) imaging is a very useful medical imaging method because of the ability
to render high anatomical resolution of soft tissues [1]. However, due to the inherent limitations of
imaging equipment, the MR image will be disturbed by noise during the process of acquisition, result-
ing in the degradation of image quality. The effect of noise is mainly observed as the blurred regions
and the false edges, which degrades the performance of computer-aided diagnosis. Therefore, it is
necessary to remove noise while preserving the edges without introducing artifacts to further improve
the accuracy of clinical diagnosis.

Restoration methods for MR image can be broadly classified into four types: filtering methods [2,3],
partial differential equation-based methods [4,5], deep learning-based methods [6,7] and total variation
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(TV)-based methods [8, 9]. For more information about different MR image restoration techniques,
please refer to the comprehensive review [10]. Here, we are mainly concerned with the TV-based
methods. Let Ω be the domain of image definition; then, the TV of f can be defined as

∫
Ω
‖∇ f ‖2,

where ∇ is a gradient operator. The famous TV-based deblurring and denoising model is the following
minimization problem:

min
f

1
2
‖A f − y‖22 + λ

∫
Ω

‖∇ f ‖2, (1.1)

where A is a blurring operator and y denotes the observed image. In Eq (1.1), ‖A f −y‖22 is a data fidelity
term that controls the difference between the degraded image and the observed image. Additionally,
the regularization parameter λ is used to balance the contributions of the fidelity term and the TV term.
Minimizing Eq (1.1) can preserve sharp discontinuities while removing noise and other unwanted fine-
scale detail [11]. We assume that the MR images are the matrices of size n × n and denote by X the
Euclidean space Rn×n; if f ∈ X, then the discrete TV of f can be expressed as

n∑
i, j=1

(
| fi, j+1 − fi, j| + | fi+1, j − fi, j|

)
. (1.2)

Equation (1.2) is the so-called anisotropic TV using Neumann (symmetric) boundary conditions [12],
but it could easily yield metrication artifacts. Therefore, one usually uses the isotropic TV [12]:

n∑
i, j=1

√
( fi, j+1 − fi, j)2 + ( fi+1, j − fi, j)2. (1.3)

Numerous methods for solving Eq (1.1) have been proposed. In [13], Goldfarb and Yin formulated
TV minimization as a second-order cone program which was then solved by interior point algorithm.
In [14,15], Chambolle proposed several gradient descent methods, which have some superior features,
including easy implementation and quick convergence. However, for some very ill-conditioned prob-
lems, Chambolle’s method approaches the minimum too slowly. Yu et al. [16] extended Chambolle’s
method by using an adaptive stepsize with a nonmonotone line search scheme instead of the original
constant stepsize. In [17], Dahl et al. presented public software for TV denoising, inpainting and de-
blurring by using some first-order optimization algorithms. In [18], Zhu et al. proposed the application
of gradient projection algorithms with different step length selection and line search strategies for the
dual formulation of a TV model. In [19], Bonettini and Ruggiero established the convergence of a
general primal-dual method for nonsmooth convex optimization problems in the TV image restoration
framework. Based on the TV model and the alternating direction method of multipliers, the authors
of [20] proposed a fast algorithm that is able to simultaneously estimate the regularization parameter
and restore the degraded image. In [21], based on the primal-dual TV model, Yu et al. proposed
a nonmonotone adaptive projected gradient method, which implements image restoration by deblur-
ring and denoising alternatively. In [22], Prasath et al. proposed a spatially adaptive multiscale vari-
able exponent-based anisotropic variational partial differential equation method that overcomes over
smoothing and staircasing artifacts, while still retaining and enhancing edge structures across scale.

According to the literature survey, it was found that most of the existing methods mainly focus on
the design of solving algorithm for Eq (1.1), and the effect of noise is ignored. In order to further
improve the restoration performance of TV-based model, we propose a new MR image deblurring
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and denoising model based on an isotropic TV regularized least absolute deviations measure. Due to
the inherent nonsmoothness of the least absolute deviations measure and the TV term, optimizing the
proposed model is challenging. To tackle this problem efficiently, we further introduce an alternating
solving algorithm. The proposed model is not sensitive to noise and possesses better restoration ability,
which is consistent with the experimental results.

The rest of this paper is organized as follows. We introduce the proposed restoration model and the
solving algorithm in Section 2. Comparative experiments on real data are presented and analyzed in
Section 3. Finally, we conclude this paper in Section 4.

2. Model and algorithm

In this section, we present the proposed MR image restoration model, as well as its solving algo-
rithm.

2.1. Proposed model

Based on the least absolute deviations measure, we propose the following restoration model:

min
f
‖A f − y‖1 + λ

∫
Ω

‖∇ f ‖2, (2.1)

which is more robust than the traditional one given by Eq (1.1), because it can better handle outliers
(noise) in the image. For example, if the error (A f − y) is greater than 1, then the l2-norm enlarges the
error, resulting in a larger error than the least absolute deviations measure. In other words, Eq (1.1) is
more sensitive to noise than Eq (2.1).

Note that the two terms in Eq (2.1) are both nonsmooth. To transfer f out of the nonsmooth term∫
Ω
‖∇ f ‖2, an auxiliary variable x ∈ Rn2

is introduced, and the difference between x and f is penalized,
yielding the following approximation model to Eq (2.1):

min
f ,x
‖A f − y‖1 + α‖ f − x‖22 + β

∫
Ω

‖∇x‖2, (2.2)

where α > 0 and β > 0 are the model parameters.

2.2. Solving algorithm

By introducing an artificial variable z, Eq (2.2) can be rewritten as

min
f ,x,z
‖z‖1 + α‖ f − x‖22 + β

∫
Ω

‖∇x‖2, subject to A f − y = z. (2.3)

Equation (2.3) is an equality-constrained minimization problem, and to make it easier to solve, we
transform it into the following unconstrained minimization problem by introducing a Lagrange multi-
plier ξ:

min
f ,x,z,ξ

L( f , x, z, ξ) , ‖z‖1 + ξT (A f − y − z) +
σ

2
‖A f − y − z‖22 + α‖ f − x‖22 + β

∫
Ω

‖∇x‖2, (2.4)

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10590–10609.



10593

where σ > 0 is a penalty parameter. The objective function L in Eq (2.4) is known as an augmented La-
grangian function, and now, this minimization problem can be efficiently solved by using an alternating
optimization algorithm.
• First, given xk, zk, and ξk, we get fk+1 by solving the following minimization problem:

fk+1 = arg min
f

{
ξT

k (A f ) +
σ

2
‖A f − y − zk‖

2
2 + α‖ f − xk‖

2
2

}
. (2.5)

Taking the derivative of Eq (2.5) with respect to f and forcing the result to zero, we obtain

ATξk + σAT (A f − y − zk) + 2α( f − xk) = 0.

Thus, we have
fk+1 = (σAT A + 2αI)−1(σAT y + σAT zk + 2αxk − ATξk). (2.6)

• Second, given fk+1, we get xk+1 by solving the following minimization problem:

xk+1 = arg min
x

{
α‖ fk+1 − x‖22 + β

∫
Ω

‖∇x‖2

}
. (2.7)

Note that the TV of x in Eq (2.7) has the dual form [16], i.e.,
∫

Ω
‖∇x‖2 = maxw∈C1

c (Ω),|w|≤1

∫
Ω
∇x ·w =

max|w|≤1

∫
Ω
−x∇ · w, where w : Ω → R2 is the dual variable and ∇· is a divergence operator. Based on

this dual model, optimizing Eq (2.7) is equivalent to solving the following optimization problem:

min
w∈C1

c (Ω),|w|≤1
Φ(w) = ‖ fk+1 +

1
µ
∇ · w‖22, (2.8)

where µ = α/β. Here, for convenience, we introduce the nonmonotone adaptive projected gradient
method proposed in [21] to solve Eq (2.8), which is described as follows. Further, for the details of
this method, we refer the interested readers to [21].

The full description of the nonmonotone adaptive projected gradient method for solving Eq (2.8).

Step 0. Initialize w0, α0, M, 0 < αmin < αmax, σ1, σ2 ∈ (0, 1). Set ΦR = +∞, ΦL = ΦC = Φ(w0). Let
k := 0.
Step 1. Stop if some terminated condition is satisfied. Otherwise, continue.
Step 2. Impose αk such that αk ∈ [αmin, αmax]. Compute wk+1(wk, αk, gk) defined by wk+1

i, j (wk, αk, gk) =

(wk
i, j − αkgk

i, j)/max{1, |wk
i, j − αkgk

i, j|}. Set βk = 1, and then compute dk = wk+1(wk, αk, gk) − wk.
Step 3. If Φ[wk+1(wk, βkαk, gk)] ≤ ΦR + σ1βk(〈gk, dk〉), then let αk := βkαk. Update wk+1 =

wk+1(wk, αk, gk), and then go to Step 6.
Step 4. Let βk := σ2βk, and then return to Step 3.
Step 5. If Φ(wk+1) ≤ ΦL, then ΦL = Φ(wk+1), ΦC = Φ(wk+1), m = 0. Else ΦC = max{ΦC,Φ(wk+1)},
m = m + 1, if m = M, then ΦR = ΦC, ΦC = Φ(wk+1), m = 0. End If.
Step 6. Let k := k + 1. Compute αk by

αk =

{
‖sk−1‖

2
2/‖∇ · sk−1‖

2
2 if some condition is satisfied,

‖∇ · sk−1‖
2
2/‖yk−1‖

2
2 otherwise,

where sk−1 = wk −wk−1, yk−1 = gk − gk−1, and gk is the gradient of Φ(w) at point wk. Then, go to Step 1.
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Lemma 1 (Theorem 3.1 [21]). Suppose that the sequence {wk} is generated by the nonmonotone adap-
tive projected gradient method; then, any accumulation point of {wk} is a constrained stationary point.

When the minimum w∗ of Eq (2.8) is determined by the nonmonotone adaptive projected gradient
method, then xk+1 can be generated by

xk+1 = fk+1 +
1
µ
∇ · w∗. (2.9)

• Third, given fk+1 and ξk, we get zk+1 by solving the following minimization problem:

zk+1 = arg min
x

{
‖z‖1 − ξk

T z +
σ

2
‖A fk+1 − y − z‖22

}
, (2.10)

which is equivalent to the following minimization problem:

zk+1 = arg min
x

{
‖z‖1 +

σ

2
‖z − (A fk+1 − y +

ξk

σ
)‖22

}
. (2.11)

By using the soft-thresholding operator S , we have

zk+1 = S σ(A fk+1 − y +
ξk

σ
), (2.12)

where S is defined as S b(a) = max{a − b, 0} −max{−a − b, 0}.
• Finally, we update the Lagrange multiplier ξ by

ξk+1 = ξk + σ(A fk+1 − y − zk+1). (2.13)

The full steps of the proposed method LADTV (short for isotropic total variation regularized least
absolute deviations measure) are presented in Algorithm 1. Further, for this algorithm, we have some
remarks.

1 Initialization: A, α, β, x0, z0, and ξ0.
2 while not converged do
3 Compute fk+1 according to Eq (2.6) for given xk, zk and ξk.
4 Compute w∗ for given fk+1 by using the nonmonotone adaptive projected gradient method,

and then get xk+1 by Eq (2.9).
5 Compute zk+1 according to Eq (2.12) for given fk+1 and ξk.
6 Compute ξk+1 according to Eq (2.13) .
7 end

Algorithm 1: LADTV method.

Remark 1. If A is set to be an identity matrix, then Eq (2.1) is reduced to a denoising problem.

Remark 2. In Algorithm 1, we use this order, fk+1 → xk+1 → zk+1 → ξk+1, to update the model param-
eters. Different orders may yield different results and also show different restoration performance.

Remark 3. For convenience of optimization, we directly introduce the traditional soft-thresholding
operator to solve Eq (2.11). Some other advanced algorithms can be considered to further improve the
solving accuracy, such as the primal dual hybrid gradient method [23], proximal gradient method [24]
and block coordinate descent method [25].
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3. Experiments

In this section, we conduct comparative experiments to show the restoration performance of our
approach from blurred and noisy observation.

We test two kinds of point spread function (psf) provided by using the Matlab function f special.
One is the Gaussian blurring, the other is the motion blurring. Gaussian blurring is a rotationally
symmetric Gaussian low-pass filter. Motion blurring shifts image pixels linearly in a certain direction
with a fixed length. For simplicity, G(hsize, sigma) denotes the Gaussian blurring kernel with a blurring
size (hsize) and a standard deviation (sigma), and M(len, theta) is the motion blurring kernel with a
motion length (len) and an angle (theta). Then, each observed image is generated by adding noise to
the blurred image by using the Matlab function randn with the variance parameter var.

The quality of restoration performance is measured by the signal-to-noise ratio (SNR for short),
which is defined as SNR = 10 log10 ‖ f0 − M( f0)‖22/‖ f0 − f ‖22. Here, f0 denotes the original image, f
denotes the restored image and M( f0) is the mean intensity value of f0.

3.1. Experimental setup

3.1.1. Data description

We use clinical data including eight parts to show the restoration performance of the proposed
method. The original test images are shown in Figure 1. All test images are from the Department
of Radiology, Maanshan People’s Hospital, Maanshan, China, and the resolution of each image is
256 × 256.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Original images: (a) abdomen, (b) ankle, (c) breast, (d) cervical vertebra, (e) head,
(f) liver, (g) pelvis, (h) sacroiliac joint.
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3.1.2. Baseline methods

In order to highlight the restoration performance of LADTV, we compare it with other three restora-
tion methods including waveletFISTA [26], tvFISTA [27] and NAPG [21]. The waveletFISTA is a fast
iterative shrinkage-thresholding algorithm (FISTA) for solving wavelet-based image deblurring prob-
lem, and the tvFISTA is a fast algorithm for the constrained TV-based image deburring problem. The
third method NAPG is a nonmonotone adaptive projected gradient algorithm based on a primal-dual
TV model for solving image restoration problem from noisy and blurred observation. In LADTV, we
set α = 0.05, β = 2 and σ = 1. The parameters of other methods are set to default values.

3.2. Results and analysis

First, we set a uniform 3×3 blur and let psf=(1/9)∗ones(3, 3); then, each observed image is generated
by adding noise to the blurred image with var = 0.001 and var = 0.01, respectively. Tables 1 and 2
report the obtained SNR results.

Table 1. The SNR (dB) results obtained by four methods when var = 0.001.
Test image number waveletFISTA tvFISTA NAPG LADTV
(a) 27.17 28.04 26.20 31.79
(b) 17.76 18.06 24.47 28.13
(c) 26.04 27.83 22.40 26.96
(d) 20.71 21.15 27.05 31.50
(e) 30.33 32.04 26.56 31.90
(f) 28.75 29.59 26.41 31.75
(g) 19.91 20.68 22.04 26.51
(h) 19.96 20.72 20.15 24.33
mean value 23.83 24.76 24.41 29.11

Table 2. The SNR (dB) results obtained by four methods when var = 0.01.
Test image number waveletFISTA tvFISTA NAPG LADTV
(a) 25.91 26.97 26.14 29.53
(b) 17.63 17.98 24.43 27.29
(c) 22.63 25.39 22.35 25.36
(d) 20.51 20.00 27.01 30.01
(e) 28.49 30.41 26.49 30.10
(f) 26.32 27.98 26.32 29.37
(g) 19.20 20.23 22.00 25.08
(h) 19.36 20.22 20.11 23.16
mean value 22.51 23.65 24.36 27.49

In each table, the red font indicates the maximum value, and the second best value is marked with
blue. It is observed that our method gets the suboptimal results on images (c) and (e), and it obtains the
highest values on all the other test images. However, from the perspective of mean value, our method
LADTV has the best restoration performance.
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Blurred & Noisy Image (SNR: 17.29dB)

(a)

Blurred & Noisy Image (SNR: 15.12dB)

(b)

Blurred & Noisy Image (SNR: 14.48dB)

(c)

Blurred & Noisy Image (SNR: 18.21dB)

(d)
waveletFISTA (SNR: 26.09dB)

(e1)

tvFISTA (SNR: 27.16dB)

(f1)

NAPG (SNR: 26.14dB)

(g1)

LADTV (SNR: 29.39dB)

(h1)
waveletFISTA (SNR: 17.86dB)

(e2)

tvFISTA (SNR: 18.21dB)

(f2)

NAPG (SNR: 24.44dB)

(g2)

LADTV (SNR: 27.34dB)

(h2)
waveletFISTA (SNR: 22.70dB)

(e3)

tvFISTA (SNR: 25.53dB)

(f3)

NAPG (SNR: 22.35dB)

(g3)

LADTV (SNR: 25.34dB)

(h3)
waveletFISTA (SNR: 20.76dB)

(e4)

tvFISTA (SNR: 21.25dB)

(f4)

NAPG (SNR: 27.05dB)

(g4)

LADTV (SNR: 30.09dB)

(h4)
Figure 2. Restoration results with G(3, 3).
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Blurred & Noisy Image (SNR: 16.97dB)

(a)

Blurred & Noisy Image (SNR: 17.75dB)

(b)

Blurred & Noisy Image (SNR: 13.10dB)

(c)

Blurred & Noisy Image (SNR: 12.49dB)

(d)
waveletFISTA (SNR: 28.56dB)

(e1)

tvFISTA (SNR: 30.53dB)

(f1)

NAPG (SNR: 26.50dB)

(g1)

LADTV (SNR: 30.09dB)

(h1)
waveletFISTA (SNR: 26.33dB)

(e2)

tvFISTA (SNR: 28.02dB)

(f2)

NAPG (SNR: 26.30dB)

(g2)

LADTV (SNR: 29.31dB)

(h2)
waveletFISTA (SNR: 19.29dB)

(e3)

tvFISTA (SNR: 20.34dB)

(f3)

NAPG (SNR: 22.00dB)

(g3)

LADTV (SNR: 25.10dB)

(h3)
waveletFISTA (SNR: 19.44dB)

(e4)

tvFISTA (SNR: 20.31dB)

(f4)

NAPG (SNR: 20.09dB)

(g4)

LADTV (SNR: 23.12dB)

(h4)
Figure 3. Restoration results with G(3, 3) (con’t).
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Blurred & Noisy Image (SNR: 12.49dB)

(a)

Blurred & Noisy Image (SNR: 17.29dB)

(b)

Blurred & Noisy Image (SNR: 16.37dB)

(c)

Blurred & Noisy Image (SNR: 20.42dB)

(d)
waveletFISTA (SNR: 19.44dB)

(e1)

tvFISTA (SNR: 20.31dB)

(f1)

NAPG (SNR: 20.09dB)

(g1)

LADTV (SNR: 23.12dB)

(h1)
waveletFISTA (SNR: 23.96dB)

(e2)

tvFISTA (SNR: 24.40dB)

(f2)

NAPG (SNR: 29.30dB)

(g2)

LADTV (SNR: 34.75dB)

(h2)
waveletFISTA (SNR: 19.81dB)

(e3)

tvFISTA (SNR: 20.39dB)

(f3)

NAPG (SNR: 25.81dB)

(g3)

LADTV (SNR: 29.84dB)

(h3)
waveletFISTA (SNR: 24.40dB)

(e4)

tvFISTA (SNR: 24.65dB)

(f4)

NAPG (SNR: 30.73dB)

(g4)

LADTV (SNR: 35.77dB)

(h4)
Figure 4. Restoration results with M(3, 3).
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Blurred & Noisy Image (SNR: 18.71dB)

(a)

Blurred & Noisy Image (SNR: 21.35dB)

(b)

Blurred & Noisy Image (SNR: 16.42dB)

(c)

Blurred & Noisy Image (SNR: 14.85dB)

(d)
waveletFISTA (SNR: 24.73dB)

(e1)

tvFISTA (SNR: 25.27dB)

(f1)

NAPG (SNR: 30.97dB)

(g1)

LADTV (SNR: 36.51dB)

(h1)
waveletFISTA (SNR: 23.22dB)

(e2)

tvFISTA (SNR: 23.57dB)

(f2)

NAPG (SNR: 31.71dB)

(g2)

LADTV (SNR: 34.97dB)

(h2)
waveletFISTA (SNR: 17.59dB)

(e3)

tvFISTA (SNR: 18.05dB)

(f3)

NAPG (SNR: 26.89dB)

(g3)

LADTV (SNR: 31.05dB)

(h3)
waveletFISTA (SNR: 18.54dB)

(e4)

tvFISTA (SNR: 18.93dB)

(f4)

NAPG (SNR: 23.89dB)

(g4)

LADTV (SNR: 28.67dB)

(h4)
Figure 5. Restoration results with M(3, 3) (con’t).
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Further, we use the Gaussian blurring and the motion blurring to blur the test images, and then each
observed image is generated by adding noise to the blurred image with var = 0.001. Figures 2 and 3
show the results when the original images are degraded by G(3, 3). Figures 4 and 5 show the results
when the original images are degraded by M(3, 3). From the restoration results displayed in Figures
2–5, we see that LADTV has very obvious advantages compared to other methods.
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(d)
Figure 6. SNR vs. Iterations on “abdomen”.

Second, to learn more about the restoration performance of the least absolute deviations measure
(i.e., LADTV) and the traditional Euclidean distance measure (i.e., NAPG), we add more serious
blurred interference. As examples, images “abdomen” and “head” are taken to show the restoration
performance. Figures 6 and 7 show the trend of SNR values as the number of iterations increases. We
can see that on the whole the SNR values obtained by LADTV are better than that obtained by NAPG.

Tables 3 and 4 shows the computing time of LADTV and NAPG when the two images are degraded
by Gaussian blurring and Motion blurring, respectively. Because our method LADTV involves more
variable update calculations, it takes more time to complete the restoration task. Figures 8 and 9
display the restoration results corresponding to Tables 3 and 4. Figure 8 is the results with G(10, 10)
and G(15, 15), and Figure 9 is the results with M(30, 30) and M(50, 50). It is observed that in the case

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10590–10609.



10602

0 20 40 60 80 100

Iterations

7

8

9

10

11

12

13

14

15

16

S
N

R

head, G(10, 10)

LADTV

NAPG

(a)

0 20 40 60 80 100

Iterations

5

6

7

8

9

10

11

12

13

S
N

R

head, G(15, 15)

LADTV

NAPG

(b)

0 20 40 60 80 100

Iterations

4

6

8

10

12

14

16

18

S
N

R

head, M(30, 30)

LADTV

NAPG

(c)

0 20 40 60 80 100

Iterations

4

5

6

7

8

9

10

11

12

13

14

S
N

R

head, M(50, 50)

LADTV

NAPG

(d)
Figure 7. SNR vs. Iterations on “head”.

of severely interference (i.e., very poor visual effects), both LADTV and NAPG show good ability in
deblurring and denoising simultaneously. However, overall, the proposed method LADTV can also get
higher quality than NAPG. Given all that, there has to be a balance in the restoration performance and
computational efficiency.

Table 3. Computing time (s) of LADTV and NAPG on “abdomen”.
Method abdomen, G(10, 10) abdomen, G(15, 15) head, G(10, 10) head, G(15, 15)
LADTV 16.61 17.67 16.89 17.73
NAPG 15.95 13.20 13.84 14.45

Table 4. Computing time (s) of LADTV and NAPG on “head”.
Method abdomen, M(30, 30) abdomen, M(50, 50) head, M(30, 30) head, M(50, 50)
LADTV 18.03 16.84 19.80 18.98
NAPG 16.30 14.14 13.63 16.36
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Blurred & Noisy Image (SNR: 6.74dB)

(a2)

NAPG (SNR: 14.51dB)

(b2)

LADTV (SNR: 15.74dB)
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NAPG (SNR: 12.08dB)
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(f2)
Figure 8. The first line is the restoration results for “abdomen” with G(10, 10), and the
second line is the restoration results for “abdomen” with G(15, 15). The third line is the
restoration results for “head” with G(10, 10), and the fourth line is the restoration results for
“head” with G(15, 15).
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NAPG (SNR: 13.75dB)

(e2)

LADTV (SNR: 13.57dB)
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Figure 9. The first line is the restoration results for “abdomen” with M(30, 30), and the
second line is the restoration results for “abdomen” with M(50, 50). The third line is the
restoration results for “head” with M(30, 30), and the fourth line is the restoration results for
“head” with M(50, 50).
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Figure 10. Sensitivity analysis on “cervical vertebra”.

Finally, we carry out some experiments on images “cervical vertebra” and “sacroiliac joint” to
show the sensitivity of the proposed model to its parameters α, β, and σ. For simplicity, we set α =

{0.01, 0.05, 1}, β = {1.5, 2, 2.5} and σ = {0.5, 1, 1.5}. Preliminary experimental results are presented
in Figures 10 and 11. From the perspective of SNR, the best SNR values is obtained when α = 0.05,
β = 2 and σ = 1. In this situation, the ratio of the best values is 41.67% (i.e., 5/12). The ratio of the
best values in the situation that α = 0.05, β = 2 and σ = 0.5 is 33.33% (i.e., 4/12). The ratio of the
best values in the situation that α = 0.05, β = 2.5 and σ = 1 is 25% (i.e., 3/12). However, overall, the
fluctuation of these SNR values is not very large. Besides, it seems that the computing time changes
without certain regulations, but the gap is not obvious. These results suggest that the proposed method
has better stability and reliability.
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Figure 11. Sensitivity analysis on “sacroiliac joint”.

4. Conclusions

We propose in this paper a new MR image restoration model for recovering high quality image from
a blurred and noisy image. We show that combining least absolute deviations measure and isotropic
TV is a feasible solution to the MR image restoration problem. This combination brings the ability
to suppress noise and preserve image smoothness together for efficiently recoverying degraded image.
Both qualitative and quantitative analytical approaches are introduced in our experiments to show the
feasibility and effectiveness of our method.

The proposed method is a little computationally expensive compared with other methods. The
major reason is that the program takes some time to calculate the dual variable, which is implemented
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using a projected gradient decent method with nonmonotone line search technique. In future work,
we will use C++ to speed up the current program. Besides, we would like to clarify that the main
purpose of this paper is to demonstrate that the TV-based MR image restoration can be improved by
combining least absolute deviations measure. Once more an efficient solver is developed and deployed,
the computational efficiency of the proposed method could also be improved.

The proposed method in this paper is mainly developed for two-dimensional magnetic resonance
image restoration, in the future, we intend to extend the proposed method to MR image reconstruction,
registration, three-dimensional image restoration and so on. In addition, Moreau Envelope [28,29] will
also be considered to maintain the details of image more effectively, such as texture and edges.
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