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Abstract：As an agricultural innovation, low-temperature plasma technology is an environmentally 
friendly green technology that increases crop quality and productivity. However, there is a lack of 
research on the identification of plasma-treated rice growth. Although traditional convolutional neural 
networks (CNN) can automatically share convolution kernels and extract features, the outputs are only 
suitable for entry-level categorization. Indeed, shortcuts from the bottom layers to fully connected 
layers can be established feasibly in order to utilize spatial and local information from the bottom 
layers, which contain small distinctions necessary for fine-grain identification. In this work, 5000 
original images which contain the basic growth information of rice (including plasma treated rice and 
the control rice) at the tillering stage were collected. An efficient multiscale shortcut CNN (MSCNN) 
model utilizing key information and cross-layer features was proposed. The results show that MSCNN 
outperforms the mainstream models in terms of accuracy, recall, precision and F1 score with 92.64%, 
90.87%, 92.88% and 92.69%, respectively. Finally, the ablation experiment, comparing the average 
precision of MSCNN with and without shortcuts, revealed that the MSCNN with three shortcuts 
achieved the best performance with the highest precision. 
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treated rice growth classification   
 

1. Introduction  

At present, the main methods of increasing crop production include chemical fertilizers, 
pesticides, auxin and so on. They were proved to have negative effects on our environment and human 
health, such as water quality deterioration, soil acidification, crop quality decline, food security 
problems and secondary pollution [1−3]. However, traditional scientific and technological methods, 
such as chemical and biological methods, cannot effectively solve the above problems, because the 
resistance of these compounds and both physical and chemical properties of food will produce 
unwanted changes. Based on environmentally friendly and food safety considerations, researchers 
continue to explore methods to increase production and improve quality. Low temperature plasma 
(LTP) technology was found to be capable of producing a huge number of ions, electrons, free radicals, 
ground and excited state molecules and so on, which readily react with the contacted materials. It was 
also a highly efficient and environmentally friendly agriculture technique. Moreover, numerous 
studies have demonstrated that the use of LTP technology in agriculture can improve quality and 
yield of crops [4−8]. To be specified, when seeds were exposed to plasma under atmospheric pressure, 
the formed active ingredients such as reactive oxygen species (ROS) and reactive nitrogen species 
(RNS) can disinfect seeds, disrupt dormancy and stimulate germination and growth. However, few 
experiments have been carried out to use plasma-treated seeds for field planting, that is, relevant 
experiments were mainly limited to laboratory research. Moreover, the treatment effects usually turned 
out to be different according to the types and parameters of plasma discharge. In order to identify the 
effect of different plasma discharge parameters on rice, in this paper the practical field planting and the 
growth data of plasma-treated rice were collected and graded according to the primary classification 
criterion, which include tiller number, plant height, leaf area, leaf length and chrominance.  

In order to identify the plasma-treated rice, which exhibits similarities and subtle differences on 
both intra-class and inter-class, the primary characteristics of fine-grained visual categorization 
(FGVC) were analyzed. FGVC is a new important research area in computer vision that tries to 
differentiate sub-classes of objects in images with the same entry category [9]. Over the last few 
decades, experiments have been conducted with a wide range of approaches to basic image 
classification, which includes the machine learning algorithms such as decision tree [10], K nearest 
neighbors (KNN) [11], support vector machine (SVM) [12] and multi-layer perceptron (MLP) [13]. 
Moreover, manual-designed and single features such as color, local binary pattern (LBP) and histogram 
of oriented gradient (HOG) were commonly used for the classifier’s inputs. Even if embedding 
methods stacked these independent features together, they could not adequately show the complex 
relationships among those features. It was not until AlexNet achieved a great success on ImageNet 
dataset which was perceived as a major breakthrough, and revealed the great advantages of deep 
learning models, the hierarchical CNN then began to play a dominant role in fundamental visual 
classification tasks [14−19].  

Although the aforementioned machine learning and deep learning models stimulated the rapid 
growth of computer vision, the specific issue is that the basic classification tasks primarily focus on 
identifying entry-level images with clear visual distinctions, for example, the identification among cats, 
dogs and birds. In fact, complex FGVC tasks involving the distinction of closely related sub-classes 
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become more prevalent. For instance, in terms of common computer vision tasks, it is sufficient to 
locate a red automobile in heavy traffic. Whereas, for FGVC projects, they require the cooperation of 
human specialists and a network to offer detailed information so that the algorithm can determine the 
specific style, version, manufacturer, production age and category. Current studies have focused on 
FGVC objects, such as texture of feather [14,15], flowers[20-22], structure of aircraft [23−25], beak 
of birds [10,26], types of vehicle [27,28] and human [29,30]. All of these research have promoted 
FGVC to the forefront of computer vision. However, in some circumstances, the intra-class differences 
may be far greater than the inter-class differences, which resulted in a significant loss in identifying 
accuracy and robustness [31−33].  

To improve the performance of FGVC on the growth identification and classification of plasma-
treated rice, the MSCNN based on traditional CNN architecture using multiscale shortcuts was 
proposed for the extraction and fusion of rice image features. On the one hand, the mechanism of 
MSCNN benefited from the high resolution of the bottom-layer features (from stage A) which included 
information about location, texture, lighting, angle, pose, shape, articulation and color. On the other 
hand, it examined rich semantic properties of the top layers (Stage B) via repeated convolution 
operations. The information features were used in conjunction with the concept of objects classification. 
To be more specific, the pipelines (Stage A, Stage B and Stage C in Figure 1) of MSCNN enabled the 
realization of fast falling, sparsity and fully connection. Additionally, in order to form a multiscale 
structure from bottom to top and gain more complex distinctive information, the three shortcuts (S1, 
S2 and S3) from stage A to stage C followed the same direction. Simultaneously, grating was added to 
each shortcut to convert its output into one-dimensional vector, allowing comparatively coarser scale 
feature to incorporate with stage C. Ultimately, horizontal fusion of these features was applied through 
fully connection layer in Stage C to maintain coarser underlying features of fine-grained area in each 
input image, improving semantic representation of top layer outcomes. This improvement was verified 
to enable a more accurate and precise network.  

In this paper, the data set of eleven groups of rice including with and without plasma treatment 
was constructed and categorized based on basic growth criterion. Then the data set was used to train 
and test MSCNN to obtain the effective identification results. Experimental results demonstrated that 
for the growth identification of rice treated by plasma, the proposed MSCNN was superior to other 
comparative classification algorithms in terms of accuracy, precision, F1 score and recall. 
Simultaneously, the ablation experiments were performed on MSCNN to verify the efficiency of the 
shortcuts and the optimal configuration of the proposed structure. The main contents and innovations 
of this article are as follows:  

(1) 5,000 high-fidelity rice images at the tillering stage were taken as original data and were 
expanded to 10,000 images via data augmentation. At the same time, textual information includes the 
plasma parameters, tiller number, plant height, leaf area, leaf length and chrominance were also 
recorded. 

(2) Using fine features on different scales to improve CNN by shortcuts, the practical goal to the  
fine-grained identification of the growth state of rice treated by plasma was achieved. 

(3) Ablation study of MSCNN was conducted to determine the most effective network  
architecture for improving average precision and demonstrating the possible applicability of MSCNN. 

2. Related works   
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To overcome the issues caused by the similarity of subclass image features, posture discrepancies 
and background interference, research has been carried out to solve the problems of traditional CNN 
networks. Normally, FGVC pipelines focus on locating and resembling critical region of interest (ROI). 
According to the supervision method of data set, there are two categories, namely strongly supervised 
and weakly supervised. 

For the strong supervision method, apart from human expert annotation datasets (e.g., Stanford 
Dogs, Caltech-UCSD Birds), they also requires additional artificial markers, such as auxiliary 
bounding boxes and local coordinates information for specific locations, to help removing background 
noise and completing domain detection of foreground objects. Typical works are as follows. Zhang et 
al. [34] proposed a network that detected the less deformable parts and localizes other highly 
deformable parts with simple geometric alignment. Wei et al. [35] showed a novel Mask-CNN model 
without the fully connected layers basing on part of annotations, which can both locate the discriminate 
parts and generate weighted object by part of masks. Qi et al. [36] used two core modules as the 
selected module and representation module to exploit spatial relation and capture more discriminate 
details for FGVC. Zhang et al. [37] applied the original image as input data and used the generated 
visual description representing coarse-to-fine visual clues. However, these strongly supervised 
methods were still less accurate and insufficient when they encounter the extraction of discriminatory 
features and the location of significant regions, owing to substantial inter-class differences and minor 
intra-class differences. 

Weakly supervised models aim to acquire local features without requiring further component 
annotation, that is, to classify fine-grained images solely based on the category label of image 
annotation. Various enhancements were made to modify the extraction function of traditional CNN to 
implement weakly supervision. Huang et al. [38] proposed a novel Part-Stacked CNN architecture by 
modeling subtle differences of object. Lee et al. [39] learned useful features directly from the raw 
representations of input data using CNN and gained the intuition of the chosen features based on a 
deconvolutional network (DN). Rohrbach et al. [40] introduced a hand-centric approach for fine-
grained activity classification and detection and found that decomposition into attributes allowed 
sharing information across composites. Cai et al. [41] proposed a polynomial kernel based on predictor 
to capture higher-order statistics of convolutional activation for modeling interaction and extend 
polynomial predictor to integrate hierarchical activation via kernel fusion. Hu et al. [42] proposed a 
spatially weighted pooling (SWP) strategy and pooled the extracted features of DCNNs with the 
guidance of its learning masks, thus minimal modification was needed in terms of implementation. He 
et al. [16] presented a residual learning framework to ease the training of networks that are substantially 
deeper than those used previously and improved the accuracy from considerably increased depth.  

Although weakly supervised networks are marginally worse than the strongly supervised ones, 
they are less expensive and more practical due to no need of extra local annotation. Moreover, the 
identification criterion of rice growth grade involves some parameters, such as the leaf area, tiller 
number, chrominance and so on, which are hardly labeled in images. Thus, weakly supervised method 
was selected to classify the growth grade of plasma-treated rice. The above mentioned weakly 
supervised networks normally consisted of numerous convolution layers, and even with the residual 
learning frame, these modules were still repeated for several times, which is not simple enough in 
terms of the network architecture. Moreover, for our project, prior to Softmax in the CNN architecture, 
the feature granularity was exceedingly coarse, and finer features from the bottom can help with 
distinguishing subtle discrimination that seldom can be conveyed backward. There is a lack of link, 
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that can take full use of the bottom convolution layers, which are more susceptible to fine-grained 
information (e.g., texture, direction and edge) through the output visualization results of each 
convolution layer module. Further, as finer information flows forward through the pipeline, it could 
be interpreted into semantic information in the top layer, such as the leaf area, tiller numbers and 
chrominance, which are used for the criterion of rice growth grade. Thus, the purpose of this research 
was to improve the traditional weakly supervised CNN architecture with simple shortcut connections 
and multiscale coarse feature description. The sections bellowed detail the architecture and 
optimization of the proposed framework procedure. 

3. MSCNN 

According to previous researches [43−46], features in the top layer are highly compressed, but 
they are too fine in space to accomplish precise positioning that led to a poor discrimination ability. In 
contrast, bottom layers in early stages of the model are sensitive to information like direction, texture 
and edge, but do not express sophisticated semantic representation. In an attempt to take advantage of 
the success of traditional CNN networks for object classification, this work concentrates on a 
comprehensive representation of both bottom and top layers for FGVC task of rice growth 
identification. The detailed architecture of MSCNN is divided into three components, that is, pipeline, 
multiscale shortcuts and main calculations as described below.  

3.1. Pipeline 

Based on CNN, MSCNN consists primarily of three stages, and three shortcuts were attached to 
the pipeline, as shown in Figure 1. Among these stages, stage A is used to help the input images falling 
fast into relatively small feature maps. Stage B adds dropout and local response normalization (LRN) 
to raise the sparsity of data and prevent overfitting. Additionally, shortcuts are used to preserve and 
grate the shallow finer features of each max-pool layer in stage A. Then, they were delivered to stage 
C, which implements multiscale-feature fusion using fully connected layers. 

 

Figure 1. Pipeline of MSCNN. 

In stage A, with the feeding of three-dimensional RGB images of rice (rice with and without 
plasma treatment) at the tillering stage, 5*5 convolution and 2*2 max-pool were stacked three times 
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to rapidly compress the feature map into 9*9*192. The modest convolution kernel size is used to 
expand the coarse degree of feature extraction and receptive field. However, in comparison to prior 
work on architecture uniformity, where 3*3 convolution filter throughout the whole network, the 
relatively large size in stage A introduces a large number of parameters. Thus, the pooling layer is 
introduced to solve this issue, as its primary job is down-sampling and dimension reduction. Likewise, 
for the FGVC task of rice growth identification, max pooling is selected to retain more information 
on texture detail and decrease convolution layer parameter errors caused by the deviation of the 
estimated mean. 

Following that, LRN and dropout are attached following 3*3 and 2*2 convolution, which were 
repeated two times in stage B. Inspired by the discovery of genuine neurons, while highlighting its 
peak and constraining surrounding values to avoid neuron saturation, the LRN layer is used to suppress 
the output of the activation function laterally at the end of each convolution. Meanwhile, during the 
forward propagation, dropout also processes the activation value in a way of making certain neurons 
stop working with certain probability. These strategies increase the generalization and robustness due 
to the result of local features and data sparsity. 

Finally, in stage C, the convolution operation with a 1*1 kernel size is applied as fully connection. 
It is used to map the learned distributed feature representation to the sample classification space, which 
corresponds to the predicted probability distributions for rice growth grade of A−D. 

3.2. Multiscale shortcuts  

In this research, the image difference among the rice (with and without plasma treatment) may 
not be obvious, resulting in a reduced precision for typical CNN classification. Thus, multiscale 
shortcut methodology is applied by fusing and reusing the features at component-level (①, ② and
③) and object-level (④), as shown in Figure 2. It is obvious that MSCNN is formed by attaching three 
shortcut connections (S1, S2 and S3) from different scales in Stage A to the pipeline of standard CNN. 

 

 

Figure 2. Shortcuts of MSCNN. 
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For forward propagation, due to the serial arrangement of network architecture, the bottom layers 
that reside in the fast fall blocks of Stage A, only learn shallow features such as edge, direction, shape, 
texture and color. These outputs were subsequently forwarded to the next operation of stage B. It is 
responsible for learning deep semantic features that contain global characteristics about the item at 
object-level to determine the growth grade and can locate attractive target region in order to gain a 
preliminary sense. In the meantime, grating is employed to convert the max-pooling layer outputs from 
three dimensions W*H*C (width, height and channels, respectively) to one-dimensional 
feature(1*1*WHC). In the final stage, the fully connected layer factionalized as a classifier, which 
provides an output of 1*1*4. Grating is needed to preprocess the 3D feature map in order to fuse coarse 
object-level information from stage B with the three component-level features of S1-S3 through the 
first fully connection layer in stage C.   

While back propagating, optimization strategy is used to update the parameters based on the 
difference between ground truth and prediction received from stage C. Accordingly, the back-
propagated differences of stage C are composed of four parts. Namely the differences between S1, S2, 
S3 and output of stage C, which will be propagated to respective layers. Then, they flow back until 
reach the initial layer to help update parameter and optimize the model configuration.  

Because the multiscale shortcuts are only dedicated for feature preservation and grating, minor 
weight and input signal alterations have little effect on the model improvement process. Furthermore, 
unlike ResNet [16] and DenseNet [17], the spanning scale in Figure 2 is not fixed, allowing for 
customization shortcuts based on data requirements. Thus, the bidirectional propagation of multiscale 
distinctions shortcuts increases sample use of essential information in stage C by reserving and fusing 
all feature maps at all scales, allowing shortcut connections between shallow and deep layers to 
compensate for the lack of serial CNN perception. 

3.3. Main calculations 

In stage A, the input plasma rice images were divided into three dimensions, which are red, green 
and blue respectively. Then each dimension was processed as a feature map, convolution and max-
pooling were used immediately to deconstruct it quickly. To be more specified, in order to strengthen 
and filter of the original intra-class features, convolution operations were introduced to extract different 
scales of features between image feature matrix and the convolution kernels, using the function as below: 

   𝐶𝐶𝑗𝑗,𝑖𝑖
𝑛𝑛 = 𝑓𝑓(∑ 𝑆𝑆𝑗𝑗−1𝑛𝑛𝑚𝑚

𝑖𝑖=1 ∗ 𝑤𝑤𝑗𝑗,𝑖𝑖 + 𝑏𝑏𝑗𝑗,𝑖𝑖),                      (3.1) 

where 𝐶𝐶𝑗𝑗,𝑖𝑖𝑛𝑛   is the output of the 𝑖𝑖𝑡𝑡ℎconvolution kernel in the 𝑗𝑗𝑡𝑡ℎconvolution layer, 𝑆𝑆𝑗𝑗−1,𝑖𝑖
𝑛𝑛  is the 𝑖𝑖𝑡𝑡ℎ 

down-sample results in the (𝑗𝑗 − 1)𝑡𝑡ℎ  down-sampling layer, 𝑤𝑤𝑗𝑗,𝑖𝑖  is the weight matrix for the 𝑖𝑖𝑡𝑡ℎ 

convolution output in the  (𝑗𝑗 − 1)𝑡𝑡ℎ  down-sampling layer, 𝑏𝑏𝑗𝑗,𝑖𝑖  is the corresponding bias, “*” is 

convolution operation and 𝑓𝑓(  )  is the nonlinear activation function. Typically, the nonlinear 
activation function will be chosen from the Sigmoid, Tanh and ReLU. Due to the fact that the gradient 
of Sigmoid and Tanh changes gradually in the saturated zone, which is susceptible to the gradient 
fading and can critically decrease the model convergence rate. Here we use ReLU, as the networks 
activation function, it guarantees the sparsity of neuron links and declines the incidence of over-fitting. 
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Its formula is expressed as follows is  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝐶𝐶𝑗𝑗,𝑖𝑖
𝑛𝑛 � = 𝑚𝑚𝑚𝑚𝑚𝑚�0,𝐶𝐶𝑗𝑗,𝑖𝑖

𝑛𝑛 �                        (3.2)    

It is worth noticing that the convolution operation significantly increases the computational costs 
and dimensionality. As a result, pooling layers were put fractionally behind to lighten the structure. 
The objective is to preserve certain immutability (rotation, translation and expansion), as well as to 
help lower the likelihood of overfitting, reserve critical information and booste robustness, (the ability 
to resist the distortion within a specified range). The mean-pooling, max-pooling and stochastic-
pooling are the three commonly used pooling methods. Errors in feature extraction are mostly due to 
two factors. One is the neighborhood size which raises the variance of the estimated value, and the 
other is convolution layer parameter error which causes divergence from the calculated mean value. 
Generally speaking, the mean-pooling reduces the first error and preserves more background 
information of the image. Additionally, stochastic-pooling choose the pixel point value according to 
its probability which lead to a weak performance especially for FGVC. Due to the randomness, subtle 
discrimination information might not be kept. Whereas max-pooling selects the maximum value which 
can help lower the chance of the second error and help retain more texture information by obtaining 
local features. That is what FGVC applications require. So, we employ maximum pooling. Its formula 
is as follows: 

ℎ𝑚𝑚,𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠𝑖𝑖,𝑘𝑘, 𝑠𝑠𝑖𝑖 ∈ 𝑁𝑁𝑚𝑚,                        (3.3) 

where 𝑠𝑠𝑖𝑖 is the pooling window size, 𝑎𝑎𝑠𝑠𝑖𝑖,𝑘𝑘is the activation value in the 𝑘𝑘𝑡𝑡ℎ channel, 𝑚𝑚 is the output 

feature map size after pooling,  ℎ𝑚𝑚,𝑘𝑘 is the maximum value of each point in the 𝑘𝑘𝑡𝑡ℎ channel. Even 
after using noise-canceling and cutting, a small amount of noise interference remains. Consequently, 
a total of three fast fall blocks are applied to increase the robustness and capability of feature extraction. 

4. Plasma seed treatment and data acquisition and preprocessing 

4.1. Plasma seed treatment 

In order to find optimal plasma parameters that can increase the rice production and quality 
significantly, eleven groups of rice were discussed here with and without plasma treatment. The group 
without plasma treatment is named as the control group (CK). There are three groups of plasma treated 
seeds with arc discharge (AD), radio frequency (RF) discharge and dielectric barrier discharge (DBD), 
respectively.  

Table 1 shows the parameters of rice groups with and without plasma treatment and their 
corresponding average tiller number. For group AD (No.2-5), the processing power is 455 W, the 
discharge area is 30 mm2, the reaction medium is air with the flow rate of 1.5 L/min and the processing 
time is 0.6, 1.2, 1.8 and 2.4 s, respectively. The processing time in the group RF (No.6-8) was 60, 120 
and 180 s, with argon of 80 pa , the RF power of 60 W and the discharge area of 8 mm2. In the group 
DBD (No.9-11), the processing power was 45, 72 and 92 W, respectively, with the discharge area of 
13 mm2, processing duration of 30 s, frequency of discharge voltage of 9.5 kHz and using air as the 
diacharge gas. 
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After being treated with different plasma parameters listed in Table 1, the rice seeds were planted 
in the same location with the same environment ( in Taizhou city, Jiangsu province, from May to 
November). During the rice growing period, tiller number is critical to identify its growth grade, and 
plays a significant role in rice yield. Thus, when these groups of rice reached the tillering stage, the 
number of tillers were collected. In Table 1, the data shows that group CK has the minimum tillering 
number (19), less than all the other plasma treated groups which show the obvious improvement by 
plasma treatment. Among these groups, No. 3 (in the group AD) has the maximum tillering number 
(34), indicating appropriate plasma parameters can significantly increase the tillering number and 
boosting growth vitality. Moreover, further experimental result also showed that No.3 (in group AD) 
has the highest yield. 

Table 1. Parameter settings of plasma treatment and corresponding average tiller number. 

Group Number Power/W Discharge 
area/mm2 

Processing 
duration/s 

Reaction 
medium 

Average tiller number  

CK 1 - - - Air 19 

AD 

2 455 30 0.6 Air 29 
3 455 30 1.2 Air 34 
4 455 30 1.8 Air 29 
5 455 30 2.4 Air 27 

RF 
6 60 8 60 Argon 28 
7 60 8 120 Argon 25 
8 60 8 180 Argon 25 

DBD 
9 45 13 30 Air 25 
10 72 13 30 Air 24 
11 92 13 30 Air 27 

4.2. Data acquisition 

In our investigation, during the tillering stage of the rice, 5,000 high-fidelity rice images were 
obtained from top and side view for the 11 groups in Table 1. The image format was JPEG and each 
one was a 24-bit color bitmap. In addition, the plant height, leaf length and area, tiller numbers and 
chrominance of the 11 groups of rice were also measured. As seen in Figure 3, from left to right, these 
images show the growth status of group CK, DBD, RF and AD, which correspond to group No.1, 10, 
6 and 4 in Table 1, respectively. Obviously, it shows that the rice of No.10 (in group AD) has the 
highest plant height and the most tillers. 

According to the standard of rice growth grade issued by China Agriculture Press, it includes five 
types of parameters for rice growth (tiller number, plant height, leaf area, leaf length and chrominance) 
and the characteristics of each type are divided into four grades of A-D shown in Table 2. Then, each 
type of data measured in our experiment can correspond to the four different grades in Table 2. For 
example, the rice of No.10 (in group A) has the tiller number of 34, plant height of 45 cm and leaf area 
of 39 cm2. Combined with the standard in Table 2, the rice of No.10 represents the growth grade D for 
tiller number, grade C for plant height and grade C for leaf area, respectively. 
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Figure 3. Top and side view of rice images. 

Table 2. Rice growth grade. 

Grade A B C D 
Number of tillers 10-16 17-23 24-30 31-37 
Plant height/cm 30-35 36-41 42-47 48-53 
Leaf area/cm2 15-25 26-36 37-47 48-60 
Leaf length/cm 16-23 24-31 32-39 40-50 
Chrominance Weak Average Strong Ultra-Strong 

4.3. Image augmentation 

Appropriately labeled samples can alleviate over-fitting in the model training stage [47]. In order 
to make the data more comprehensible and the MSCNN network more robust, the data is preprocessed 
before training. Data augmentation operations is the common method of data preprocessing, which 
includes vertical deformation, elastic distort, oblique quadrangle, rotation and blur, color filtering, 
noise addition, PCA jittering and scaling blur [31, 48-51]. The previous studies have shown that these 
augmentation strategies are satisfactory. In our experiment, the operations of rotation, oblique 
quadrangle, vertical deformation and elastic distort were randomly implemented for data preprocessing 
shown in Figure 4. 

 

Figure 4. Image augmentation operations. 
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Table 3. Rice growth grade. 

Grade A B C D 

Number of original images 885 1336 1790 989 
Number of images after augmentation 1770 2672 3580 1978 
Proportion 17.70% 26.72% 35.80% 19.78% 

Our field planting results have showed that the rice of No.10 has the best overall growth state. 
However, according to Table 2, this group acquires grade D, C and C in terms of tillering number, plant 
height and leaf area, respectively. In order to give a comprehensive growth grade for each group of 
rice, the weights of the five parameters in Table 1 were assigned with 0.5, 0.3, 0.2, 0 and 0, respectively. 
Then, according to the calculated overall results after weighted, the rice images in our dataset were 
labeled with four grades of A (weak), B (normal), C (good) and D (outstanding). After the weights 
were set, the overall growth grade of No.10 was modified to be D. Table 3 shows the numbers of 
original and augment images of rice with the overall four growth grades. It shows the original images 
with grade A of 885, grade B of 1336, grade C of 1790 and grade D of 989. Then these original images 
were augmented randomly with the four operations in Figure 4 to obtain the doubled number of original 
images. The dataset after augment will be used to train and test MSCNN model. 

5. Computational experiments  

In this section, we conducted computational experiments on our dataset, in order to compare the 
proposed MSCNN with the mainstream CNNs on our defined FGVC task of plasma-treated rice 
growth. The experimental setup and selected evaluation indicators for our dataset were conducted first. 
Then, sensitivity analysis was performed on critical parameters (optimizer training techniques, 
learning rate and batch size) to fine-tune the MSCNN architecture and assist in choosing the most 
effective hyper parameters for MSCNN. Likewise, analyses were given based on the comparison 
MSCNN with the main CNN networks. Lastly, the ablation study was conducted to show the 
effectiveness and feasibility of adding shortcuts in the MSCNN network. 

5.1. Computing environment 

Due to the enormous number of iterations and high data throughput, the training procedure is time 
consuming. Subsequently, a powerful graphics processing unit (GPU) is crucial. In this study, all 
computational experiments were conducted on NVIDIA GeForce GTX 1050 Ti GPU. In addition, it 
used Intel (R), Core (TM) i7-9700K (3.00GHz) processor with 32GB memory. The operating system 
was Windows 10 (64-bit). The neural network model was constructed using TensorFlow1.14, an 
integrated deep learning computing framework developed by Google Brain project. In order to achieve 
faster graphical computation and less storage cost, CUDA toolkit 10.0 was also executed. The specific 
integration environment of the model is the interactive language development platform Spyder under 
Anaconda 3.6, which used Python as the programming language. 

5.2. Evaluation indicators 

Plasma-treated rice growth identification is a novel application field of FGVC. In the FGVC tasks, 
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there are various evaluation indicators, including receiver operating characteristic (ROC), area under 
curve (AUC), precision recall curve (PRC), confusion matrix, accuracy, precision, recall and F1-score. 
Among these indicators, AUC, ROC and PRC are so comprehensive and it is difficult to observe the 
designed model with single indicator readily and intuitively. Subsequently, accuracy, precision, recall 
and F1 score are considered for the effectiveness verification of the MSCNN. The four evaluation 
indicators are defined as follows. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 ,                       （5.1） 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1/𝑁𝑁∑ 𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑃𝑃𝑖𝑖

𝑁𝑁
𝑖𝑖=1  ,                 （5.2） 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1/𝑁𝑁∑ 𝑇𝑇𝑃𝑃𝑖𝑖
𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑁𝑁𝑖𝑖

𝑁𝑁
𝑖𝑖=1  ,                  （5.3） 

 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1/𝑁𝑁∑ 2𝑇𝑇𝑃𝑃𝑖𝑖2

𝑇𝑇𝑃𝑃𝑖𝑖(2𝑇𝑇𝑃𝑃𝑖𝑖+𝐹𝐹𝑃𝑃𝑖𝑖+𝐹𝐹𝑁𝑁𝑖𝑖)
𝑁𝑁
𝑖𝑖=1  ,                （5.4） 

where 𝑇𝑇𝑇𝑇𝑖𝑖 , 𝑇𝑇𝑇𝑇𝑖𝑖 , 𝐹𝐹𝐹𝐹𝑖𝑖  and 𝐹𝐹𝐹𝐹𝑖𝑖  are the number of samples that belong to true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN) of the 𝑖𝑖𝑡𝑡ℎ category respectively. N is the 
total category number of testing samples in the test dataset. Due to the task in this study is the multiple 
classification, the calculated average values of these indicators would be used for evaluation.  

5.3. Parameter settings and sensitivity analysis  

Prior to training the network, it is critical to configure the parameters. According to the followed 
experimental results, the following section discusses the training super parameter set in detail, as 
shown in Table 4. 

Table 4. Parameter settings of MSCNN. 

Super parameter Option/Value 
Training strategy RMSProp 
Learning rate 0.001 
Momentum unit 0.95 
Minimum sample input batch 64 
Decay rate 0.1 
Decay step 10000 
Maximum iteration number 20000 

(1) Different optimized training strategies  

Gradient-based optimization training strategy RMSProp was selected for MSCNN at the training 
stage according to the result shown in Figure 5 for the following reasons. To determine the ideal model 
training technique, four practical and popular strategies including stochastic gradient descent (SGD), 
Momentum, root mean square prop (RMSProp) and Adam are compared. As shown in Figure 5, these 
four training strategy curves are generally parallel throughout the training process, and the precision 
increases with the epoch number. All the optimal precision values are obtained near the 100th epoch. 
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As can be seen, the precision by SGD is remarkably the lowest. This is due to noise introduced by 
randomly selecting the gradient descent. This randomness may presumably lead to an ambiguous 
direction of weight update, trapping the gradient descent process at the saddle point. Although the 
Momentum method outperforms SGD, its update direction is completely reliant on the gradient 
calculated by the current batch and is therefore extremely unstable. The curves of RMSProp and Adam 
are similar. The former improves Momentum strategy by storing information of the prior gradients, 
and the learning step is gradient-dependent, whereas it does not have correction variables. Whereas 
Adam improved RMSProp by explicitly incorporating the estimation of the first-order moment 
(exponentially weighted), which could smooth the gradient. Nevertheless, Figure 5 demonstrates that 
the precision and speed of RMSProp is slightly better than Adam. This may be due to the addition of 
three shortcuts that speed up proportion changes in the gradient during backward propagation and 
alleviate the significant deviation generated by second-order moment estimation in the initial stage of 
RMSProp. As a result, the optimized training strategies of RMSProp is used in this study. 

 

Figure 5. Effects of MSCNN with different training strategies on plasma-treated rice growth dataset. 

(2) Different learning rate and momentum unit 

After the RMSProp was selected as the training strategy of MSCNN, the following experiments 
are performed to confirm the appropriate learning rate (LR) and momentum (M). LR is used to regulate 
the rate of gradient descent. Excessive LR may result in a loss decrease or divergence. Whereas small 
LR can slow down the converge speed. Meanwhile, the presence of M strengthens the parameters 
change when current gradient direction is the same as proceeding, otherwise retards the change. Figure 
6 shows the precision curves with the combinations of LR = 0.01 and 0.001 and M = 0.9 and 0.95, 
respectively. It is self-evident that when M equals 0.95, the overall precision is more than 90%. When 
the LR is 0.0001, the curves imply more instantly convergence to discover the optimal point than LR 
= 0.001. This is because with a small LR (0.0001) the gradient decreases accompanied with oscillation 
near the extreme point, and its combination with the large momentum of 0.95 can accelerate the 
convergence. According to the comparison of the curve trend shown in Figure 6, it shows that the precision 
of MSCNN with the combination of LR = 0.0001 and M=0.95 is the highest with steadier trend.   
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Figure 6. Effects of MSCNN with different learning rate and momentum unit on plasma-
treated rice growth dataset. 

   

Figure 7. Effects of MSCNN with different learning rate and momentum unit on plasma-
treatedr rice growth dataset. 

(3) Different batch size  

In order to acquire the optimal batch size (BS) and thus increase memory use and training 
efficiency, the performances of MSCNN utilizing different BSs during the training were compared, 
shown in Figure 7. During fine-tuning operation in back propagation, the network first averages the 
loss attained from each instance in each batch and then calculates the gradient based on the model 
output. Consequently, BS determines the gradient smoothing degree between adjacent batches. 
Typically, despite of batch normalization, when BS is small, the difference between adjacent batches 
is quite large, resulting in more severe gradient oscillation and divergence. On the opposite, when BS 
is large, the subtle difference makes it easy to fall into a local minimum. Thus, it is critical to recognize 
the balance value [52–54]. As shown in Figure 7, it reveals that with the rise of BS, precision goes up 
rapidly and the oscillation amplitude declines in the beginning. However, it is worth noticing that when 
BS is 128 or more, the precision curve tends to be irregular and the oscillation amplitude increases. 
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That is because large batch size introduces less noise that makes it preferable for a sharp minimize but 
increases the time required to get the same accuracy value. Finally, according to the higher precision 
value and faster convergence, the BS of 64 was selected for the training of MSCNN on rice images. 

5.4. Identification results 

The comparison of MSCNN and the five mainstream models,( i.e., AlexNet, MobileNet, ResNet, 
VGG-16 and VGG-19) [15,16,19,55] are conducted with the parameters in Table 4 and the training of 
100 epochs.  

As seen in Figure 8, the proposed MSCNN achieves a competitive performance that outperforms 
the others on each evaluation indicator. It has the greatest accuracy, recall, precision and F1 score of 
92.64%, 90.87%, 92.88% and 92.69%, respectively. Thus, due to its novel structure, multiscale 
shortcuts in MSCNN allow for the integration of the higher layers’ outputs in the first stage A without 
requiring frequent intermediary and transfer operations, resulting in a significantly superior self-
optimization. Thus, compared with the similar connection in ResNet [15], the residual connection 
enables the network more sensitive to the fluctuation of weights and data, but it also brings a high 
possibility of over-fitting. As the best model, MSCNN surpass ResNet by 11.76%, 4.74%, 0.24% and 
4.52% in terms of each indicator in turn. Moreover, this comparison result proves that it is feasible to 
improve the network performance through multiscale shortcuts. Additionally, as typical simple and 
deep networks, VGG-16 and VGG-19 [55] are only slightly better than AlexNet [19], confirming once 
again the importance of depth in visual representations. However, the loss of shallow features for the 
upper layers and identical kernel size throughout the whole convolution operation in VGG-16 and 
VGG-19 [55] are perhaps the common reasons for their weaker performance on FGVC tasks. Moreover, 
MSCNN outperforms AlexNet [19] and MobileNet [15], which are representatives of pure network 
representation and cannot cater for the stringent requirements of FGVC. Because their bottom-up, 
feed-forward architectures are incapable of fusing features from different layers for identification. In 
addition to the detailed comparison with the above models, the difference between MSCNN and the 
more advanced transformer model was also analyzed. First of all, transformers use multi-head self-
attention mechanism and reduce the number of parameters of network. However, it lacks some of 
inductive biases inherent to CNN, such as translation equivalence and locality. Therefore, it needs a 
huge size of data to compliment the pre-train process in order to acquire the inductive bias. However, 
due to our dataset only has 5000 original pictures, transformer is not the best choice for dealing with 
our task of growth identification of plasma treated rice. 

Moreover, Figure 9 shows the confusion matrix of the MSCNN. The abscissa represents the 
prediction classification of our plasma-treated rice growth, while the ordinate represents their ground 
truth classification. The color bar on the right indicates the degree of accuracy in growth grade. The 
number in each square represents the correct prediction percentage of each grade corresponding ground 
truth grade. For instance, 0.984 in the top left corner indicates that all 1770 images of Grade A are put 
into the model for training, among which 1742 images are identified as grade A, accounting for 98.4% 
of the total. As illustrated in Figure 9, the values in the four squares on the diagonal are significantly 
higher than the other squares, indicating that the MSCNN network accounts for the correct 
identification at the four grades, showing the effectiveness and feasibility of our model on the growth 
grade classification of plasma treated rice. 
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Figure 8. Comparison of models on plasma-treated rice growth dataset. 

 

Figure 9. MSCNN confusion matrix on plasma-treated rice growth dataset. 

5.5. Ablation study 

To further study the effectiveness of multiscale shortcuts in MSCNN, the ablation experiment of 
the MSCNN with the combinations of different shortcuts were conducted. As shown in Table 5, the 
MSCNN with three shortcuts (S1+S2+S3) reaches the highest average precision (92.88%). This result 
can be explicable in terms of the MSCNN architecture. To be more specific, in the forward direction, 
the first fully connection layer in stage C fuses the feature maps consists of four components (i.e., the 
component-level feature maps come from S1, S2, S3 and object-level output feature of stage B). Then, 
the back-propagated errors from stage C to stage A flow through these shortcuts to improve the model 
performance. Hence, the coarse-scale representations and local-specific discriminations can be fully 
accounted for simultaneously through all the three shortcuts to provide multiple-perspectives. In 
addition, the MSCNN with two shortcuts (S1+S2, S1+S3, S2+S3) achieves the average precision of 
89.06% and with only one of the three shortcuts (S1, S2, S3) has the lowest average precision (82.88%). 
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It may be due to that only one or two-scale feature preserves insufficient coarser information after 
grating compared with more shortcuts. Table 5 shows that the more shortcuts, the better the model 
performance, which proves the effectiveness of multiscale shortcuts in MSCNN. 

Table 5. Precision of the combinations of shortcuts in MSCNN. 

MSCNN model with different shortcuts Precision Average value of precision 
With three shortcuts：S1+S2+S3 92.88% 92.88% 
With two shortcuts：S1+S2 88.63%  

89.06% With two shortcuts：S1+S3 89.57% 
With two shortcuts：S2+S3 88.98% 
With one shortcut：S1 81.67% 82.88% 
With one shortcut：S2 83.42% 
With one shortcut：S3 83.54% 
With no shortcut 84.18% 84.18% 

6. Conclusion 

In this paper, a dataset of plasma-treated rice growth images was constructed with the textual 
characteristics including tiller number, plant height and leaf areas. Then for the proposed MSCNN 
model, three shortcuts were attached to the traditional CNN structure to improve the performance by 
discriminating the differences among different scales and the grating layers were attached to each 
shortcut to create a one-dimensional feature vector. After that, all four-scale feature maps were 
concatenate horizontally to utilize the feature fusion in both component and object level. Consequently, 
the model improved the utilization rate of key information with more use of the hidden information to 
compensate for the serial CNN perception capability. Simultaneously, ReLU was employed as the 
activation function, and LRN and Dropout were added to the main neural pipeline as functional 
auxiliary layers to minimize gradient dispersion and overfitting. Compared with other mainstream 
models, the proposed MSCNN model has a simpler architecture but achieves the best identification 
performance according to the four evaluation indicators of accuracy, recall, precision and F1 score, 
which were 92.64%, 90.87%, 92.88% and 92.69%, respectively. Lastly the ablation study showed the 
best performance was acquired when the MSCNN with three shortcuts. 

Acknowledgments 

This work is supported by the National Science Fund of China with Grant No.11675261 and S&T 
Program of Hebei with Grant No.22375411D. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. A. M. Khaneghah, L. M. Martins, A. M. Von Hertwig, R. Bertoldo, A. S. Sant’Ana, 
Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat 



10240 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10223–10243. 

and wheat-based products processing - A review, Trends Food Sci. Technol., 71 (2018), 13−24. 
https://doi.org/10.1016/j.tifs.2017.10.012 

2. N.S. Poluxeni, M. Sotirios, K. Chrysanthi, S. Panagiotis, H. Luc, Chemical pesticides and human 
health: the urgent need for a new concept in agriculture, Front. Public Health, 4 (2016) 148−148. 
https://doi.org/10.3389/fpubh.2016.00148 

3. X. Lei, R. Qiu, Evaluation of food security in China based entropy TOPSIS model and the 
diagnosis of its obstacle factors, J. China Agric. Univ., 27 (2022), 1−14. 
https://doi.org/10.11841/j.issn.1007-4333.2022.12.01 

4. Y. T. Hui, D. C. Wang, Y. You, C. Y. Shao, C. S. Zhong, H. D. Wang, Effect of low temperature 
plasma treatment on biological characteristics and yield components of wheat seeds (Triticum 
aestivum L.), Plasma Chem. Plasma Process., 40 (2020), 1555−1570. https://doi.org/ 
10.1007/s11090-020-10104-z 

5. H. Liu, Y. H. Zhang, H. Yin, W. X. Wang, X. M. Zhao, Y. G. Du, Alginate oligosaccharides 
enhanced triticum aestivum L. tolerance to drought stress, Plant Physiol. Biochem., 62 (2013), 
33−40. https://doi.org/10.1016/j.plaphy.2012.10.012 

6. B. Šerá, P. r Špatenka, M. l Šerý, N. Vrchotová, I. a Hrušková, Influence of plasma treatment on 
wheat and oat germination and early growth, IEEE Trans. Plasma Sci., 38 (2010), 2963−2968. 
https://doi.org/10.1109/TPS.2010.2060728 

7. R. Thirumdas, A. Kothakota, U. Annapure, K. Siliveru, R. Blundell, R. Gatt, et al., Plasma 
activated water (PAW) Chemistry, physico-chemical properties, applications in food and 
agriculture, Trends Food Sci. Technol., 77 (2018), 21−31. https://doi.org/ 
10.1016/j.tifs.2018.05.007 

8. L. Tonks, Oscillations in ionized gases, Plasma and Oscillations, Elsevier, 1961, 122−139. 
https://doi.org/10.1016/B978-1-4831-9913-9.50014-5 

9. B. Zhao, J. S. Feng, X. Wu, S. C. Yan, A survey on deep learning-based fine-grained object 
classification and semantic segmentation, Int. J. Autom. Comput., 14 (2017), 119−135. 
https://doi.org/10.1007/s11633-017-1053-3 

10. A. Srivastava, E. Han, V. Kumar, V. Singh, Parallel formulations of decision-tree classification 
algorithms, High Performance Data Mining, Springer, Boston, 1999, 237−261. 
https://doi.org/10.1007/0-306-47011-X_2 

11. G. D. Guo, H. Wang, D. Bell, Y. X. Bi, KNN model-based approach in classification, in OTM 
Confederated International Conferences CoopIS, DOA, and ODBASE, (2003), 986−996. 
https://doi.org/10.1007/978-3-540-39964-3_62 

12. A. Tharwat, A. E. Hassanien, B. E. Elnaghi, A BA-based algorithm for parameter optimization of 
Support Vector Machine, Pattern Recognit. Lett., 93 (2017), 13−22. https://doi.org/ 
10.1016/j.patrec.2016.10.007 

13. N. Coskun, T. Yildirim, The effects of training algorithms in MLP network on image classification, 
in Proceedings of the International Joint Conference on Neural Networks, (2003), 1223−1226. 

14. J. Deng, J. Krause, F. F. Li, Fine-grained crowdsourcing for fine-grained recognition, in 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2013), 
580−587. https://doi.org/10.1109/CVPR.2013.81 

15. E. Gavves, B. Fernando, C. G. Snoek, A. W. Smeulders, T. Tuytelaars, Fine-grained 
categorization by alignments, in Proceedings of the IEEE International Conference on Computer 
Vision, (2013), 1713−1720. https://doi.org/10.1109/ICCV.2013.215 

https://doi.org/10.11841/j.issn.1007-4333.2022.12.01
https://doi.org/10.1007/s11633-017-1053-3


10241 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10223–10243. 

16. K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, Deep residual learning for image recognition, in 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 
770−778. https://doi.org/10.1109/CVPR.2016.90 

17. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional 
networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
(2017), 4700−4708. https://doi.org/10.1109/cvpr.2017.243 

18. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing 
internal covariate shift, in Proceedings of the 32nd International Conference on Machine Learning, 
(2015), 448−456. 

19. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural 
networks, Commun. ACM, 60 (2017), 84-90. https://doi.org/10.1145/3065386 

20. S. Jin, H. X. Yao, X. S. Sun, S. C. Zhou, L. Zhang, X. S. Hua, Deep saliency hashing for fine-
grained retrieval, IEEE Trans. Image Process., 29 (2020), 5336−5351. 
https://doi.org/10.1109/TIP.2020.2971105 

21. Y. Jing, W. Wang, L. Wang, T. N. Tan, Learning aligned image-text representations using graph 
attentive relational net-work, IEEE Trans. Image Process., 30 (2021), 1840−1852. https://doi.org/ 
10.1109/TIP.2020.3048627 

22. L. L. Zhang, J. Liu, M. N. Luo, X. J. Chang, Q. H. Zheng, Deep semisupervised zero-shot learning 
with maximum mean discrepancy, Neural Comput., 30 (2018), 1426−1447. 
https://doi.org/10.1162/neco_a_01071 

23. K. Liu, D. Liu, L. Li, N. Yan, H. Q. Li, Semantics-to-signal scalable image compression with 
learned revertible representations, Int. J. Comput. Vis., 129 (2021), 2605−2621. 
https://doi.org/10.1007/s11263-021-01491-7 

24. L. Qi, X. Q. Lu, X. L. Li, Exploiting spatial relation for fine-grained image classification, Pattern 
Recognit., 91 (2019), 47−55. https://doi.org/10.1016/j.patcog.2019.02.007 

25. L. Wang, K. He, X. Feng, X. T. Ma, Multilayer feature fusion with parallel convolutional block 
for fine-grained image classification, Appl. Intell., 52 (2022), 2872−2883. https://doi.org/ 
10.1007/s10489-021-02573-2 

26. M. Srinivas, Y. Y. Lin, H. Y. M. Liao, Deep dictionary learning for fine-grained image 
classification, in 2017 IEEE International Conference on Image Processing, (2017), 835−839. 
https://doi.org/10.1109/ICIP.2017.8296398 

27. L. Liao, R. M. Hu, J. Xiao, Q. Wang, J. Xiao, J. Chen, Exploiting effects of parts in fine-grained 
categorization of vehicles, in 2015 IEEE international conference on image processing, (2015), 
745−749. https://doi.org/10.1109/ICIP.2015.7350898 

28. K. Wang, M. Z. Liu, YOLOv3-MTis A YOLOv3 using multi-target tracking for vehicle visual 
detection, Appl. Intell., 52 (2022), 2070−2091. https://doi.org/10.1007/s10489-021-02491-3 

29. S. M. Pan, W. Q. Feng, Y. W. Chong, Attribute-guided global and part-level identity network for 
person re-identification, Int. J. Pattern Recognit. Artif. Intell., 36 (2022), 2250011. 
https://doi.org/S0218001422500112  

30. C. Wang, J. Y. Sun, S. W. Ma, Y. Q. Lu, W. Liu, Multi-stream network for human-object 
interaction detection, Int. J. Pattern Recognit. Artif. Intell., 35 (2021), 2150025. https://doi.org/ 
10.1142/S0218001421500257 

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3065386.
https://doi.org/10.1007/s10489-021-02491-3


10242 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10223–10243. 

31. Z. Q. Lin, S. M. Mu, F. Huang, K. A. Mateen, M. J. Wang, W. L. Gao, et al., A unified matrix-
based convolutional neural network for fine-grained image classification of wheat leaf diseases, 
IEEE Access, 7 (2019), 11570−11590. https://doi.org/10.1109/ACCESS.2019.2891739 

32. Z. Q. Lin, S. M. Mu, A. J. Shi, C. Pang, X. X. Sun, A novel method of maize leaf disease image 
identification based on a multichannel convolutional neural network, Trans. ASABE, 61 (2018), 
1461−1474. https://doi.org/10.13031/trans.12440 

33. H. Lu, Z. G. Cao, Y. Xiao, Z. W. Fang, Y. J. Zhu, Fine-grained maize cultivar identification using 
filter-specific convolutional activations, in 2016 IEEE International Conference on Image 
Processing, (2016), 3718−3722. https://doi.org/10.1109/ICIP.2016.7533054 

34. X. P. Zhang, H. K. Xiong, W. G. Zhou, Q. Tian, Fused one-vs-all features with semantic 
alignments for fine-grained visual categorization, IEEE Trans. Image Process., 25 (2015), 
878−892. https://doi.org/10.1109/TIP.2015.2509425 

35. X. S. Wei, C. W. Xie, J. X. Wu, C. H. Shen, Mask-CNN is Localizing parts and selecting 
descriptors for fine-grained bird species categorization, Pattern Recognit., 76 (2018), 704−714. 
https://doi.org/10.1016/j.patcog.2017.10.002 

36. L. Qi, X. Q. Lu, X. L. Li, Exploiting spatial relation for fine-grained image classification, Pattern 
Recognit., 91 (2019), 47−55. https://doi.org/10.1016/j.patcog.2019.02.007 

37. Y. Zhang, X. S. Wei, J. X. Wu, J. F. Cai, J. B. Lu, V. A. Nguyen, et al., Weakly supervised fine-
grained categorization with part-based image representation, IEEE Trans. Image Process., 25 
(2016), 1713−1725. https://doi.org/10.1109/TIP.2016.2531289 

38. S. L. Huang, Z. Xu, D. C. Tao, Y. Zhang, Part-Stacked CNN for fine-grained visual categorization, 
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 
1173−1182. https://doi.org/10.1109/CVPR.2016.132 

39. S. H. Lee, C. S. Chan, S. J. Mayo, P. Remagnino, How deep learning extracts and learns leaf 
features for plant classification, Pattern Recognit., 71 (2017), 1−13. 
https://doi.org/10.1016/j.patcog.2017.05.015 

40. M. Rohrbach, A. Rohrbach, M. Regneri, S. Amin, M. Andriluka, M. Pinkal, et al., Recognizing 
fine-grained and composite activities using hand-centric features and script data, Int. J. Comput. 
Vision., 119 (2016), 346−373. https://doi.org/10.1007/s11263-015-0851-8 

41. S. Cai, W. Zuo, Z. Lei, Higher-order integration of hierarchical convolutional activations for fine-
grained visual categorization, in Proceedings of the IEEE International Conference on Computer 
Vision, (2017), 511−520. 

42. Q. Hu, H. Wang, T. Li, C. Shen, Deep CNNs with spatially weighted pooling for fine-grained car 
recognition, IEEE. Intell Transp., 91 (2019), 47−55. https://doi.org/10.1016/j.patcog.2019.02.007 

43. P. J. Burt, E. H. Adelson, Readings in computer vision, Elsevier, Piscataway, 1987, 671−679. 
https://doi.org/10.1016/B978-0-08-051581-6.50065-9 

44. C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical features for scene labeling, 
IEEE Trans. Pattern Anal. Mach. Intell., 35 (2012), 1915−1929. 
https://doi.org/10.1109/TPAMI.2012.231 

45. B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Hyper columns for object segmentation and fine-
grained localization, in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, (2015), 447−456. https://doi.org/10.1109/CVPR.2015.7298642 

46. J. Weber, J. Malik, Robust computation of optical flow in a multi-scale differential framework, 
Int. J. Comput. Vis., 14 (1995), 67−81. https://doi.org/10.1007/BF01421489 



10243 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10223–10243. 

47. H. L. Zheng, J. L. Fu, T. Mei, J.B . Luo, Learning multi-attention convolutional neural network 
for fine-grained image recognition, in Proceedings of the IEEE international conference on 
computer vision, (2017), 5209−5217. https://doi.org/10.1109/ICCV.2017.557 

48. T. Y. Lin, A. RoyChowdhury, S. Maji, Bilinear CNN models for fine-grained visual recognition, 
in Proceedings of the IEEE International Conference on Computer Vision, (2015), 1449−1457. 
https://doi.org/10.1109/ICCV.2015.170 

49. A. Fawzi, H. Samulowitz, D. Turaga, P. Frossard, Adaptive data augmentation for image 
classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, (2013), 580−587. https://doi.org/10.1109/ICIP.2016.7533048 

50. R. Dellana, K. Roy, Data augmentation in CNN-based periocular authentication, in 2016 6th 
International Conference on Information Communication and Management, (2016), 141−145. 
https://doi.org/10.1109/INFOCOMAN.2016.7784231 

51. J. Johnson, A. Karpathy, F. F. Li, Densecap is Fully convolutional localization networks for dense 
captioning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
(2016), 4565−4574. https://doi.org/10.1109/CVPR.2016.494 

52. N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, On large-batch training 
for deep learning is generalization gap and sharp minima, (2016). 
https://doi.org/10.48550/arXiv.1609.04836 

53. H. Li, Z. Xu, G. Taylor, T. Goldstein, Visualizing the loss landscape of neural nets, in 32nd 
Conference on Neural Information Processing Systems, 31 (2018). 

54. P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, et al., Accurate, large 
minibatch SGD is Training ImageNet in 1 hour, (2017). https://doi.org/ 
10.48550/arXiv.1706.02677 

55. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 
in Proceedings of  International Conference on Learning Representations, (2015). 
https://doi.org/10.48550/arXiv.1409.1556 

 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


