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Abstract: One of the most effective approaches for identifying breast cancer is histology, which is 

the meticulous inspection of tissues under a microscope. The kind of cancer cells, or whether they 

are cancerous (malignant) or non-cancerous, is typically determined by the type of tissue that is 

analyzed by the test performed by the technician (benign). The goal of this study was to automate 

IDC classification within breast cancer histology samples using a transfer learning technique. To 

improve our outcomes, we combined a Gradient Color Activation Mapping (Grad CAM) and image 

coloring mechanism with a discriminative fine-tuning methodology employing a one-cycle strategy 

using FastAI techniques. There have been lots of research studies related to deep transfer learning 

which use the same mechanism, but this report uses a transfer learning mechanism based on 

lightweight Squeeze Net architecture, a variant of CNN (Convolution neural network). This strategy 

demonstrates that fine-tuning on Squeeze Net makes it possible to achieve satisfactory results when 

transitioning generic features from natural images to medical images. 
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1. Introduction  

A distressing number of women diagnosed with breast cancer sadly succumb to the disease each 
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year. Breast cancer mortality rates can be lowered, and therapy efficacy improved with early 

diagnosis. The use of digital pathology as a quick and reliable method of diagnosing breast cancer is 

a promising area of research. Using deep learning, automated breast cancer detection has been 

achieved in recent years. With the help of transfer learning, deep learning can tackle novel issues 

with less specialized hardware and a smaller data set than usual. Due to this, deep transfer learning 

has received a lot of attention as a potential method for improving the accuracy and precision of 

breast cancer prediction models. Fast AI is a well-liked deep learning utility because of how simple it 

is to implement transfer learning models. Because of its small size and high effectiveness, 

Sqeezenet's deep neural network is ideal for extracting characteristics from high-dimensional picture 

data. Particularly helpful for object recognition in computer vision. We suggest a deep transfer 

learning technique using the Fast AI methodology and the Sqeezenet framework for efficient and 

accurate breast cancer identification in digital diagnostic pictures. They plan to use the freely 

accessible IDC breast cancer dataset to demonstrate the value of our approach. 

The incidence of chronic, noncommunicable diseases has increased dramatically over the past 

few decades. In 2018, the Lancet magazine released a study named "Global Burden of Disease," 

which found that the majority of the rise in patients was due to nearly six different types of 

non-communicable diseases. In this case, cancer is a real risk. Cancer is an example of a 

noncommunicable illness in which aberrant cells multiply at an unchecked rate, eventually 

overpowering the body's healthy cells.  The disease will advance from an apparently innocuous and 

treatable phase to a deadly phase if it is not detected and treated in a prompt way. For women, breast 

cancer is the most prevalent type of illness, and it is the sixteenth leading killer worldwide. Among 

women aged 50–59, it is the third most common, but it is the most common among women aged 15–

49 [1]. As many as 23.6 million extra cases of malignancy are expected to be identified this year [2]. 

If a breast tumor is detected and removed before it develops into cancer, it will typically not spread 

beyond the breast's internal tissue. However, studies have found that women with seemingly 

harmless breast anomalies (such as asymmetry) are at a higher risk of developing breast cancer [3,4]. 

Breast cancer can develop for a variety of reasons. The breast is an organ located above the upper 

thoracic column and the chest muscles. Males and females alike have two breasts at birth, each with 

its own hormonal system that generates hormones, blood vessels, and triglycerides [5,6]. Newborns 

can't thrive and mature properly without breast milk. A woman's breast size primarily depends on the 

amount of breast tissue she already has [7,8]. By 2020 and 2022, one in four female cancer diagnoses 

is predicted to be breast cancer, and this proportion is only anticipated to grow [9]. Breast cancer 

prevalence is expected to increase globally in the coming years, according to recent cancer 

projections. Breast neoplasms, also known as tumors, occur when abnormal cell division results in 

unchecked tissue growth [10,11]. Breast cancer symptoms include the development of a malignancy 

in either breast or a change in the size or shape of either breast or a change in the breasts' supporting 

tissues. Mammograms could be useful for the early diagnosis of some diseases. Breast cancer is the 

second most common malignancy in women [12,13], after cutaneous cancer. Skin cancer is the most 

common type of malignancy in females. There is an increased risk of the disease occurring after age 

50 in women. In rare cases, men can develop breast cancer as well. Less than one percent of women 

in the United States will develop breast cancer in their lifetime, but each year about 2,600 women 

will receive a diagnosis [14,15]. 

Furthermore, global trends indicate that we have not yet achieved in our effort to completely 

eliminate cancer. Breast cancer caused the deaths of 6,27,000 people in 2015, according to the World 
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Health Organization (WHO) (BC). The rise to 30 million is anticipated to occur within the next 

decade, nearly tripling the current number. 

The development of breast cancer is a result of unchecked cell proliferation in the breast. Tumors 

develop when infectious cells proliferate and disseminate at rates far exceeding those of healthy cells. 

Lymph nodes are a sorting facility for these cells before they are dispersed throughout the body [16]. 

Multidetector CT's soft-tissue capabilities are adequate for daily precise identification [17,18], 

despite cardiac CT's tendency to miss breast lesions. Figure 1 shows some representative cell forms 

from the Kaggle invasive ductal carcinoma challenge (IDC). 

 

Figure 1. Appearances of Invasive Ductal Carcinoma (IDC) cells (From Kaggle datasets). 

 

Figure 2. Three different types of BC. 

There are three distinct varieties of BC, as depicted in Figure 2. As stated in the aforementioned 

reference [19], invasive ductal carcinoma and invasive lobular carcinoma are the two most prevalent 

subtypes of invasive breast cancer. There are two main types of breast cancer, and the vast majority 

of patients fall into one of these. Cancer Treatment Centers of America found that among women 

aged 45–60, invasive ductal carcinoma (IDC) was the most prevalent variety of breast cancer, while 

invasive lobular carcinoma (ILC) was the rarest. DCIS (Ductal Invasive Carcinoma in Situ) is a 

subtype of breast cancer that typically manifests at an early stage. Ductal invasive adenocarcinoma in 

situ (abbreviated as DCIS) is a type of invasive ductal although further cancerous growth is possible, 

(1) Cancer cells in Ducts       (2) The histopathology image 



10407 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10404–10427. 

no cancer cells have been detected at this time. Some breast cancers have been linked to DNA harm. 

Of the two types of breast cancer, IDC is presently getting the most focus from experts. The many 

varieties of IDC are summarized in Table 1. 

Table 1. Subtypes of IDC [19]. 

Type of Breast Cancer Subtypes of its types 

IDC (Benign) Papillary, Tubular, Medullary, Cribriform, 

and Mucinous carcinomas 

IDC (Malignant) Fibroadenoma, Adenosis, Tubular Adenoma, 

and Phyllodes tumor 

 

The invasiveness and frequency of tumor cells turn them into one of the most challenging 

malignancies to identify. As per today’s scenario, there is a great demand for automation of the 

system which helps in classifying breast cancer histopathology images reliably. The demand arose 

due to the shortage of available medical professionals and a severe problem caused by 

inaccuracies in the result. 

When IDC is found in breast cancer, it necessitates aggressive treatment, including operations 

and radiation treatments. To categorize slides as either positive or negative for malignancy, IDC 

pathology uses a microscope and manual evaluation of multiple slides. Due to the limitations of 

human cognition, this process takes a long time and is prone to making mistakes. These errors, 

however, can be easily corrected by computer vision techniques coupled with analysis of 

histopathological images. 

Further, a few components like the misidentification of samples can lead to cancer development 

and the survival rate in such conditions gets too low. As a result, numerous Computer-Aided 

Diagnosis (CAD) systems for accurate and automated breast cancer diagnosis have been developed. 

In recent years, machine intelligence (MI) has revolutionized oncological research. MI has been 

shown in numerous investigations to correctly categorize tissue samples as benign or cancerous. 

Deep learning models, particularly those embedded with image interpretation tools like 

Convolutional neural networks (CNN), have been proven to accurately distinguish between 

cancerous and benign prostate biopsies from images. 

Because of their built-in automatic feature extraction methodologies, CNNs, for example, have 

lately acquired prominence in detection and classification applications. Deep learning algorithms, on 

the other hand, have made significant advances in the picture categorization issue. 

In the job of image analysis, deep learning-based systems beat classical machine learning 

approaches. However, the categorization of cancer histology images using machine learning 

algorithms required additional knowledge and effort. However, despite the attractiveness of machine 

learning (ML) jobs due to efficient accuracy, there is currently no mechanism for decoding a DL 

classification model. 

2. Literature review 

2.1. Related work 

Few limitations are observed in the above studies in IDC detection using the DL mechanism.  

Given the flaws, it is not guaranteed that the tedious process of detection will be carried out by 
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an expert with extremely accurate dimensions. Also, because larger and labeled datasets are not 

publicly available, the majority of the investigations were conducted with smaller datasets. These 

challenges need to be addressed. Hence, this paper is aimed toward the use of a combination of 

transfer learning-based SqueezeNet model to perform the classification of IDC with various hyper 

tuning parameters. For the related literature review we have devised Table 2 for easy reference. 

This study also aims to provide a full one-stop solution for early and automatic tumor diagnosis 

utilizing entire slide images; early detection of cancer has always been helpful. We can now avoid 

cancer's worsening malignant condition with fewer efforts; credit goes to modern machine learning 

libraries. For this purpose, the 1‐cycle policy and FastAI are being used. FastAI is a PyTorch-based 

open-source deep-learning package that offers high-level techniques for easy DL model training [30–32]. 

The feature extraction mechanism helps to retrieve the necessary attributes, from each image, by 

splitting the image into smaller tiles of equivalent size. Machine learning algorithms get these 

features as inputs and it accelerates the development of mathematical models that can identify 

tumorous areas in images. For the processing task of the images, there are several inbuilt libraries in 

Python programming language to ease the task. Authors of articles have done numerous works on 

reviews and research works on breast cancer image segmentation and classification as well as other 

medical image classification tasks [42–49]. By comparing them, we have identified that very less 

amount of work has been done on the breast histology dataset and whatever is done did plain 

classification. As such we identified the gap that not the whole part of the histology image bears 

the same importance while the classification of the lesions, as such we decided to use 

GRAD-CAM based Attention mechanism to give more importance to certain areas of the images 

during the model building. 

Metaheuristic optimization techniques learn from the world around them. This section discusses 

some recently proposed algorithms and provides resources for further reading. 

Calculated strategies: To arrive at the optimal solution, an arithmetic optimization algorithm 

(AOA) uses only addition, subtraction, multiplication, and division. Until the target population is 

achieved, new findings are generated by repeatedly applying statistical processes to different subsets 

of the group. Engineers, bankers, and energy sector professionals have all reported increased 

productivity thanks to AOA. 

The Prairie Dog Optimization (PDO) software is an optimization tool that uses metaheuristic 

techniques inspired by the behavior of prairie dogs. It forms tight-knit groups, much like prairie dog 

colonies, in order to hunt for food and avoid being harmed. Many industries, including engineering, 

public transportation, and finance, have found success using PDO to address optimization problems. 

The lightning-fast effectiveness with which untamed gazelles travel served as inspiration for the 

novel metaheuristic program known as the Gazelle Optimization program (GOA). It forages for food 

like an impala, accidentally finding the sweet spot between exploration and exploitation. Successful 

applications of GOA to optimization problems have been found in many different fields, such as 

engineering, economics, and biology. 

The new Dwarf Mongoose Optimization technique was created using knowledge gained from 

studying wild dwarf mongooses (DMOA). When it comes to hunting, hiding from predators, and 

cooperating, it behaves like a colony of tiny mongooses. Many fields, including engineering, 

medicine, and finance, have found success in applying DMOA to their expansion problems. 

The Aquila Optimizer is a state-of-the-art meta-heuristic optimization method motivated by the 

ways in which wild eagles solve problems. It attempts to be like an eagle in that it seeks out 
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sustenance but also keeps some of it for itself. There are many fields that have adopted Aquila to 

improve productivity, from engineering to business to finance. 

Table 2. Related literature review. 

Continued on next page 

Title of Paper /Reference Author(s) Year of 

publicati

on 

Algorithm used Dataset Used Task performed 

“Machine learning 

techniques to diagnose 

breast cancer.; [20]” 

“Alireza 

Osareh et 

al.” 

2010 K-nearest 

Neighbours, SVM 

Classifier 

“Breast Cancer 

Histology 

images” 

Differentiate between 

Benign and 

Malignant Cancer. 

“Deep Learning for 

Magnification Independent 

Breast Cancer 

Histopathology Image 

Classification; [21]” 

“Neslihan 

Bayramoglu 

& Juho 

Kannala & 

Janne 

Heikkila” 

2016 CNN performing 

single-task and 

multi-task 

“BreakHis 

Dataset” 

Prediction of 

malignancy 

“Convolutional Neural 

Networks and the Analysis 

of Cancer Imagery; [22]” 

“Chris 

Pearce” 

2017 Basic CNN “Tumour 

Proliferation 

Assessment 

Challenge 2016 

datasets” 

Classification  

“Breast Cancer Detection In 

Mammogram Images Using 

Deep Learning 

Technique;[23]” 

“D. Selvathi 

and A. 

Aarthy 

Poornila” 

2017 Unsupervised deep 

learning technique 

“Mammographi

c images from 

MIAS Mini 

Mammographic 

Database” 

Detection 

“Deep Learning Framework 

for Multi-class Breast 

Cancer Histology Image 

Classification; [24]” 

“Yeeleng S. 

Vang(B), 

Zhen Chen, 

and Xiaohui 

Xie” 

2018 GoogLeNet 

Inception V3 

“Breast Cancer 

Histology 

images 

(BACH)” 

Classification 

“Transfer learning based 

histopathologic image 

classification for breast 

cancer detection; [25]” 

“Erkan 

Deniz1, 

Abdulkadir 

Şefngür” 

2018 AlexNet and 

VGG16 models  

“BreakHis 

Dataset” 

Classification 

“Deep Learning Applied for 

Histological Diagnosis of 

Breast Cancer; [16]”  

“Yasin Yari, 

Thuy V. 

Nguyen, and 

Hieu T. 

Nguyen” 

2020 ResNet and 

DenseNet from 

DCNN combined 

with transfer 

learning 

“BreakHis 

Dataset” 

Classification 
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An innovative form of meta-heuristic software, called RSA, was inspired by the behaviors of 

snakes in the environment. Similarly, to snakes, it seeks food, stays out of harm's way, and finds a 

happy medium between research and practical application. Manufacturing, healthcare, and finance 

are just a few of the sectors that have found RSA to be useful. 

The Ebola Optimization Search Algorithm is a novel metaheuristic algorithm that takes its 

inspiration from the ecosystem of the Ebola virus (EOSA). This virus, like the Ebola virus, spreads 

from cell to cell by penetrating their walls. Efficiency problems in the mechanical, biochemical, and 

medical sectors are just a few examples of where EOSA has been put to use. 

The aforementioned metaheuristic approaches have all demonstrated promising results in 

Title of Paper /Reference Author(s) Year of 

publicati

on 

Algorithm used Dataset Used Task performed 

“A Novel Approach to 

Classifying Breast Cancer 

Histopathology Biopsy 

Images Using Bilateral 

Knowledge Distillation and 

Label Smoothing 

Regularization;[26]” 

S.Chaudhury 

etal. 

2021 Transfer Learning 

using Bilateral 

Knowledge 

Distillation 

“Breast Cancer 

Histology 

images 

(BACH)” 

Classification 

“Breast Cancer 

Calcifications: Identification 

Using a Novel 

Segmentation Approach; 

[27]” 

S.Chaudhury 

etal. 

2021 Breast Cancer 

detection using 

novel segmentation 

technique in 

mammographic 

images. 

“Mammographi

c images from 

MIAS Mini 

Mammographic 

Database” 

Detection 

“Effective Image Processing 

and Segmentation-Based 

Machine Learning 

Techniques for Diagnosis of 

Breast Cancer; [28]” 

 

S.Chaudhury 

etal. 

2022 Breast Cancer 

detection using 

CLAHE, K-Means 

and classification 

using SVM, 

Random Forest 

method.  

“Mammographi

c images from 

MIAS Mini 

Mammographic 

Database” 

Detection and 

Classification 

“Breast Cancer 

Histopathology Image 

Classification and 

Localization using Multiple 

Instance Learning; [29]” 

Abhijit Patil 

etal. 

2020 Attention based 

Multiple instance 

learning and 

localization. 

BreakHIS and 

BACH dataset 

Detection and 

Classification  

“ A BERT encoding with 

Recurrent Neural Network 

and Long-Short Term 

Memory for breast cancer 

image classification,[50]” 

Sushovan 

Chaudhury 

etal. 

2023 Vision Transformer 

and BEiT based 

LSTM approach for 

classification 

Breast 

Ultrasound 

Images 

Detection and 

classification 
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addressing various planning challenges. Improving the characteristics of machine learning models, 

feature selection, and related tasks can be useful in conducting further research into and fine-tuning 

these strategies for dealing with breast cancer classification problems. Many of these strategies have 

been implemented by the authors of [51]. 

2.2. Primary Contributions based on Research Gaps 

This research study's primary contributions can be described as follows: 

▪ Introduction of the latest Deep Learning algorithms such as the FastAI platform for 

evaluating difficult breast histology biopsy images. 

▪ Histopathology, or the microscopic examination of tissues, is one of the most important 

diagnostic procedures for the detection of breast cancer. 

▪ The pathologist, who observes the cells usually, investigates the analysis of texture. This 

analysis determines the type of tissue, with a particular focus on the tumor-stroma ratio. The 

main contribution of the pathologist is the automation of the tissue classification task of 

histology samples of BC through the use of deep transfer learning mechanisms. 

▪ For better and improved results, the planning continues, and a suggestion for the employment 

of discriminative fine-tuning methods integrated with a one-cycle policy emerges, with the 

last stage concluding with a recommendation for the use of color normalizing approaches. 

These methods were developed to maintain the notion useful. 

▪ Squeeze Net, which highly supports memory-limited hardware, helps to determine the tissue 

type of a cell for the concerned pathologists for the classification results. 

3. Materials and methods 

Deep learning algorithms show high robustness when used on image datasets. The dataset for the 

classification of IDC consists of histopathological images categorized into two types: the first 

category is BC-affected cells, and the second category includes normal or unaffected cells. Since 

Image data is not simple hence, some preprocessing steps are carried out on the images before 

conducting channel extraction in this model. Particularly, this section discusses the following: The 

gradient-weighted class activation mapping (GradCAM), the SqueezeNet model's architecture, 

FastAI's deep learning framework, and the 1Cycle Policy. 

3.1. Dataset description 

They use the openly available dataset hosted on the Kaggle computing platform 

(https://kaggle.com) to complete the IDC categorization task. Information from 162 whole mount 

slide photographs of BC Specimens is the subject of the study reported in [31]. The 78,786 

IDC-positive samples and the 198,738 IDC-negative samples were used to create these 277,524 

patches. A total of 277,524 RGB 50x50 pixel digital image fragments were created from 162 

H&E-stained breast histology samples. 

These tiny spots, created from digital images of breast tissue, are helpful for distinguishing 

between different types of cancerous cells. The areas labeled with a 1 contain cells with the features 

typical of IDCs. [33–35] Eighty percent of the data is used in classroom teaching, while only twenty 

percent is put to use in evaluating student progress. The training set contains 7042 photos out of a 
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total of 8801. The suggested deep learning approach is implemented using Python, a popular 

computer language. For categorization and identifying jobs, this language employs a wide range of 

libraries and frameworks, including Tensorflow and Keras. 

3.2. FastAI 

A professional and powerful library with high-level source codes to work on images and other 

datasets are called FastAI [36]. It also provides academics with access to low-level data that may be 

used to construct innovative models and algorithms. FastAI contributed to the development of a 

collaborative interface for dealing with the most often used DL applications, such as computer vision, 

collaborative filtering, time-series, tabular data, and text analysis. An incredibly productive, 

configurable, and easily adaptable framework is the key design goal while working with FastAI. It is 

comprised of layered architecture in which the high-level APIs do not need to know the utilization of 

the lower-level API. In terms of unconnected abstractions, FastAI demonstrates common patterns of 

numerous deep learning and data processing algorithms. Python language along with the PyTorch 

library, are collectively used to express the abstractions legibly and precisely. FastAI is a popular 

open-source library built on top of PyTorch that provides high-level APIs for training state-of-the-art 

deep learning models with minimal code. It was developed by Jeremy Howard and Sylvain Gugger, 

who are both well-known figures in the deep learning community. The library offers a range of 

functionality, including pre-processing data, visualizing data, creating and training models, and 

deploying models. FastAI also includes implementations of state-of-the-art models such as ResNet, 

VGG, and Transformer, which can be easily fine-tuned on custom datasets. 

One of the key features of FastAI is its emphasis on "best practices" for deep learning. The 

library includes a comprehensive set of tools and techniques for training models effectively, such as 

learning rate schedules, weight decay, and data augmentation. These practices are based on the latest 

research findings and have been shown to significantly improve model performance. FastAI also 

includes a number of built-in visualization tools to help users understand and debug their models. For 

example, the library provides easy-to-use methods for visualizing activations, gradients, and learning 

rates, which can be invaluable in identifying problems with model performance. Overall, FastAI is a 

powerful and user-friendly library that has been widely adopted in the deep learning community. Its 

focus on best practices and ease of use has made it a popular choice for both researchers and 

practitioners. 

Overall, FastAI includes: 

• Both a logical type hierarchy for tensors and a new kind of delivery mechanism for Python 

are presented. 

• A computer vision library designed for GPUs that may be extended in pure Python. 

• A new data block API 

4. Proposed method 

4.1. Pre-processing and normalization 

Color variations in images are caused by a mismatch in the color responses of slide scanners, 

raw materials, and the varied production techniques employed by stain vendors and their procedures. 

This color variation further results in a problem that is very common while conducting image 
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analysis in histology. Stain normalization provides a solution to this issue. As a result, stain 

normalizing is essential for a pre-processing step before doing any histological image studies. Figure 

3 represents the histological images of the breast as loaded from the dataset. 0 and 1 represent the 

benign and malignant cells respectively. 

The normalization step takes an image as an input, divides it by 255, and hence gives the result 

value in the range from 0 to 1. This expedites the model's training process. Several problems related 

to image datasets like vanishing and exploding gradients are resolved with the help of normalization. 

The dataset of 90,000 images consists of 64583images from class 0 and the rest of 25417 images 

from class1. This is depicted in Figure 3. 

 

Figure 3. Loaded images from Dataset. 

 

Figure 4. Data imbalance before random under-sampling. 

This issue, known as data imbalance, leads to model biasing towards one particular class. A 

random under-sampling technique can be employed to solve this data imbalance problem. Samples 
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from the majority class are deleted to provide an equal number of samples for both the majority and 

minority classes. Figure 4 depicts the equal number of samples for the two classes after using the 

under-sampling strategy. In Figure 5, the blue bar specifies Invasive Ductal Carcinoma Negative (-) 

and the orange bar specifies Invasive Ductal Carcinoma Positive (+) after random under-sampling. 

The bar graph clearly shows samples in both classes are equal in size. The sample specifications for 

the random under-sampling technique have been summarized in Table 3. 

 

Figure 5. IDC- and IDC+ count after random under sampling. 

Table 3. Sample specifications following random under-sampling technique. 

Class Labels Training data Testing data Size File extension 

IDC positive (+) 20336 5084 50x50 PNG 

IDC negative (-) 20336 5084 50x50 PNG 

4.2. Data augmentation 

When we have large datasets, deep learning models perform much better. Data augmentation or 

jittering is a popular approach to make our datasets bigger. Data augmentation is used to increase the 

amount of a dataset to alleviate the problem of limiting data size. Data augmentation raises the 

dataset’s size to ten times its original one when the training dataset is very little. This helps minimize 

overfitting. Adding noise to incoming images or applying geometric modifications to them are two 

examples of data augmentation procedures. The following methods were applied step by step to the 

images to be augmented: 

(1) Rotate the images by 30 degrees in the clockwise direction. 

(2) Scaling of an image by 15%,  

(3) Horizontal and vertical flipping and  

(4) Gaussian noises are included with a mean (0) and variance (0.25).  

Tensor image data is produced using a real-time data augmentation method and the 
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KerasImageDataGenerator package. One (1) input image's outcome from various data augmentation 

approaches are displayed in Figure 6. Figure 6 is a representation of the results of various 

augmentation techniques like horizontal, vertical flip, injection noise, etc on the dataset to increase 

the variance within the dataset and increase the number of images. This is done to ensure that there is 

enough variance, and the data is not overfitted during training. 

 

 

Figure 6. Transformation of Images after Augmentation [32]. 

4.3. Transfer learning using Squeeze Net 

Transfer learning can involve natural learning. Transfer learning with fine-tuning is the process 

of modifying, fitting, and re-training a previously trained network based on new input; in other words, 

it transfers weights from the trained network that have a comparable design to the new network we 

wish to train with the new data. It's a powerful tool for dealing with a variety of deep learning issues. 

The concept of transfer learning is based on retraining a certain number of layers on the target dataset 

using the general characteristics obtained in earlier levels of the source dataset. The primary benefits 

of TL are decreased training time, increased neural network performance, and the elimination of data 

constraints [37–39]. 

Several issues arise when using transfer learning to medical image classification. One issue is 

that the amount of annotated data required to train CNNs is insufficient for medical image 

classification applications[40]. Due to the scarcity of data, large CNNs like ImageNet would struggle 

to prevent overfitting on these datasets. As a result, a great deal of regularization in various forms is 

required. Another of these issues is over parameterization, which refers to a network's large number 

of parameters. It will take longer to train a network with more trainable parameters, the more epochs 

it will require, and the more computation it will necessitate. 

One answer to these difficulties may be to use lightweight architectures, which are less in size 

and have fewer parameters. The recently proposed lightweight architectures include “EfficientNet”, 

“SqueezeNet” (Figure 7 and Figure 8), and “MobileNet-v2”. There are also different variants of 

transfer learning. Feature extraction, weight initialization, and fine-tuning are all included as a part of 

this process. To properly utilize the generic information acquired in the first layers, fine-tuning is the 

process of freezing a specific number of layers in a model. 
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The latest and updated DNN (Deep Neural Network) architecture, which provides more accurate 

decisions for image processing applications, named Squeeze Net is used in this study [40]. Squeeze 

Net is a variant of CNN which is providing almost similar results and accuracy as ImageNet but uses 

lesser parameters than it. Replacing 3x3 filters with 1x1 filters and taking the down-sampling steps 

late in the network helped to maintain activation maps for the convolution layers, and reduction of 

input channels to 3x3 filters are important steps followed in this variant. A module named Fire 

module is bundled with all the above-listed strategies. On top of it, there are two layers named 

squeeze Convolutional layer and an expanded layer inbuilt in the Squeeze Net. Squeeze Net is a 

rather small model, with just 1,267,400 parameters and a 4.85 MB model size. The rectified linear 

unit (ReLU) was used as the activation function. Squeeze Net is a lightweight convolutional neural 

network architecture designed to reduce the number of parameters while maintaining high accuracy. 

It was introduced in 2016 and achieved Alex Net-level accuracy on ImageNet with only 50x fewer 

parameters. The small size of Squeeze Net makes it an attractive choice for applications where 

computational resources are limited, such as on mobile devices or embedded systems. Our 

experiments show that Squeeze Net achieved competitive performance compared to larger models 

while being easier to deploy and requiring less computational resources. Overall, the use of Squeeze 

Net demonstrates the importance of designing lightweight models that can be easily deployed in 

real-world scenarios, especially in medical imaging applications where resources may be limited. 

 

Figure 7. Transfer learning workflow Architecture. 
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Figure 8. Transfer learning workflow Architecture Squeeze Net. 

4.4.  Determining the super convergence-optimal learning rate 

Architecture’s capacity to converge to global minima when applied to the loss function is known 

as the learning rate. A few tuning parameters which help to manage topology search are weight decay, 

momentum, learning rate, and batch size. These kinds of algorithms fear selecting high learning rates; 

hence, they use the optimizers like Adam, AdaGrad, AdaDelta, etc. These optimizers are distinct in 

that they start with a high global learning rate and progressively lower it on test sets until they reach 

a plateau. This entire method aids the network in achieving faster convergence. Layer group 4's 

associated weights are unfrozen and made to learn, while other layers are fine-tuned for two epochs. 

This stage is followed by the phase of super convergence. As part of a mock test [41], a network is 

trained on a wide variety of learning rates for 100 batches, and the learning versus loss curve is given 

(Figure 9). 

 

Figure 9. Training of the complete network over a variety of learning rates - Learning rate range test. 

This provides us with a brief summary of the model's maximal learning rate (Lmax); once it hits 

that threshold, the test or validation loss begins to climb, resulting in low accuracy. Learning rates 

between 0.0001 and 0.01 suffer a loss but learning rates greater than 0.01 begin to rise. In addition to 

the tuning parameters mentioned, the learning rate is a crucial factor in the performance of deep 

learning models. Choosing the right learning rate can be a challenge and often requires 

experimentation. A high learning rate can lead to unstable convergence and overshooting, while a 
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low learning rate can result in slow convergence and getting stuck in local minima. The use of 

optimizers such as Adam, AdaGrad, and AdaDelta has made it easier to find the optimal learning rate 

by dynamically adjusting the learning rate during training. The one-cycle policy with super 

convergence further enhances the optimization process by allowing the learning rate to vary 

cyclically, resulting in faster and more precise convergence to the global minima. 

4.5. 1-Cycle Policy within Discriminative fine-tuning 

With the one-cycle approach, you set a modest initial learning rate and gradually raise it until 

you hit the desired maximum. This technique is distinguished, among other things, by the high 

degree of agreement it accomplishes. After each iteration of data collection, the training rate is reset 

to reflect the new optimal value determined by the 1-cycle learning rate method. Therefore, rather 

than using a global learning rate, a cyclical learning rate with a nonuniform decline in weight is 

employed. During those two phases of the cycle, the learning rate may fluctuate. This improvement 

will allow the network to achieve coordination more quickly and precisely. The so-called "one-cycle 

policy" alternates between a moderate and high maximum learning rate (LR) during training. This 

rule is put into effect for just one workout at a time. This strategy entails setting the learning rate low 

to begin with, raising it to its maximum value, and then setting it back down again. Super 

convergence is a training strategy in machine learning that, when compared to traditional approaches, 

yields higher accuracy and a quicker rate of convergence to a decreased loss value. Combining the 

one-cycle approach with super convergence improves optimization effectiveness, speeds up 

convergence, and reduces overfitting. Changing the learning rate at regular periods allows the 

network to explore more potential weight combos and find the optimal answer more quickly. 

Training at a high learning rate can regularize the network and reduce overfitting while training at a 

low learning rate can maximize the weights and improve performance. One of the keys to the success 

of the single-cycle approach is cutting out unnecessary fat. To achieve this, the loss function can 

incorporate a regularization component that provides positive reinforcement for small weights and 

negative reinforcement for big weights. The goal is to improve generalization performance while 

minimizing the risk of overfitting to the data. When it comes to developing deep neural networks, the 

one-cycle approach and the super convergence method are both useful instruments. A quicker closure 

and better generalization performance may be possible with methods that employ a cyclic learning 

rate and weight decrease. These procedures can be used in many deep learning applications, 

including those dealing with image identification, NLP, and others. 

4.6. Gradient‐Weighted Class Activation Mapping (GRAD‐CAM) 

Recognition of failure modes and winning customers’ loyalty and confidence is made possible 

only through the deep learning model’s explanation. However, deep neural networks are very 

difficult to break down into simple, understandable parts. Class Activation Map (CAM) is an 

approved strategy for explaining deep learning model decisions, yet it is confined to only those 

architectures, in which feature maps directly precede the softmax layers. Grad CAM, a localization 

technique that uses class discrimination, produces visual explanations for any deep learning model. 

Before Grad CAM, simple CAM was employed, where weighted feature maps were produced by the 

Convolutional layer, then ReLU processes. It further uses this information to highlight the region’s 

most responsible for the prediction. Through Grad‐CAM, we can verify the working of our model 
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whose main finding is to visualize the appropriate patterns from the images and activation around 

those patterns. The output of the Grad-CAM mechanism is shown in Figure 10. As we can see, from 

the labels in the figure 10 A, B, C, D, E, F, G and H. The left images of each of the labels are normal 

patches of histology cells of the breast whereas the right images are the output of Grad-CAM. We 

know that histology cells have a critical limitation as the color combinations in the patches are hard 

to distinguish. The Grad-CAM approach clearly distinguishes the patches and more attentions are 

given to those areas which are more responsible for giving the accurate prediction that whether the 

cell is non-invasive, benign or malignant. Thus, this approach is a more efficient way for feature 

selection and attention-based classification is possible. 

 

Figure 10. Grad-CAM images for breast tissues. Notes: (A) and (B) Left: Normal tissue 

images collected from patches (non-cancerous cells). Right: Views of these patches in 

Grad-CAM. (C) and (D) On left: Patches collected from benign lesions. Right: 

Presentation for these patches in GRAD-CAM. (E) and (F) Left: Patches collected from in 

situ carcinoma cells. Right: Presenting in situ cell patches using GRAD-CAM. (G) and (H) 

Left: Image Patches extracted from invasive carcinoma cells. Right: Grad-CAM’s feature 

extracted image for invasive carcinoma. 

The Grad-CAM approach is an effective method for feature selection and attention-based 

classification, as it helps to highlight the regions of an image that are most responsible for the 
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model's predictions. This is particularly important in the field of medical image analysis, where the 

accurate classification of images can have significant implications for patient care. 

By using Grad-CAM, we were able to visualize the patterns in the images and the activation 

around those patterns. This allowed us to gain a better understanding of how the model was making 

its predictions, and to verify that it was indeed focusing on the most relevant features in the images. 

The limitations of histology images, which often have similar color combinations, can make it 

challenging to distinguish between different types of cells. However, by using Grad-CAM, we were 

able to overcome this limitation and more accurately classify the cells as non-invasive, benign, or 

malignant. Overall, the Grad-CAM approach is a valuable tool for improving the interpretability of 

deep learning models, particularly in the field of medical image analysis. By gaining a better 

understanding of how these models make their predictions, we can increase our confidence in their 

accuracy and reliability, and ultimately improve patient outcomes. 

5. Results and discussion 

In total, 162 whole-mount transparencies from breast cancer (BC) tissues are analyzed in this 

study. From these images, we extracted a dataset consisting of 277,524 regions of size (50x50) and 

split it 75:25 between a training set and a testing set. 

All pictures were optimized for size using the refined Image Data archiving software before 

being uploaded to the Squeeze network. For the next part of the procedure, we used Adam as our 

planner, categorical-cross entropy as our cost function, and 0.001 as our learning rate over the course 

of 32 iterations. A GPU was used during the teaching process. Table 4 displays these early findings. 

Table 4. The output obtained after GRAD CAM. 

Epoch Train loss Valid loss Error rate Time 

0 0.268622 0.249776 0.103434 04:24 

1 0.229270 0.235605 0.097452 04:25 

5.1. Confusion Matrix 

The confusion matrix depicts true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN) throughout the classification task (FN). The output is referred to as TP when the 

outcomes of actual 1 and the model are comparable. When the output of the model is 0 and the 

predicted outcome is negative, the output is referred to be TN.  

The results are more accurate when there are greater actual successes and true failures. A true 

negative is when there is no tumor on a slide, while a true positive is when a tumor is discovered. A 

false alarm refers to the wrong identification of a tumor, whereas a false negative refers to the 

mistaken identification of no tumor.  

Fine‐tuned Squeeze Net was trained and Confusion Matrix as a result is obtained as in Figure 11. 

The confusion matrix as shown in figure clearly shows that the number of TP, TN, FP and FN are 

12447, 37222, 2467 and 3368 respectively and the accuracy score of the model turns out to be 90.3% 

accurate by calculating TP+TN over TP+TN+FP+FN and a competitive Recall Score as required in 

Medical Image prediction as the target is to reduce False Negatives as much as possible. 

We will try to see what the model predicted. In this case, the mistakes look reasonable (none of 

the mistakes seems naive). This is an indicator that our classifier is working correctly. In Figure 12, 
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the prediction, actual, loss and probability are clearly shown for few samples of the histology images 

after running the experiment using Squeeze Net Model. 

 

Figure 11. Confusion Matrix for the samples tested. 

 

Figure 12. Outcomes as obtained after the testing of the Squeeze Net model. 
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The results of the fine-tuned Squeeze Net model for texture classification in IDC are quite 

promising. The confusion matrix obtained shows that the model has a high number of true positives 

(TP) and true negatives (TN) and a low number of false positives (FP) and false negatives (FN). This 

indicates that the model is performing well in correctly classifying the texture patterns of the 

histology images. The accuracy score of 90.3% achieved by the model is quite competitive, 

especially considering the small size of the Squeeze Net model. The use of a competitive recall score 

is particularly important in medical image prediction tasks, as reducing false negatives is critical for 

avoiding misdiagnosis or delayed diagnosis. 

The model's performance is further confirmed by the visualization of some sample predictions in 

Figure 12. The predictions, actual class labels, loss, and probability scores are shown for a few 

examples. The results show that the model is capable of correctly identifying the texture patterns of 

the histology images in most cases, and the misclassifications seem reasonable and not naive. This 

suggests that the model is indeed learning meaningful features from the data and is not overfitting. 

The use of Squeeze Net in this study demonstrates the importance of designing lightweight models 

that can be easily deployed in real-world scenarios. The small size of the model not only allows for 

efficient deployment on mobile devices but also reduces the computational resources required for 

training and inference. This is especially important in medical imaging, where computational 

resources may be limited, and the models need to be efficient enough to provide real-time 

predictions. 

Overall, the results of this study demonstrate the effectiveness of transfer learning with super 

convergence and lightweight models in texture classification for IDC. The use of data augmentation 

techniques and structure-preserving color normalization further enhances the performance of the 

model. The attention-based effective feature extraction technique provided by Grad-CAM also adds 

interpretability to the model's decision-making process. 

The promising results obtained in this study open up new possibilities for using lightweight 

models in medical imaging applications, where computational resources may be limited, and 

real-time predictions are essential. The fine-tuned Squeeze Net model can be extended to other 

medical imaging tasks, such as tumor growth analysis, with the potential for a significant impact on 

improving healthcare in resource-constrained areas. 

5.2. Future directions of work 

This research enlightens the use of Lightweight deep learning models in biomedical image 

classification. The greatest drawback of deep learning models is that it requires huge computational 

resources in terms of memory and GPU.A Lightweight model ensures that the deep learning model 

learns fewer parameters and yet generates good feature maps using small-sized but powerful Kernels 

which makes the model very lightweight. The Gradient CAM approach using heat map enables an 

attention-based classification where more emphasis is given to those sections of the histological 

patches which are more responsible to determine the type of cell as benign, malignant or 

non-invasive. The variable learning rate ensures that the gradient is movable and does not get stuck 

in a local optimum. We propose this model and justify through examples and results that such a 

lightweight deep learning model can be effective for histological images of the other cancer types as 

all types of histological images have the same limitations due to the type of stains used. We hope that 

a heat map-based approach while using Grad-CAM and more optimizations using scheduling of 

learning rate will give research directions to future researchers while dealing with histopathology 
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images of other cancer types. 

6. Conclusion 

In this study, we used transfer learning with super convergence to produce the latest texture 

classification findings in IDC. The research also considers a DL model that is easy to deploy along 

with network visuals to help better explain and illustrate how neural networks make decisions. To 

illustrate the results, a small (4.8 MB) model named Squeeze Net is employed. The outcomes were 

improved using a variety of data augmentation techniques, including structure-preserving 

color normalization. In a nutshell, this research addresses the color similarity within the histology 

images, provides a Grad-CAM based solution for attention-based effective feature extraction 

technique for classification and also addresses the fact that deep learning models are hard to deploy. 

Hence a lightweight model has proposed whose network size is reasonably small and easy to deploy 

even on mobile devices. A variable learning rate is used so that the model does not get stuck in a 

plateau or local minima and can effectively reach the global minima during gradient descent. We 

want to use a similar dataset to analyze tumor growth using the learned network in the future. In 

conclusion, this study presents a novel approach to texture classification in IDC using transfer 

learning with super convergence. The proposed method not only achieves state-of-the-art results but 

also addresses the challenges of deploying deep learning models by utilizing a lightweight 

architecture and network visualization. The incorporation of data augmentation techniques and 

structure-preserving color normalization further improves the performance of the model. The use of a 

variable learning rate ensures efficient convergence to the global minima during gradient descent. 

Moreover, the Grad-CAM based solution for attention-based effective feature extraction technique 

provides a more interpretable solution for feature visualization and understanding the model's 

decision-making process. The proposed method can potentially be extended to other medical imaging 

tasks, such as tumor growth analysis, by fine-tuning the learned network. The use of a lightweight 

model that can be easily deployed on mobile devices can have a significant impact on improving 

healthcare in resource-constrained areas. Overall, this study contributes to advancing the field of 

medical image analysis by providing a more effective and interpretable solution for texture 

classification in IDC. 
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