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Abstract: This paper considers the reliability analysis of a multicomponent stress-strength system
which has £k statistically independent and identically distributed strength components, and each
component is constructed by a pair of statistically dependent elements. These elements are exposed to
a common random stress, and the dependence among lifetimes of elements is generated by Clayton
copula with unknown copula parameter. The system is regarded to be operating only if at least s
(1<s<k) strength variables in the system exceed the random stress. The maximum likelihood
estimates (MLE) of unknown parameters and system reliability is established and associated
asymptotic confidence interval is constructed using the asymptotic normality property and delta
method, and the bootstrap confidence intervals are obtained using the sampling theory. Finally, Monte
Carlo simulation is conducted to support the proposed model and methods, and one real data set is
analyzed to demonstrate the applicability of our study.
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1. Introduction

In the field of reliability engineering, stress-strength model is frequently used to measure the
reliability of system which has a random strength Y and is subject to a random stress X . If the stress
exceeds the strength, the system will fail. The stress-strength model was introduced by Birnbaum [1]
and the estimation of the reliability R = P(Y > X) has been extensively discussed by many authors
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when the stress variable X and the strength variable Y follow a specified distribution, see
Srinivasa et al. [2], Kohansal [3], Bai et al. [4,5] and Sharma [6].

With the development of technology, the multicomponent stress-strength system is common in
daily life. A typical multicomponent system is s -out-of-k system which appears in industrial and
military applications [7]. Such system functions when s (1<s<k) or more components
simultaneously survive. Recently, many authors contributed their work to study the reliability analysis
of the multicomponent stress-strength system. Srinivasa et al. [8] studied the estimation of the
reliability when X and Y are independent random variables following exponentiated Weibull
distribution with different shape parameters, and common shape and scale parameters, respectively.
Liu et al. [9] proposed the reliability estimation of a N-M-cold-standby redundancy system when
underlying distribution is generalized half-logistic distribution. Kizilaslan [10] discussed the classical
and Bayesian estimation of reliability in a multicomponent stress-strength system for proportional
reversed hazard rate distribution. Zhang et al. [11] proposed the Bayesian inference of reliability in a
multicomponent stress-strength system when X and Y follow Marshall-Olkin bivariate Weibull
distribution. Wang et al. [12] discussed the reliability analysis in a multicomponent stress-strength
system when the latent strength and stress variables follow Kumaraswamy distributions with common
shape parameter. Other related work can be seen in [13—17] and the references therein.

The literature aforementioned are all based on the assumption that the strength variable is
constructed by one element. However, in some practical situation, it is more realistic to assume that
the strength variable is constructed by a pair of dependent elements. For example, in a suspension
bridge, the number of vertical cable pairs, which support the bridge deck is considered as dependent
strength elements[18,19]. Therefore, it is meaningful to discuss the case when the strength variable is
conducted by dependent elements. Actually, Nadar and Kizilaslan [18], Kizilaslan and Nadar [19] have
discussed the estimation of reliability in a multicomponent stress-strength system when the strength
elements are dependent, and the dependent relationship is described by a bivariate distribution.
Nevertheless, a bivariate distribution needs the marginal distributions are the same type. To overcome
this limitation, copula function is used, which is a link function between the joint cumulative
distribution and the marginal distribution, and it has no limitation on the type and family of the
marginal distributions. In our article, copula function is used to describe the dependent relationship of
strength elements and the reliability analysis is discussed.

The main objective of our study is to discuss the reliability analysis of a s -out-of- k£
multicomponent stress-strength system when the strength variable is constructed by dependent
elements, which is described by a copula function. The rest of the paper is organized as follows. Section 2
introduces some copula theory. In Section 3, the model description is provided and the reliability of s-
out-of-k system is derived. Point and interval estimates are presented in Sections 4 and 5, respectively.
Section 6 provides simulation studies and a real data analysis. Finally, some concluding remarks are
given in Section 7.

2. Copula theory

Copula is a very convenient way to model the dependence of the random variables. A probabilistic
way to define the copula is provided by Sklar [20]. More details about copulas can be found in [21].
In the following, we introduce some basic theory.

Let S(x,,x,) be a two-dimensional joint survival function with marginal function R ,R, and

let R',R;' be quasi-inverses of R,R,.For Vu,u,c[0,1], thereisacopula C as
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Cluy,u,) = S(Rl_l(ul)aRz_l(“z)) , S(x,x,) = C(R1(x1)o Rz(xz)) . (D

Then C(-) is called a survival copula.
Let H(x,,x,) beatwo-dimensional joint failure function with marginal function F£|,F, and let

E',F," be quasi-inverses of F,, F,,respectively. For ¥ u,,u, €[0,1], there is a copula C as
Clansy) = HOF (), (1)) @)
H(xl,x2)=C(E(xl),Fz(x2)). 3)

Then C (1) 1is called a failure distribution copula.

The relationship between the failure copula C and the survival copula C,is

C(R (). R(x)) = 1= F () = Fy(x) + C(F (%), B ().

C(F(x).Fy(x,)) =1-R ()= Ry(x,) + C(R (%), Ry(x,)).. (4)
Let f(x,,x,)be the joint probability density function (PDF) of X,,X,, then

_OH(x,x) O C(Fx)F(x))
o) ARGy R ®)

0*C(F(x),Fy(x,))
OF,(x,)0F,(x,)

In our study, a 2-dimensional Clayton copula is used to depict the dependence relationship of
strength elements, which is a kind of Archimedean copula and widely used because of its nice
properties such as its simple form, symmetry and the ability of combining [21]. Its mathematical form
is given as

where

is defined to be the PDF of 6(E(xl), Fy(x,)).

Cuv)=w’+v’-1)", 0e[-1,0)\{0}, (6)

where the parameter € measures the dependence. It becomes an independent copula as € approaches
to zero.

3. Model description and reliability of s -out-of-%4 system

Assume X follows Weibull distribution with shape parameter A and scale parameter « , denoted
by WE(A,a) . Then the PDF and the cumulative distribution function (CDF) of X are, respectively,

g, (xX)=Aax e ™ | x>0,1>0,a>0, (7)
and
G,(x)=1-¢™" x>0,1>0,a>0. (8)

Let T, Z,,Z,,---,Z, be s-independent, G(¢) be the CDF of stress variable 7', and F(z) be
the common CDF of strength variables Z,Z,,---,Z, . For the general case, the reliability of s -out-
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of-k system in a multicomponent stress-strength model developed by Bhattacharyya and Johnson [22]
is given by

= P(at least s of the(Z,,Z,,---,Z,) exceed T)
_ Z( j j (1-F(0) (F@))dG().

Suppose that the dependence between X, ~WE(A,a) and X, ~WE(A,,«) 1is represented by
a 2-dimensional Clayton copula. According to Eqs (6)—(8), the joint survival function of (X, X,) is

()

given by

1
S(6%,) = C(R(x), R(xy)) = (27 + €7 -1) 7,

and according to Eqs (4)—(6), the joint PDF of (X,,X,) can be written as

1
a a -—-1 a a
f(x,x,)= (ewx‘ +eh 1) 0 (ewx‘ ﬂqaxf"l + e ﬂzaxg’l ) ) (10)

We consider a system which has & statistically independent and identically distributed strength
components and each component is constructed by a pair of statistically dependent elements. The
system 1is subjected to a common random stress and it works when s or more components

simultaneously survive, and a component is alive only if the weakest elements is operating. Assume
that the marginal distribution of strength vectors (X, X,,),(X,,,X,,),---,(X,;,X,,) and the stress

variable 7 are Weibull distribution. Let Z, = min(X,,, X,,),i =1,2,---,k . The survival function and
the PDF of Z =min(X,,X,) are given by, respectively,

R,(t)=P(Z>1)=P(X,>1,X,>1)

1 (11)
=S(1,t)= ( MO 4 PO 1) o t>0,
and
1
fo( )—M (e"f“ue‘a’“g —1) 0 l(xleﬂl”+ﬁ,2e%’“9)af’-l, t>0. (12)
Let T ~WE(A,,a) be the stress variable. Using Eqs (8) and (9), R, is given as
i o i LV )
R, :Z(kJIO (el"“g +em"0 —1) 0 (1—( MO 4 Pt 1) ‘9] Aot e M dt
i=s l
L i R
=Z( JJ’O (eﬂlﬁu g _1) 9(1 ( WO a0 _1) gj /%efﬂgudu
i=s l
k_ k=i - it
= C -C/ (-1’ " 4 M ] gje%“du 13
> 2.Co-CLED A (13)

where u=1¢".
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4. Maximum likelihood estimation of R,

Suppose that »n systems are put on a life experiment. The potential data are
(X X ) (X0 X))y (Xlik’XZik) and Z,i=1,2,---,n,the observed data are Z,,Z,,---,Z, and

T,, where Z, =min(X, w0 Xiaj) > e on, j=1,2,---,k . The likelihood function of these

observed samples z = { =12,---,n,j= 1,2,---,k} and t=(t,t,,~--,t,) 1is expressed as

1]’

LA, 4, Ay 0,052, 0) :ﬁ(ﬁfz (Zu)jg(ti)

i=1 \_j=1
T { J 2028 4,000 ’é’l 2028 1028 a1 a-l gt
—H H(e +e —1) (ﬂ,le + e )azij at’"e
i1\ =
. 1
1

- o=t o\, a6 0=\ a1 | T a1~
:ank+nﬂ,\:H(H(€ﬂ1 j +eﬁ’2 i _1) 4 (ﬂqel i _’_22612 J)Z;! 1 .Hll_a 1e Aty , (14)
=1\ j= i=1

The log-likelihood function ignoring the additive constant is given as

k a a
logL = ZZ{—ﬂlog( My " —1)+log(ﬂqewz”’ + A" )+(a—l)logzﬁ}

i=1 j=l1

(15)
+n(k+1)loga +nlog A, +(a—1)210gti —@Zti“.
i=1 i=l

Taking derivatives with respect to A,,4,,4,,a,60 and equating them to zero, the likelithood

equations are obtained as

0z a 0z 0z a
OlogL Zk: 1+0 € 10z _i_eﬂ1 —i—ﬂ.lej1 0z; ~0 16)
o4 EE P s B R Y |
0z a 0z 0z a
OlogL i 1+ €° 10z +e% +/12€ZQ 0z o an
o == P B B P Y
OlogL 2
S W) (18)
O =
Olog L ZZ": 1+6 (ie Y +/1 e” )02 logz, (/1126%92" +/Lzzejz92" )192; log z, tlogz
oa =l j=l 0 M e 1 /‘LIeMZ‘(’X +/12e)"292‘? ’
n(k+1 - -
+ ( )+Zlogt,—ﬂv32t[“logt[, (19)
a i=1 i=1
40: RO @ g2 MO 22 O\ a
Ologl &G 1 a _a 1 e’ +AeT )z, (AetT +Ae )z,
g :ZZ _zlog(e’ilgu +e;‘2'gv _1)_(_4_1) (/11 — jgya ) iy +( 1 — 2 673 i . (20)
00 i |0 0 R | /11611 i +/12617 K

Due to the complex form, we cannot find the analytical solutions of the likelihood equations. The
numerical methods such as Newton-Raphson iteration algorithm and asymptotic methods [23-25] can
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be applied to get the MLEs ;11,:12,;13,(} and 6.
Hence, using the invariance property of MLE, the MLE of R, is obtained from Eq (13) as
S NS i) P50 e e D\ B
Rox = ;;Ckck-f(_l) Zo I e IR

where u=1%.
5. Confidence interval

In this section, we propose two different methods to construct confidence intervals for unknown
parameters and stress-strength model reliability R, .

5.1. Asymptotic confidence intervals

The asymptotic confidence intervals (AClIs) are developed based on the asymptotic normality of
MLE. Let =(4,4,,4,a,0), the observed Fisher information matrix of parameter 7 can be

written as

111(7_7) Ilz(g) Ils(g)

]21 122 125
T e B an

[51(7_7) Isz(ﬂ) e I (m)

- n=(21.7%.23.a,0)

0% In L()

on,0n;
Therefore, the asymptotic variance-covariance matrix of 7 can be given by

where 7,(n)=- s =As1=h, 1=, =a and 7,=6.

-1 A A A

Ly L, - I Vit Vi Vis

N ~ L, I, - 1 v, v v

-1 2 12 25 al Va1 Vo 25
V=i (Q): : o - : (22)

I, 1 I S s Ve, Vey vV

51 52 557 (i, 13, m4. 15)=(Ay, Ay 25, 8, 6) 51 52 55

The asymptotic distribution of the pivotal quantities (7, —7,)/+/V, , i=1,2,---,5 canbe used to
construct confidence intervals forz, . A two-side 100(1—-y) % AClIs for 7, can be constructed by

(=22 7+ 2,00 )50 =1,2,055. (23)

where z , istheupper z,,-th percentile point of standard normal distribution.

Furthermore, from Eq (13) we know that R, is a continuous function of 4,4,,4,,a and 6.
Let R, =h(4,4,,4,a,0). Then h(:) is a continuous function of 4,4,,4,a and 6. Hence,
I%S’k = h(/ﬁ, /iz,/@, &, 0) is a consistent estimator of R, . Furthermore, A(:) has continuous first-

order partial derivatives. Thus, using the Delta method, we have
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A

R —R
= 6 5 N(0,1), (24)
w/Var(R )

OR,, R,

where Var(R =02 = 2y e

AT Z‘,Z‘ o, 877] '

Then, the two-side 100(1—y) % ACI for R, can be written as

(és,k ~Zy4 Va’”(]%s,k)» ],és,k TZ,54 Va”(ﬁs,k ) ) . (25)

Note that the ACTof R, may not be within the interval (0,1). Using logarithmic trans-formation

and delta method, the asymptotic normality distribution of log (IAQS,/{) can be arrived as

(log (IAES,k ) — log(?es,k )) / \/Var (log(}és,k )) ~N(0,1). (26)

Therefore, using the inverse logarithmic transformation, the log-normal 100(1—- )% ACI of the
reliability R , becomes

(ies,k exp(—zw/ Var(Rsx)/ Rsx ) Rox exp(zym/Var(?es,k) / R )j : Q27)

5.2. Bootstrap confidence intervals

The bootstrap method is used to construct confidence interval for the unknown parameters [26,27]
when the sample size is small. Compared to the ordinary bootstrap confidence interval (BCI), the bias-
corrected percentile BCI is considered to perform better. The steps to construct the bias-corrected
percentile BCI are as follow.

Step 1: Based on the observed sample z and ¢, we compute the MLEs /7;, /iz,ﬂ;, a, 0 and
ies,k .
Step 2: Use the Clayton copula function, /ﬂ,iz,d and 6 to generate a dependent bootstrap

sample of strength element, and ¢ and /{3 to generate a bootstrap stress sample.

Step 3: Based on the bootstrap sample in step 2, we get the bootstrap estimate of 21, ﬁz,ﬂ;,d, g’,

A

say A .4, A4,a ,0
A¥1) AK2)  AKN)

Step 4: Repeat Steps 2-3 N times to obtain 4 ,& ,.,8 , where
*(k) ~*(k)

~*(k) A M N ) A%, la
_( 7y )=(/21(k),/12(k),l3(k),a (k)’0 (k),R (k)) and

i+j
"* +00 *(k) gy (k) g*(k) TARk) MK
(k) E E C,Cl (- 1)’/13(")]. ( AOO | (20 ”—1) O e B M dy

i=s j=0
Step 5: For each variable 7,, arrange its bootstrap estimate in an ascending order to obtain
AMI] A¥[2] A¥[N]

77[ 9771~ ""’771‘ ’izljz,...,6.
Then, a two-sided 100(1-y) % bias-corrected percentile BCI of 7, is given by
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~A¥[Nay;] ~¥[Nay; ]

(:15M:0) =1, »1; ),

where «,, =®(2z,+z,,) and a, =D(2z,+z_,,), © is the standard normal cumulative

distribution function with =z, =®'(«) , and the value of bias correction =z, is
AL A
zol:qf{”“mbemiv{”f <’7"}], i=1,2,,6, j=12-,N.

6. Simulation study and data analysis
6.1. Simulation study

For illustration, a simulation study is performed to compare the performance of the estimates of
unknown parameters and reliability R , in a multicomponent stress-strength system, which are

obtained for different sample sizes, different model parameters and dependence parameters. The
performances of the point estimates are compared by using estimated risks (ERs). We also compare
the ACIs and BCIs in terms of the average interval lengths. The ER of &, when & is estimated by

Oi,1s given by
ER($) =~ (5, -5,
n g

where n is the sample size.
We simulate different strength and stress populations corresponding to the parameters
(11,12,2,3,0():{(7,4,4,3),(1,2,3,4,)} and €=1,2 with different sample sizes n =20 (30) 80 .

Without loss of generality, the 1-out-of-3 multicomponent system and the 2-out-of-4 multicomponent
system are studied, i.e. (s,k)=(1,3) and (2,4). The true value of R ; with the given parameter
(/11,/12,/13,9,0():(7,4,4,1,3),(7,4,4,2,3),(1,2,4,1,3) and (1,2,4,2,3) are 0.5529, 0.5587, 0.8626
and  0.8792, respectively. The true value of R,, with the given parameter
(4, A, A4, 0,0)=(7,4,4,1,3),(7,4,4,2,3),(1,2,4,1,3) and (1,2,4,2,3) are 0.5639, 0.6420, 0.9727
and 0.9905, respectively. The MLEs, ERs and the 95% ACIs, BCIs, and the lengths of ACI and BCI
based on 5000 replications are listed in Tables 1-4, where IES,k and R represent the estimated

results when the dependence of the strength elements is considered and the dependence of the strength
elements is ignored, respectively. The MLEs and ERs of @ for different model parameters are
reported in Table 5. All of the computations are performed using R software and run on LAPTOP with
1.80 and 2.30 GHz CPU processor, 12.0 GB RAM memory, and windows 10 operating system.
Newton- Raphson procedure is adopted in the calculation process, and the starting values of unknown
parameters are randomly chosen around their true values. We have chosen different initial values, and
the estimated results are stable.

To study the effect of the dependence between the strength elements on the reliability R, ina

multicomponent stress-strength system, we draw graph of IES,k versus the dependency parameter &
for different pairs of (4,,4,,4,,a). Variations in f?s,k with respect to 6 are displayed in Figure 1

for different model parameters and n=50.
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Table 1. MLEs, ERs and 95% Cls for parameters and R, when (4,4,,4,,2,0)=(7,4,4,3,1).

n /11 ﬂz /13 a 0 R1,3 R2,4 731,3 732,4
MLE 7.3170 3.8023 4.1631 3.1722 0.8779 0.5313 0.5435 0.3906 0.4055
ER 0.6994 0.4423 0.4135 0.0639 0.2638 0.0519 0.0329 0.0544 0.0595

ACI_Lower 6.5132 3.5625 3.7228 2.7825 0.5095 0.4403 0.4301 0.2883 0.3009

ACI_Upper 7.8855 4.2988  4.4224  3.5217 1.0902 0.6192 0.6241 0.4942 0.5085

“ ACI Length 1.3723 0.7364 0.6996 0.7392 0.5807 0.1789  0.1940 0.2059 0.2076
BCI Lower 6.6649 34171 3.7933 27740 0.5578 0.4477 0.4411 0.1752 0.1749
BCI_Upper 79421 4.1874 45329 35704 1.1980 0.6323  0.6459 0.6598 0.6517
BCI_Length 1.2772 0.7703  0.7396 0.7964 0.6402 0.1846 0.2048 0.4845 0.4768
MLE 7.2733 3.8240 4.1305 3.1028 09147 0.5344 0.5438 0.3808  0.4296
ER 0.4590 03450 03386 0.0492 0.1878 0.0421 0.0637 0.0634 0.0635
ACI_Lower 6.7840 3.7792 3.5933 2.8160 0.7622 0.4602 0.4491 0.4517 0.3697
ACI_Upper 7.8365 4.1925 4.4927 3.2982 13162 0.6187 0.6385 0.5235 0.7011

50 ACI Length 1.0525 0.4132 0.8994 0.4823 0.5540 0.1585 0.1894 0.0719 0.3314
BCI Lower 6.6890 3.4738 3.6804 2.8466 0.6384 0.4516 0.4371 0.2647 0.3879
BCI_Upper 7.8576 4.1742 45806 3.3590 1.1909 0.6173 0.6265 0.5190 0.6226
BCI_Length 1.1686 0.7004 09002 0.5124 0.5525 0.1658 0.1894 0.2543  0.2347
MLE 7.2216 3.8627 3.9569 3.0746 0.9363 0.5410 0.5532 0.3764 0.3271
ER 0.4451 03267 03147 0.0364 0.1421 0.0289  0.0459 0.0350 0.0341
ACI_Lower 6.7946 3.5681 3.6579 2.8912 0.7808 0.4701 0.4637 0.5807 0.5661
ACI_Upper 7.8106 4.3031 4.5964 3.2230 1.2548 0.6081 0.6426 0.6476  0.8229

80

ACI Length 1.0160 0.7350 09385 03319 04740 0.1380 0.1789  0.0669  0.2567
BCI Lower 6.7015 3.5423 3.4737 2.8005 0.6762 0.4558 0.4422 0.2608 0.2791
BCI_Upper 7.7417 4.1831 4.4401 3.3487 1.1964 0.6263 0.6210 0.5049  0.6340

BCI_Length 1.0402 0.6408 09664 0.5482 0.5202 0.1705 0.1789 0.2441 0.3549

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9470-9488.
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Table 2. MLEs, ERs and 95% ClIs for parameters and R, when (4,4,,4,,2,0)=(7,4,4,3,2).

1277227732

n /11 ﬂz /13 a 0 R1,3 R2,4 731,3 732,4
MLE 7.5126 44792 44516 3.1571 1.7615 0.5461 0.5549 0.4195 04188
ER 0.8864 0.8293 09219 03424 04729 0.0348 0.0945 0.0387 0.0460

ACI_Lower 6.7231 3.7272 3.7538 2.8649 1.4560 0.4230 0.4266 0.1824 0.1678

ACI_Upper 7.9214 49292 48672 3.4931 23191 0.6212 0.6783  0.7259  0.6698

“ ACI Length 1.1983 1.2020 1.1134 0.6282 0.8631 0.1982  0.2517 0.5435 0.5020
BCI_Lower 6.8125 3.8535 3.8818 2.8369 1.2013 0.4636 0.4043 0.5344 0.3342
BCI_Upper 82127 5.1049 5.0214 34773 23217 0.6286 0.6449 0.6848 0.6741
BCI_Length 1.4002 12514 1.1396 0.6404 1.1204 0.1650 0.2406 0.1305 0.3399
MLE 7.3853 4.2408 4.2863 3.1043 1.7820 0.5514 0.5684 0.4078 0.4186
ER 0.6216 0.7029 0.7903 0.1751 0.4002 0.0211 0.0771 0.0279 0.0421
ACI_Lower 6.9271 3.8161 3.8278 2.7834 13922 0.4812 0.4439 0.2592 0.1976
ACI_Upper 7.9522 48798 49973 33308 23916 0.6387 0.6930 0.5865 0.6396

50 ACI Length 1.0252 1.0638 1.1695 0.5474 09994 0.1575 0.2491 0.3273  0.4420
BCI_Lower 6.8415 3.7187 3.7011 2.8180 1.2808 0.4594 0.4326 0.3538 0.3787
BCI_Upper 7.9292 47629 48715 33906 2.2832 0.6434 0.6642 0.6187  0.6553
BCI_Length 1.0877 1.0442 1.1704 0.5726 1.0024 0.1840 0.2316 0.2649 0.2766
MLE 7.2852 39432 39673 3.0752 1.8959 0.5549 0.6216 0.4076 0.4178
ER 0.5421 0.6416 0.6117 0.1370 03880 0.0175 0.0676  0.0252  0.0405
ACI_Lower 6.8238 3.5884 3.5435 2.8338 15015 0.4621 0.4439 0.2861 0.2148
ACI_Upper 7.8814 4.5192 4.5687 3.2804 23985 0.6186 0.6930 0.5450 0.6208

80

ACI Length 1.0575 09308 1.0251 0.4466 0.8970 0.1564 0.2491 0.2589  0.4060
BCI_Lower 6.7750 3.4496 3.4667 2.8429 1.4090 0.4708 0.4728 0.3976  0.3587
BCI_Upper 7.7954 4.4368 4.4679 33075 23828 0.6390 0.6970 0.6191 0.6379

BCI Length 1.0204 09872 1.0012 0.4646 0.9738 0.1682 0.2242 0.2215 0.2792
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Table 3. MLEs, ERs and 95% Cls for parameters and R, when (4,,4,,4,,2,0) =(1,2,4,3,1).

n /11 ﬂ’z /13 a 0 R1,3 R2,4 1~31,3 IN€2,4
MLE 0.8704 2.2951 3.8924 3.2294 0.8718 0.7680 0.8270 0.6777 0.7504
ER 0.1532 0.3900 0.4775 0.1119 0.3649 0.0383 0.1020 0.1341 0.1428

ACI_Lower 0.5787 1.7522 3.3125 27813 0.6052 0.5378 0.6738 0.4756 0.5301

ACI_Upper 1.2411 2.7380 5.2672 3.8409 1.2156 0.9982 0.9802 0.8798 0.9707

? ACI Length 0.6624 09858 1.9548 1.0596 0.6105 0.4604 0.3064 0.4042 0.4406
BCI_Lower 0.5246 1.7830 2.8667 2.3394 0.5514 0.4499 0.6738 0.6234 0.6195
BCI_Upper 1.2162 28172 49181 3.7183 1.1922 09103 09802 0.9384 0.9631
BCI_Length 0.6916 1.0342 2.0514 13789 0.6408 0.4604 03064 0.3150 0.3436
MLE 0.8843 2.1736 4.1870 3.1676 0.8748 0.7441  0.8827 0.6460  0.7453
ER 0.1457 0.2458 03909 0.0919 0.2339 0.0319 0.0831 0.1486 0.1562
ACI_Lower 0.6777 1.6930 3.3846 2.8009 0.4330 0.5716 0.6752 0.4459 3.4105
ACI_Upper 1.2654 2.4176 5.2489 3.7343 1.1634 09766 0.9999 0.8461 3.5467

" ACI Length 0.5878 0.7247 1.8644 09334 0.7304 0.4050 03247 0.4002 0.1362
BCI_Lower 0.5821 1.8504 3.2635 2.7118 0.4850 0.5382 0.7523 0.5707 0.6717
BCI_Upper 1.1865 2.4968 5.1105 3.6234 1.2646 0.9432 0.9940 0.9896 0.9428
BCI_Length 0.6044 0.6464 18470 09116 0.7796 0.4050 0.2417 0.4189 0.2711
MLE 09149 2.1299 39192 3.1293 0.8840 0.8373 0.9733 0.7821 0.8024
ER 0.1407 0.1667 03068 0.0896 0.2191 0.0307 0.0771 0.0765 0.1074
ACI_Lower 0.7294 1.8963 2.7490 2.7951 0.7467 0.6262 0.8421 0.5985 0.5298
ACI_Upper 1.2383 2.4338 4.4348 3.6241 13511 1.0484 1.0445 0.9657 0.9693

80

ACI Length 0.5090 0.5375 1.6858 0.8290 0.6044 0.4222 0.2024 0.3672 0.4395
BCI_Lower 0.7023 1.8467 3.0978 25967 0.5616 0.6059 0.8121 0.5657 0.7649
BCI_Upper 1.1275 2.4131 47406 3.6619 1.1964 09988 0.9877 0.9377 0.9656

BCI_Length 0.4252  0.5664 1.6428 1.0652 0.6348 0.3929 0.1756 0.3721 0.2007

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9470-9488.



9481

Table 4. MLEs, ERs and 95% Cls for parameters and R , when (4,,4,,4,,a,60) =(1,2,4,3,2)

n /11 27 243 a 0 R1,3 R2,4 §1,3 7?2,4
MLE 1.2792 23766 43199 32593 23293 0.7946 0.8345 0.5658 0.6629
ER 0.3905 04561 0.7625 0.1128 0.4498 0.1996 0.1702 0.1503  0.1842

ACI Lower 09152 1.6528 3.7554 29289 1.8456 0.5311 0.6518 0.3353 0.3786

ACI_Upper 1.4212 29281 49722 3.6493 27519 0.9581 0.9627 0.7963 0.9472

? ACI_Length 0.5060 1.2753 1.2168 0.7204 0.9063 0.4270 03109 0.4610 0.5686
BCI _Lower 09578 1.7776  3.6985 29272 1.8169 0.4311 0.6741 0.3685 0.3139
BCI Upper 1.5666 29756 49413 35915 2.8417 09581 09949 0.9753 0.9707
BCI_Length 0.6088 1.1979 1.2428 0.6643 1.0248 0.5270 0.3208 0.6068 0.6568
MLE 1.2357 2.2266 4.1305 3.2452 22998 0.8174 0.8981 0.7563 0.6126
ER 0.3602 0.3852 03386 0.0741 03213 0.1444 0.1370 0.2775 0.2738
ACI Lower 0.8732 1.6254 3.6278 2.7983 1.8392 0.5343 0.7523 0.5131 0.3505
ACI_Upper 1.4121 2.8985 4.8997 3.3308 2.7819 1.1004 0.9824 0.9995 0.8747

" ACI_Length 0.5389 1.2731 1.2719 05325 09427 0.5661 0.2301 0.4864 0.5242
BCI Lower 0.9810 1.5997 3.5251 29720 1.8426 0.4522 0.7760 0.3809 0.3733
BCI Upper 1.4904 2.8535 4.7359 35184 27571 09882 09720 0.9763 0.9832
BCI_Length 0.5094 1.2537 1.2108 0.5464 09144 0.5360 0.1960 0.5953  0.6099
MLE 1.1497 2.2147 39586 3.1028 2.1064 0.8668 0.9675 0.7012 0.7589
ER 0.2870 0.2790 0.2685 0.0292 0.2721 0.0878 0.0948 0.1277 0.1622
ACI Lower 0.9224 1.6588 3.4544 29134 15015 0.7812 0.8143 0.5807 0.5572
ACI_Upper 1.4814 2.7192 45687 33128 23985 0.9524 1.0799 0.8217 0.9606

80

ACI_Length 0.5590 1.0604 1.1143 03994 0.8970 0.1712 0.2656 0.2410 0.4034
BCI _Lower 0.8906 1.5826 3.3977 2.8876 1.0650 0.6299 0.8143 0.8676 0.5779
BCI_Upper 1.4948 2.8468 4.5194 33180 2.5429 1.1037 1.0407 1.3989 0.9162

BCI_Length 0.6043 1.2642 1.1217 0.4304 1.4779 04738 0.2264 0.5312 0.3383

From Tables 14, it is observed that the MLEs for unknown parameters and system reliability
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R, R,, areclose to the true value in most cases and the ERs are considerably small for all cases.

As the sample size increases, the ERs, ACI lengths, BCI lengths for unknown parameters, and system
reliability R ;, R,,are decrease as expected. The ACIs are wider than the BCls in most cases, and

all the interval estimates cover the true value of the corresponding parameter. The ERs, ACI lengths
and BCI lengths of R ; and R, , considering the dependence of strength elements perform better

than those ignoring dependence of the strength elements. From Table 5, we can observed that the MLEs
of & are close to the true value for @ =2, rationally close for 8=1,4 and move away from the true

value for € =6,8. The ERs for 0 are considerably small in Table 5. From Figure 1, it is observed

that as the increase of the dependence parameter &, the stress-strength reliability R« is increasing.

Table 5. MLEs, ERs of @ under different parameter when n = 50.

(4,4, 4,a) 6=1 6=2 6 =4 0=6 6=38
MLE 1.1984 2.0886 3.8748 6.3712 8.2351
(23 33 47 3)
ER 0.2037 0.1356 0.3884 0.3862 0.3765
MLE 1.2413 2.1189 4.0413 5.6773 7.7763
(19 2’ 49 3)
ER 0.2173 0.1461 0.1754 0.3780 0. 5906
MLE 1.2081 1.9498 4.2337 6.1694 7.7575
(7,4,4,3)
ER 0.2028 0.1527 0.3838 0.3957 0.5667
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6.2. Data analysis

In this section, a real data set is analyzed to investigate scenarios of excessive drought. It can be
found in http://cdec.water.ca.gov/cgi-progs/queryMonthly? SHA, and the data has been studied by
Wang et al. [12], Kohansal [13], Zhu [16], Kizilaslan and Nadar [18], and kohansal and Shoaee et al. [28].
If the water capacity of a reservoir on December of the previous year is over roughly half of the
maximum capacity, and the minimum water level of August and September is more than the amount
of water achieved on December at least two years out of the next 5 years, it is claimed that there will
be no excessive drought afterward. Let 7,,7,,---, T, denote the capacity of December 1980, 1986,

1992, ...,2010,and X .Y, ,k=1,---,5 be the capacities of August and September in 1980 ~1985,
respectively. Let X,, and VY,,,k=1,---,5 be the capacities of August and September in

1987 ~1991, respectively. The data are proceeded up to 2015. We convert each data between 0 and 1
by dividing the total capacity of Shasta reservoir 4,552,000 acre-foot and then the transformed data
are obtained as:

0.5597 0.8112 0.8296 0.7262 0.4238

X X o X 0.4637 0.3634 0.4637 0.3719 0.2912

¥ - Xy Xy 0 Xos B 0.7540 0.5381 0.7449 0.7226 0.5612
! : : 0.7552 0.6686 0.5249 0.6060 0.7159 |’

X X 0 Xigs 0.7188 0.7420 0.4688 0.3451 0.4253

0.7951 0.6139 0.4616 0.2948 0.3929

0.5449 0.7659 0.7946 0.7118 0.4345

X, X,y 0 Xy 0.4631 0.3484 0.4605 0.3597 0.2943

Y - Xy Xy 0 Xy 3 0.6814 0.4617 0.6890 0.6786 0.5071
27 : : - ’

0.7310 0.6558 0.4832 0.5620 0.6941
0.6667 0.7041 0.4128 0.3041 0.3897
0.7340 0.5693 0.4187 0.2542 0.3520

X261 Xzsz X265

T':(0.7009 0.6532 0.4589 0.7183 0.531 0.7665).

LetZ, =min(X,,X,,), Z={Z,,i=1---,6,k=1,---,5}, T={T,T,,---, T}, then the observed
data (Z,T) can be viewed as the observation from a 2-out-of-5 system.

Before progressing further, we first check whether Weibull distribution in Eq (8) could be used to
analyze these real-life data. For X, the MLEs of parameters (4,,c), Kolmogorov-Smirnov (K-S)

statistic and the corresponding p -value are (6.2289,4.0025),0.1717 and 0.3037, respectively. For X,
the MLEs of parameters (4,,), the K-S statistic and the corresponding p -value are (7.5507, 3.9070),
0.1660 and 0.3417, respectively. For T, the MLEs of parameters (4,,), the K-S statistic and the
corresponding p -value are (17.8408,7.5439), 0.2047 and 0.9212, respectively. It is observed that
Weibull distribution is considered as an appropriate model for X,, X, and 7. Moreover, for further

illustration, the empirical cumulative distributions plot and overlay the theoretical Weibull distribution

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9470-9488.



9484

are shown in Figure 2, and the probability-probability (P-P) plots are shown in Figure 3, which also
imply that the Weibull distribution could be considered as an appropriate model. To check the
correlation, we compute the correlation coefficient of X, and X, using the Pearson’s method, it is

0.9918 and the p -value is 0.0000, so the data ( X, X, ) can be considered to be dependent.
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Figure 2. Empirical distribution under real data.
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Regard X, and X, asthe dependentelements of strength variable and 7' as the stress variable.

The probability P (at leasts of the (Z,,Z,

,-++,Z,)exceed T') can be viewed as the measure of no

excessive drought. Based on the proposed methods, the estimates and 95% confidence intervals of the
model parameters and reliability are listed in Table 6.
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Table 6. Estimates and 95% Cls for data (Z,T').

21 ﬂ‘z }“3 a 0 Rz,s 732,5
MLEs 4.0798 5.1597 3.5496 4.0182 4.4405 0.5227 0.5707
ACI Lower 3.0553 4.0073 2.6484 3.2071 3.5417 0.4242 0.4799
ACI Upper 5.1043 6.3121 4.4508 5.0345 5.3393 0.6212 0.6786
ACI Length 2.0490 2.3048 1.8024 1.8274 1.7976 0.1970 0.1987
BCI Lower 3.0634 3.9896 2.4534 3.3251 3.4979 0.4294 0.3329
BCI Upper 5.0213 6.2142 4.2781 5.1210 5.3015 0.6215 0.6201
BCI Length 1.9579 2.2246 1.8247 1.7959 1.8036 0.1921 0.2872

7. Conclusions

In this paper, we have studied the reliability analysis of multicomponent stress-strength model for
the s -out-of-k system when the strength variable is constructed by a pair of s-dependent elements,
which is described by a Clayton copula function. Based on the observed sample and the copula theory,
the MLEs, ACIs as well as the BCIs for unknown parameters and R , are obtained using the

asymptotic normality property, delta method and the sampling theory. The simulation study indicates
that the ERs, ACI lengths and BCI lengths for the unknown parameters and R, , are decreasing as the

sample size increases. The BCIs are more attractive than the associated ACIs in terms of the average
confidence interval lengths, and all the confidence intervals cover the true value of the corresponding
parameter. The ERs, ACI lengths and BCI lengths of R ; and R, , for the case of considering the

dependence perform better than those for the case of ignoring the dependence. The MLEs of & are
close to the true value for @ =2, rationally close for #=1,4 and move away from the true value for

0 = 6,8 . The variables in R, with respect to & is moderate, and R, increases with respect to & for

different parameters.
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Nomenclature

XXy, strength variable

Z =min(X,;,X,,) minimum of the strength variables

T stress variable

k number of components

R, reliability of s -out-of- k system

PDF probability density function

CDF cumulative distribution function

F() CDF of strength variable

G() CDF of stress variable

£, PDF of Z

f(x,x,) joint PDF of X, and X,

c() survival copula

C ) failure distribution copula

WE(A,@) Weibull distribution with shape parameter A and scale parameter o
MLE maximum likelihood estimate

Rk MLE of R, when the dependence is considered
Ro MLE of R, when the dependence is ignored
ER estimated risk
ACI asymptotic confidence interval
BCI bootstrap confidence interval
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