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Abstract: This paper considers the reliability analysis of a multicomponent stress-strength system 
which has k   statistically independent and identically distributed strength components, and each 
component is constructed by a pair of statistically dependent elements. These elements are exposed to 
a common random stress, and the dependence among lifetimes of elements is generated by Clayton 
copula with unknown copula parameter. The system is regarded to be operating only if at least s
( 1 s k   ) strength variables in the system exceed the random stress. The maximum likelihood 
estimates (MLE) of unknown parameters and system reliability is established and associated 
asymptotic confidence interval is constructed using the asymptotic normality property and delta 
method, and the bootstrap confidence intervals are obtained using the sampling theory. Finally, Monte 
Carlo simulation is conducted to support the proposed model and methods, and one real data set is 
analyzed to demonstrate the applicability of our study. 
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1. Introduction 

In the field of reliability engineering, stress-strength model is frequently used to measure the 
reliability of system which has a random strength Y  and is subject to a random stress X . If the stress 
exceeds the strength, the system will fail. The stress-strength model was introduced by Birnbaum [1] 
and the estimation of the reliability ( )R P Y X   has been extensively discussed by many authors 
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when the stress variable X   and the strength variable Y   follow a specified distribution, see 
Srinivasa et al. [2], Kohansal [3], Bai et al. [4,5] and Sharma [6]. 

With the development of technology, the multicomponent stress-strength system is common in 
daily life. A typical multicomponent system is s -out-of- k  system which appears in industrial and 
military applications [7]. Such system functions when s (1 )s k    or more components 

simultaneously survive. Recently, many authors contributed their work to study the reliability analysis 
of the multicomponent stress-strength system. Srinivasa et al. [8] studied the estimation of the 
reliability when X   and Y   are independent random variables following exponentiated Weibull 
distribution with different shape parameters, and common shape and scale parameters, respectively. 
Liu et al. [9] proposed the reliability estimation of a N-M-cold-standby redundancy system when 
underlying distribution is generalized half-logistic distribution. Kızılaslan [10] discussed the classical 
and Bayesian estimation of reliability in a multicomponent stress-strength system for proportional 
reversed hazard rate distribution. Zhang et al. [11] proposed the Bayesian inference of reliability in a 
multicomponent stress-strength system when X  and Y  follow Marshall-Olkin bivariate Weibull 
distribution. Wang et al. [12] discussed the reliability analysis in a multicomponent stress-strength 
system when the latent strength and stress variables follow Kumaraswamy distributions with common 
shape parameter. Other related work can be seen in [13–17] and the references therein. 

The literature aforementioned are all based on the assumption that the strength variable is 
constructed by one element. However, in some practical situation, it is more realistic to assume that 
the strength variable is constructed by a pair of dependent elements. For example, in a suspension 
bridge, the number of vertical cable pairs, which support the bridge deck is considered as dependent 
strength elements[18,19]. Therefore, it is meaningful to discuss the case when the strength variable is 
conducted by dependent elements. Actually, Nadar and Kızılaslan [18], Kızılaslan and Nadar [19] have 
discussed the estimation of reliability in a multicomponent stress-strength system when the strength 
elements are dependent, and the dependent relationship is described by a bivariate distribution. 
Nevertheless, a bivariate distribution needs the marginal distributions are the same type. To overcome 
this limitation, copula function is used, which is a link function between the joint cumulative 
distribution and the marginal distribution, and it has no limitation on the type and family of the 
marginal distributions. In our article, copula function is used to describe the dependent relationship of 
strength elements and the reliability analysis is discussed. 

The main objective of our study is to discuss the reliability analysis of a s  -out-of- k  
multicomponent stress-strength system when the strength variable is constructed by dependent 
elements, which is described by a copula function. The rest of the paper is organized as follows. Section 2 
introduces some copula theory. In Section 3, the model description is provided and the reliability of s-
out-of-k system is derived. Point and interval estimates are presented in Sections 4 and 5, respectively. 
Section 6 provides simulation studies and a real data analysis. Finally, some concluding remarks are 
given in Section 7. 

2. Copula theory 

Copula is a very convenient way to model the dependence of the random variables. A probabilistic 
way to define the copula is provided by Sklar [20]. More details about copulas can be found in [21]. 
In the following, we introduce some basic theory.  

Let 1 2( , )S x x  be a two-dimensional joint survival function with marginal function 1 2,R R  and 

let 1 1
1 2,R R   be quasi-inverses of 1 2,R R . For 1 2, [0,1]u u  , there is a copula C  as 



9472 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9470–9488. 

 
1 1

1 2 1 1 2 2( , ) ( ( ), ( ))C u u S R u R u  ,  1 2 1 1 2 2( , ) ( ), ( )S x x C R x R x .  (1) 

Then ( )C   is called a survival copula. 

Let 1 2( , )H x x  be a two-dimensional joint failure function with marginal function 1 2,F F  and let 
1 1

1 2,F F   be quasi-inverses of 1F , 2F , respectively. For 1 2, [0,1]u u  , there is a copula C  as 

  1 1
1 2 1 1 2 2( , ) ( ( ), ( ))C u u H F u F u  ,  (2) 

   1 2 1 1 2 2( , ) ( ), ( )H x x C F x F x .  (3) 

Then ( )C   is called a failure distribution copula. 

The relationship between the failure copula C  and the survival copula C , is 

     1 1 2 2 1 1 2 2 1 1 2 2( ), ( ) 1 ( ) ( ) ( ), ( )C R x R x F x F x C F x F x    ,  

     1 1 2 2 1 1 2 2 1 1 2 2( ), ( ) 1 ( ) ( ) ( ), ( )C F x F x R x R x C R x R x    .  (4) 

Let 1 2( , )f x x be the joint probability density function (PDF) of 1 2,X X , then 

 
  22

1 1 2 21 2
1 2 1 1 2 2

1 2 1 1 2 2

( ), ( )( , )
( , ) ( ) ( )

( ) ( )

C F x F xH x x
f x x f x f x

x x F x F x


 

   
,  (5) 

where 
  2

1 1 2 2

1 1 2 2

( ), ( )

( ) ( )

C F x F x

F x F x


 

 is defined to be the PDF of   1 1 2 2( ), ( )C F x F x . 

In our study, a 2-dimensional Clayton copula is used to depict the dependence relationship of 
strength elements, which is a kind of Archimedean copula and widely used because of its nice 
properties such as its simple form, symmetry and the ability of combining [21]. Its mathematical form 
is given as 

 
1/( , ) ( 1)C u v u v       , [ 1, ) \{0}    ,  (6) 

where the parameter   measures the dependence. It becomes an independent copula as   approaches 
to zero. 

3. Model description and reliability of s -out-of- k  system 

Assume X follows Weibull distribution with shape parameter and scale parameter , denoted 
by ( , )WE   . Then the PDF and the cumulative distribution function (CDF) of X  are, respectively,  

 
1( ) x

Xg x x e
    , 0, 0, 0x     ,  (7) 

and 

 ( ) 1 x
XG x e

  , 0, 0, 0x     .  (8) 

Let 1 2, , , , kT Z Z Z  be s-independent, ( )G t  be the CDF of stress variable T , and ( )F z  be 

the common CDF of strength variables 1 2, , , kZ Z Z . For the general case, the reliability of s -out-
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of- k  system in a multicomponent stress-strength model developed by Bhattacharyya and Johnson [22] 
is given by 

 
   

, 1 2( ( , , , ) )

1 ( ) ( ) ( ).

s k k

k
i k i

i s

R P at least s of the Z Z Z exceed T

k
F t F t dG t

i

 






 
  

 
 


  (9) 

Suppose that the dependence between 1 1( , )X WE    and 2 2( , )X WE    is represented by 

a 2-dimensional Clayton copula. According to Eqs (6)–(8), the joint survival function of 1 2( , )X X  is 

given by 

   1 1 2 2
1 2 1 2

1

( , ) ( ), ) 1( x xS x x C R x R x e e
     


    , 

and according to Eqs (4)–(6), the joint PDF of 1 2( , )X X  can be written as 

    1 2 2 1 1 2 2

1
1

1
21 2

1
1 1 2( , ) 1x x x xe e ef x xx x e

            
 

     .  (10) 

We consider a system which has k  statistically independent and identically distributed strength 
components and each component is constructed by a pair of statistically dependent elements. The 
system is subjected to a common random stress and it works when s  or more components 
simultaneously survive, and a component is alive only if the weakest elements is operating. Assume 
that the marginal distribution of strength vectors 11 21 12 22 1 2( , ), ( , ), , ( , )k kX X X X X X  and the stress 

variable T  are Weibull distribution. Let 1 2min( , ), 1, 2, ,i i iZ X X i k   . The survival function and 

the PDF of 1 2min( , )Z X X  are given by, respectively, 

 

   

   1 2

1 2

1

, 0,

( ) ,

1 ,

Z

t t

Z

S t t

R t P t P X t X t

e e t
     



  

   




  (11) 

and 

    1 2 1 2

1
1

1
1 2 0.1

( , )
( ) ,t t t t

Z

dS t t
f t e e e e t

dt
t

              
 

       (12) 

Let 3( , )T WE    be the stress variable. Using Eqs (8) and (9), ,s kR is given as 

    31 2 1 2

1
1

, 30
1 1 1

k iik
tt t t t

s k
i s

k
R e e e e t e dt

i

               


  



  
            
   

    31 2 1 2

1

30
1 1 1

k iik
uu u u u

i s

k
e e e e e du

i
         


   



  
       

   
 

 

  31 2

03
0

1) 1(
ik i

i j j
k i

i

jk
uu u

k
s j

e e e duC C     
  




 

       (13) 

where u t . 
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4. Maximum likelihood estimation of ,s kR  

Suppose that n  systems are put on a life experiment. The potential data are 

1 1 2 1 1 2 2 2 1 2,...( , ), ( ,, ) ( , )i i i i ik ikX X X X X X  and , 1,2, ,iT i n  , the observed data are 1 2, , ,i i i kZ Z Z  and 

iT  , where 1 2min( , )ij i j i jZ X X  , 1,2, ,i n   , 1, 2, ,j k   . The likelihood function of these 

observed samples  1, 2, , , 1, 2, ,,ijz kz i n j     and 1 2( , , , )nt t t t   is expressed as 

   1 2 3
1 1

( , , , , ; , )
n

Z ij i

k

i j

L z t f z g t    
 

 
  

 
    

   2 31 2 1

1
1

1
1 2

=1 1

1
31ij ij ijij i

n
z t

k
z z z

ij
i j

ie e e tz ee
               










 

    
 
 

   

   2 2 31 1

1
1

1
1 2

1
3

=1 1

11 ,ji jj iij i i

n k n
z z z z

ij
i j i

tnk n n
ie e e z te e

               
 



 


 

    
 
 

    (14) 

The log-likelihood function ignoring the additive constant is given as 

 
   2 21 1

1 1

3

2

3
1 1

1

1
log log log ( 1) log

( 1) log log ( 1) l .

1

og

ij ij ijij z
n k

ij
i j
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e e eL z
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e
        



 


   

 
 

 

      
 

     

  

 
  (15) 

Taking derivatives with respect to 1 2 3, , , ,       and equating them to zero, the likelihood 

equations are obtained as 

 

1 1 1

1 2 1 2

1

21 11 1
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  (20) 

Due to the complex form, we cannot find the analytical solutions of the likelihood equations. The 
numerical methods such as Newton-Raphson iteration algorithm and asymptotic methods [23–25] can 
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be applied to get the MLEs    
1 2 3, , ,     and ̂ . 

Hence, using the invariance property of MLE, the MLE of ,s kR  is obtained from Eq (13) as  

        
1 2 3

,
0

3

0

( 11)
i jk

u
k i j

i j
k i

i s

u

j

u
s k kR e e e duC C     








 



    , 

where 
ˆu t . 

5. Confidence interval 

In this section, we propose two different methods to construct confidence intervals for unknown 
parameters and stress-strength model reliability ,s kR . 

5.1. Asymptotic confidence intervals 

The asymptotic confidence intervals (ACIs) are developed based on the asymptotic normality of 
MLE. Let 1 2 3( , , , , )      , the observed Fisher information matrix of parameter    can be 

written as 

  

( , , , , )1 2 3

11 12 15

21 22 25

51 52 55

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

I I I

I I I
I

I I I
    

 
 
 
 
  
 



  
  

    
  



  
  



  

,  (21) 

where 
2 ln ( )

( )ij
i j

L
I

 


 
 





 , 1 1 2 2 3 3 4= , = , = , =         and 5 =  . 

Therefore, the asymptotic variance-covariance matrix of   can be given by 

  
1, 2, 3, 4, 5 1 2 3

1

11 12 15 11 12 15

21 22 25 21 22 251

ˆ ˆ ˆ ˆ51 52 55 51 52 55ˆ( ) ( , , , , )

ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆ

I I I v v v

I I I v v v
V I

I I I v v v
         







   
   
    
   
   
   

 
 

        
 

 .  (22) 

The asymptotic distribution of the pivotal quantities  ˆ ˆ/i i iiv  , 1,2, ,5i    can be used to 

construct confidence intervals for i . A two-side 100(1 ) % ACIs for i  can be constructed by 

  /2 /2ˆ ˆˆ ˆ, , 1, 2, ,5.i ii i iiz v z v i        (23) 

where /2z  is the upper /2z -th percentile point of standard normal distribution. 

Furthermore, from Eq (13) we know that ,s kR  is a continuous function of 1 2 3, , ,     and  . 

Let , 1 2 3( , , , , )s kR h       . Then ( )h    is a continuous function of 1 2 3, , ,      and   . Hence, 

, 1 2 3
ˆ ˆ ˆ ˆˆ ˆ( , , , , )s kR h        is a consistent estimator of ,s kR  . Furthermore, ( )h    has continuous first-

order partial derivatives. Thus, using the Delta method, we have 
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, ,

,

ˆ
(0,1)

ˆ( )

s k s k

s k

R R
N

Var R


 ,  (24) 

where 
,

5 5
, ,2 1

,
1 1

ˆ( )= =
s k

s k s k
s k R ij

i j i j

R R
Var R I

 


 

 
  . 

Then, the two-side 100(1 ) % ACI for ,s kR  can be written as  

  , /2 , , /2 ,
ˆ ˆ ˆ ˆ( ), ( )s k s k s k s kR z Var R R z Var R   .  (25) 

Note that the ACI of ,s kR  may not be within the interval (0,1). Using logarithmic trans-formation 

and delta method, the asymptotic normality distribution of  ,log s kR  can be arrived as 

        , , ,log log / log (0,1)s k s k s kVR r NR Ra  .  (26) 

Therefore, using the inverse logarithmic transformation, the log-normal 100(1 )%  ACI of the 

reliability ,s kR  becomes 

        , , , , , ,/2 /2exp ( ) / , exp ( ) /s k s k s k s k s k s kR z Var R R R z Var R R 
  
 

.  (27) 

5.2. Bootstrap confidence intervals 

The bootstrap method is used to construct confidence interval for the unknown parameters [26,27] 
when the sample size is small. Compared to the ordinary bootstrap confidence interval (BCI), the bias-
corrected percentile BCI is considered to perform better. The steps to construct the bias-corrected 
percentile BCI are as follow. 

Step 1: Based on the observed sample z  and t , we compute the MLEs 1 2 3
ˆ ˆ ˆ ˆˆ, , , ,      and


,s kR . 

Step 2: Use the Clayton copula function, 1 2
ˆ ˆ ˆ, ,    and ̂  to generate a dependent bootstrap 

sample of strength element, and ̂  and 3̂  to generate a bootstrap stress sample.  

Step 3: Based on the bootstrap sample in step 2, we get the bootstrap estimate of 
1 2 3
ˆ ˆ ˆ ˆ, , , ,     , 

say *
* * * *
1 2 3
ˆ ˆ ˆ ˆ, , , ,     . 

Step 4: Repeat Steps 2–3 N  times to obtain   *(1) *(2) *( )
, ,..., ,

N

       where 

  *( ) *( ) *( )
*( ) *( ) *( ) *( ) *( ) *( )

1 6 1 2 3 ,
ˆ ˆ ˆ ˆ ˆˆ=( ,..., )=( , , , , , )

k k k
k k k k k k

s kR        and 

  *( )*( ) *( ) *( ) *( ) *( )
31 2

ˆˆ ˆ ˆ ˆ ˆ*( ) *

0
0

( )
, 3̂

ˆ ( 1) 1
kk k k k k

i jk
uu uk k

s k k

k i
i j j

k i
i s j

R e e e duC C     












   . 

Step 5: For each variable i  , arrange its bootstrap estimate in an ascending order to obtain 

  *[1] *[2] *[ ]
, ,..., , 1,2, ,6

N

i i i i     . 

Then, a two-sided 100(1 ) % bias-corrected percentile BCI of i  is given by 
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   1 2* * *[ ] *[ ]
( , ) ( , )

i iN N

i L i U i i

 
    , 

where 1 0 /2(2 )i iz z      and 2 0 1 /2(2 )i iz z      ,    is the standard normal cumulative 

distribution function with 1( )z    , and the value of bias correction 0iz   is

 *[ ]

1
0

 of  { }
j

i i
i

number
z

N

 
   
 
 

, 1,2, ,6i   , 1, 2, ,j N  . 

6. Simulation study and data analysis 

6.1. Simulation study 

For illustration, a simulation study is performed to compare the performance of the estimates of 
unknown parameters and reliability ,s kR   in a multicomponent stress-strength system, which are 

obtained for different sample sizes, different model parameters and dependence parameters. The 
performances of the point estimates are compared by using estimated risks (ERs). We also compare 
the ACIs and BCIs in terms of the average interval lengths. The ER of  , when   is estimated by 


i , is given by 

 2

1

1
( ) ( )

n

i

i

ER
n

  


  , 

where n  is the sample size.  
We simulate different strength and stress populations corresponding to the parameters 

1 2 3( , , , ) ( 7, 4, 4,3) , (1, 2,3, 4, )}       and 1, 2    with different sample sizes 20 (30) 80n   . 

Without loss of generality, the 1-out-of-3 multicomponent system and the 2-out-of-4 multicomponent 
system are studied, i.e. ( , ) (1,3)s k    and (2,4). The true value of 1, 3R   with the given parameter 

(      1 2 3  7, 4, 4,1,3 , 7, 4, 4, 2,3, , , 1, 2, 4, 3, ,) 1,        and  1, 2, 4, 2,3   are 0.5529, 0.5587, 0.8626 

and 0.8792, respectively. The true value of 2,4R  with the given parameter 

     1 2 3 7, 4, 4,1,3 , 7, 4, 4, 2,( , 3 ,, , , ) 1, 2, 4,1,3        and  1, 2, 4, 2,3   are 0.5639, 0.6420, 0.9727 

and 0.9905, respectively. The MLEs, ERs and the 95% ACIs, BCIs, and the lengths of ACI and BCI 

based on 5000 replications are listed in Tables 1–4, where  ,s kR  and  ,s kR  represent the estimated 

results when the dependence of the strength elements is considered and the dependence of the strength 
elements is ignored, respectively. The MLEs and ERs of    for different model parameters are 
reported in Table 5. All of the computations are performed using R software and run on LAPTOP with 
1.80 and 2.30 GHz CPU processor, 12.0 GB RAM memory, and windows 10 operating system. 
Newton- Raphson procedure is adopted in the calculation process, and the starting values of unknown 
parameters are randomly chosen around their true values. We have chosen different initial values, and 
the estimated results are stable. 

To study the effect of the dependence between the strength elements on the reliability ,s kR  in a 

multicomponent stress-strength system, we draw graph of  ,s kR  versus the dependency parameter   

for different pairs of 1 2 3( , ,   , ) . Variations in  ,s kR  with respect to   are displayed in Figure 1 

for different model parameters and 50n  . 



9478 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9470–9488. 

Table 1. MLEs, ERs and 95% CIs for parameters and ,s kR  when 1 2 3( , , , , ) (7, 4, 4,3,1)      . 

n   1  2  3      1,3R  2,4R  
1,3R  

2,4R  

20 

MLE 7.3170 3.8023 4.1631 3.1722 0.8779 0.5313 0.5435 0.3906 0.4055 

ER 0.6994 0.4423 0.4135 0.0639 0.2638 0.0519 0.0329 0.0544 0.0595 

ACI_Lower 6.5132 3.5625 3.7228 2.7825 0.5095 0.4403 0.4301 0.2883 0.3009 

ACI_Upper 7.8855 4.2988 4.4224 3.5217 1.0902 0.6192 0.6241 0.4942 0.5085 

ACI_Length 1.3723 0.7364 0.6996 0.7392 0.5807 0.1789 0.1940 0.2059 0.2076 

BCI_Lower 6.6649 3.4171 3.7933 2.7740 0.5578 0.4477 0.4411 0.1752 0.1749 

BCI_Upper 7.9421 4.1874 4.5329 3.5704 1.1980 0.6323 0.6459 0.6598 0.6517 

BCI_Length 1.2772 0.7703 0.7396 0.7964 0.6402 0.1846 0.2048 0.4845 0.4768 

50 

MLE 7.2733 3.8240 4.1305 3.1028 0.9147 0.5344 0.5438 0.3808 0.4296 

ER 0.4590 0.3450 0.3386 0.0492 0.1878 0.0421 0.0637 0.0634 0.0635 

ACI_Lower 6.7840 3.7792 3.5933 2.8160 0.7622 0.4602 0.4491 0.4517 0.3697 

ACI_Upper 7.8365 4.1925 4.4927 3.2982 1.3162 0.6187 0.6385 0.5235 0.7011 

ACI_Length 1.0525 0.4132 0.8994 0.4823 0.5540 0.1585 0.1894 0.0719 0.3314 

BCI_Lower 6.6890 3.4738 3.6804 2.8466 0.6384 0.4516 0.4371 0.2647 0.3879 

BCI_Upper 7.8576 4.1742 4.5806 3.3590 1.1909 0.6173 0.6265 0.5190 0.6226 

BCI_Length 1.1686 0.7004 0.9002 0.5124 0.5525 0.1658 0.1894 0.2543 0.2347 

80 

MLE 7.2216 3.8627 3.9569 3.0746 0.9363 0.5410 0.5532 0.3764 0.3271 

ER 0.4451 0.3267 0.3147 0.0364 0.1421 0.0289 0.0459 0.0350 0.0341 

ACI_Lower 6.7946 3.5681 3.6579 2.8912 0.7808 0.4701 0.4637 0.5807 0.5661 

ACI_Upper 7.8106 4.3031 4.5964 3.2230 1.2548 0.6081 0.6426 0.6476 0.8229 

ACI_Length 1.0160 0.7350 0.9385 0.3319 0.4740 0.1380 0.1789 0.0669 0.2567 

BCI_Lower 6.7015 3.5423 3.4737 2.8005 0.6762 0.4558 0.4422 0.2608 0.2791 

BCI_Upper 7.7417 4.1831 4.4401 3.3487 1.1964 0.6263 0.6210 0.5049 0.6340 

BCI_Length 1.0402 0.6408 0.9664 0.5482 0.5202 0.1705 0.1789 0.2441 0.3549 
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Table 2. MLEs, ERs and 95% CIs for parameters and ,s kR  when 1 2 3
( , , , , ) (7, 4, 4, 3, 2)      . 

n   1  2  3      1,3R  2,4R  
1,3R  

2,4R  

20 

MLE 7.5126 4.4792 4.4516 3.1571 1.7615 0.5461 0.5549 0.4195 0.4188 

ER 0.8864 0.8293 0.9219 0.3424 0.4729 0.0348 0.0945 0.0387 0.0460 

ACI_Lower 6.7231 3.7272 3.7538 2.8649 1.4560 0.4230 0.4266 0.1824 0.1678 

ACI_Upper 7.9214 4.9292 4.8672 3.4931 2.3191 0.6212 0.6783 0.7259 0.6698 

ACI_Length 1.1983 1.2020 1.1134 0.6282 0.8631 0.1982 0.2517 0.5435 0.5020 

BCI_Lower 6.8125 3.8535 3.8818 2.8369 1.2013 0.4636 0.4043 0.5344 0.3342 

BCI_Upper 8.2127 5.1049 5.0214 3.4773 2.3217 0.6286 0.6449 0.6848 0.6741 

BCI_Length 1.4002 1.2514 1.1396 0.6404 1.1204 0.1650 0.2406 0.1305 0.3399 

50 

MLE 7.3853 4.2408 4.2863 3.1043 1.7820 0.5514 0.5684 0.4078 0.4186 

ER 0.6216 0.7029 0.7903 0.1751 0.4002 0.0211 0.0771 0.0279 0.0421 

ACI_Lower 6.9271 3.8161 3.8278 2.7834 1.3922 0.4812 0.4439 0.2592 0.1976 

ACI_Upper 7.9522 4.8798 4.9973 3.3308 2.3916 0.6387 0.6930 0.5865 0.6396 

ACI_Length 1.0252 1.0638 1.1695 0.5474 0.9994 0.1575 0.2491 0.3273 0.4420 

BCI_Lower 6.8415 3.7187 3.7011 2.8180 1.2808 0.4594 0.4326 0.3538 0.3787 

BCI_Upper 7.9292 4.7629 4.8715 3.3906 2.2832 0.6434 0.6642 0.6187 0.6553 

BCI_Length 1.0877 1.0442 1.1704 0.5726 1.0024 0.1840 0.2316 0.2649 0.2766 

80 

MLE 7.2852 3.9432 3.9673 3.0752 1.8959 0.5549 0.6216 0.4076 0.4178 

ER 0.5421 0.6416 0.6117 0.1370 0.3880 0.0175 0.0676 0.0252 0.0405 

ACI_Lower 6.8238 3.5884 3.5435 2.8338 1.5015 0.4621 0.4439 0.2861 0.2148 

ACI_Upper 7.8814 4.5192 4.5687 3.2804 2.3985 0.6186 0.6930 0.5450 0.6208 

ACI_Length 1.0575 0.9308 1.0251 0.4466 0.8970 0.1564 0.2491 0.2589 0.4060 

BCI_Lower 6.7750 3.4496 3.4667 2.8429 1.4090 0.4708 0.4728 0.3976 0.3587 

BCI_Upper 7.7954 4.4368 4.4679 3.3075 2.3828 0.6390 0.6970 0.6191 0.6379 

BCI_Length 1.0204 0.9872 1.0012 0.4646 0.9738 0.1682 0.2242 0.2215 0.2792 
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Table 3. MLEs, ERs and 95% CIs for parameters and ,s kR when 1 2 3
( , , , , ) (1, 2, 4, 3,1)      . 

n   1  2  3      1,3R  2,4R  
1,3R  

2,4R  

20 

MLE 0.8704 2.2951 3.8924 3.2294 0.8718 0.7680 0.8270 0.6777 0.7504 

ER 0.1532 0.3900 0.4775 0.1119 0.3649 0.0383 0.1020 0.1341 0.1428 

ACI_Lower 0.5787 1.7522 3.3125 2.7813 0.6052 0.5378 0.6738 0.4756 0.5301 

ACI_Upper 1.2411 2.7380 5.2672 3.8409 1.2156 0.9982 0.9802 0.8798 0.9707 

ACI_Length 0.6624 0.9858 1.9548 1.0596 0.6105 0.4604 0.3064 0.4042 0.4406 

BCI_Lower 0.5246 1.7830 2.8667 2.3394 0.5514 0.4499 0.6738 0.6234 0.6195 

BCI_Upper 1.2162 2.8172 4.9181 3.7183 1.1922 0.9103 0.9802 0.9384 0.9631 

BCI_Length 0.6916 1.0342 2.0514 1.3789 0.6408 0.4604 0.3064 0.3150 0.3436 

50 

MLE 0.8843 2.1736 4.1870 3.1676 0.8748 0.7441 0.8827 0.6460 0.7453 

ER 0.1457 0.2458 0.3909 0.0919 0.2339 0.0319 0.0831 0.1486 0.1562 

ACI_Lower 0.6777 1.6930 3.3846 2.8009 0.4330 0.5716 0.6752 0.4459 3.4105 

ACI_Upper 1.2654 2.4176 5.2489 3.7343 1.1634 0.9766 0.9999 0.8461 3.5467 

ACI_Length 0.5878 0.7247 1.8644 0.9334 0.7304 0.4050 0.3247 0.4002 0.1362 

BCI_Lower 0.5821 1.8504 3.2635 2.7118 0.4850 0.5382 0.7523 0.5707 0.6717 

BCI_Upper 1.1865 2.4968 5.1105 3.6234 1.2646 0.9432 0.9940 0.9896 0.9428 

BCI_Length 0.6044 0.6464 1.8470 0.9116 0.7796 0.4050 0.2417 0.4189 0.2711 

80 

MLE 0.9149 2.1299 3.9192 3.1293 0.8840 0.8373 0.9733 0.7821 0.8024 

ER 0.1407 0.1667 0.3068 0.0896 0.2191 0.0307 0.0771 0.0765 0.1074 

ACI_Lower 0.7294 1.8963 2.7490 2.7951 0.7467 0.6262 0.8421 0.5985 0.5298 

ACI_Upper 1.2383 2.4338 4.4348 3.6241 1.3511 1.0484 1.0445 0.9657 0.9693 

ACI_Length 0.5090 0.5375 1.6858 0.8290 0.6044 0.4222 0.2024 0.3672 0.4395 

BCI_Lower 0.7023 1.8467 3.0978 2.5967 0.5616 0.6059 0.8121 0.5657 0.7649 

BCI_Upper 1.1275 2.4131 4.7406 3.6619 1.1964 0.9988 0.9877 0.9377 0.9656 

BCI_Length 0.4252 0.5664 1.6428 1.0652 0.6348 0.3929 0.1756 0.3721 0.2007 
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Table 4. MLEs, ERs and 95% CIs for parameters and ,s kR when 1 2 3
( , , , , ) (1, 2, 4, 3, 2)       

n   1  2  3      1,3R  2,4R  
1,3R  

2,4R  

20 

MLE 1.2792 2.3766 4.3199 3.2593 2.3293 0.7946 0.8345 0.5658 0.6629 

ER 0.3905 0.4561 0.7625 0.1128 0.4498 0.1996 0.1702 0.1503 0.1842 

ACI_Lower 0.9152 1.6528 3.7554 2.9289 1.8456 0.5311 0.6518 0.3353 0.3786 

ACI_Upper 1.4212 2.9281 4.9722 3.6493 2.7519 0.9581 0.9627 0.7963 0.9472 

ACI_Length 0.5060 1.2753 1.2168 0.7204 0.9063 0.4270 0.3109 0.4610 0.5686 

BCI_Lower 0.9578 1.7776 3.6985 2.9272 1.8169 0.4311 0.6741 0.3685 0.3139 

BCI_Upper 1.5666 2.9756 4.9413 3.5915 2.8417 0.9581 0.9949 0.9753 0.9707 

BCI_Length 0.6088 1.1979 1.2428 0.6643 1.0248 0.5270 0.3208 0.6068 0.6568 

50 

MLE 1.2357 2.2266 4.1305 3.2452 2.2998 0.8174 0.8981 0.7563 0.6126 

ER 0.3602 0.3852 0.3386 0.0741 0.3213 0.1444 0.1370 0.2775 0.2738 

ACI_Lower 0.8732 1.6254 3.6278 2.7983 1.8392 0.5343 0.7523 0.5131 0.3505 

ACI_Upper 1.4121 2.8985 4.8997 3.3308 2.7819 1.1004 0.9824 0.9995 0.8747 

ACI_Length 0.5389 1.2731 1.2719 0.5325 0.9427 0.5661 0.2301 0.4864 0.5242 

BCI_Lower 0.9810 1.5997 3.5251 2.9720 1.8426 0.4522 0.7760 0.3809 0.3733 

BCI_Upper 1.4904 2.8535 4.7359 3.5184 2.7571 0.9882 0.9720 0.9763 0.9832 

BCI_Length 0.5094 1.2537 1.2108 0.5464 0.9144 0.5360 0.1960 0.5953 0.6099 

80 

MLE 1.1497 2.2147 3.9586 3.1028 2.1064 0.8668 0.9675 0.7012 0.7589 

ER 0.2870 0.2790 0.2685 0.0292 0.2721 0.0878 0.0948 0.1277 0.1622 

ACI_Lower 0.9224 1.6588 3.4544 2.9134 1.5015 0.7812 0.8143 0.5807 0.5572 

ACI_Upper 1.4814 2.7192 4.5687 3.3128 2.3985 0.9524 1.0799 0.8217 0.9606 

ACI_Length 0.5590 1.0604 1.1143 0.3994 0.8970 0.1712 0.2656 0.2410 0.4034 

BCI_Lower 0.8906 1.5826 3.3977 2.8876 1.0650 0.6299 0.8143 0.8676 0.5779 

BCI_Upper 1.4948 2.8468 4.5194 3.3180 2.5429 1.1037 1.0407 1.3989 0.9162 

BCI_Length 0.6043 1.2642 1.1217 0.4304 1.4779 0.4738 0.2264 0.5312 0.3383 

From Tables 1–4, it is observed that the MLEs for unknown parameters and system reliability 
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1,3R , 2,4R  are close to the true value in most cases and the ERs are considerably small for all cases. 

As the sample size increases, the ERs, ACI lengths, BCI lengths for unknown parameters, and system 
reliability 1,3R , 2,4R are decrease as expected. The ACIs are wider than the BCIs in most cases, and 

all the interval estimates cover the true value of the corresponding parameter. The ERs, ACI lengths 
and BCI lengths of 1, 3R  and 2, 4R  considering the dependence of strength elements perform better 

than those ignoring dependence of the strength elements. From Table 5, we can observed that the MLEs 
of   are close to the true value for 2  , rationally close for 1, 4   and move away from the true 

value for 6,8  . The ERs for   are considerably small in Table 5. From Figure 1, it is observed 

that as the increase of the dependence parameter  , the stress-strength reliability  ,s kR  is increasing. 

Table 5. MLEs, ERs of under different parameter when n = 50. 

( 1 2 3, , ,    )  1   2   4   6   8   

(2, 3, 4, 3) 
MLE 1.1984 2.0886 3.8748 6.3712 8.2351 

ER 0.2037 0.1356 0.3884 0.3862 0.3765 

(1, 2, 4, 3) 
MLE 1.2413 2.1189 4.0413 5.6773 7.7763 

ER 0.2173 0.1461 0.1754 0.3780 0. 5906 

(7, 4, 4, 3) 
MLE 1.2081 1.9498 4.2337 6.1694 7.7575 

ER 0.2028 0.1527 0.3838 0.3957 0.5667 

 

Figure 1. Variation in ,s kR   with respect to    for different parameters of 

     1 2 3 7, 4, 4,3 , 2,3, 4,3( , , , 1,2, 4, { },) 3     ◇ . 
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6.2. Data analysis 

In this section, a real data set is analyzed to investigate scenarios of excessive drought. It can be 
found in http://cdec.water.ca.gov/cgi-progs/queryMonthly? SHA, and the data has been studied by 
Wang et al. [12], Kohansal [13], Zhu [16], Kızılaslan and Nadar [18], and kohansal and Shoaee et al. [28]. 
If the water capacity of a reservoir on December of the previous year is over roughly half of the 
maximum capacity, and the minimum water level of August and September is more than the amount 
of water achieved on December at least two years out of the next 5 years, it is claimed that there will 
be no excessive drought afterward. Let 1 2 6, , ,T T T  denote the capacity of December 1980, 1986, 

1992, …, 2010, and 1 1, , 1, ,5k kX Y k    be the capacities of August and September in 1980 1985 , 

respectively. Let 2kX   and 2 , 1, ,5kY k     be the capacities of August and September in 

1987 1991 , respectively. The data are proceeded up to 2015. We convert each data between 0 and 1 
by dividing the total capacity of Shasta reservoir 4,552,000 acre-foot and then the transformed data 
are obtained as: 

111 112 115

121 122 125
1

161 162 165

0.5597 0.8112 0.8296 0.7262 0.4238

0.4637 0.3634 0.4637 0.3719 0.2912

0.7540 0.5381 0.7449 0.7226 0.5612

0.7552 0.6686 0.5249 0.6060 0.7159

0.7188 0.7420 0.4688 0.34

X X X

X X X
X

X X X

 
 
  
 
 
 




  
 51 0.4253

0.7951 0.6139 0.4616 0.2948 0.3929

 
 
 
 
 
 
 
  
 

, 

211 212 215

221 222 225

2

261 262 265

0.5449 0.7659 0.7946 0.7118 0.4345

0.4631 0.3484 0.4605 0.3597 0.2943

0.6814 0.4617 0.6890 0.6786 0.5071

0.7310 0.6558 0.4832 0.5620 0.6941

0.6667 0.7041 0.4128 0.

X X X

X X X
X

X X X

 
 
   
  
 




  
 3041 0.3897

0.7340 0.5693 0.4187 0.2542 0.3520

 
 
 
 
 
 
 
 
 
 
 

， 

 ' 0.7009 0.6532 0.4589 0.7183 0.531 0.7665T  . 

Let 1 2min( , )ik ik ikZ X X ,  , 1, ,6, 1, ,5ikZ Z i k    ,  1 2 6, , ,T T T T  , then the observed 

data ( , )Z T  can be viewed as the observation from a 2-out-of-5 system.  

Before progressing further, we first check whether Weibull distribution in Eq (8) could be used to 
analyze these real-life data. For 1X , the MLEs of parameters 1( , )  , Kolmogorov-Smirnov (K-S) 

statistic and the corresponding p -value are (6.2289,4.0025), 0.1717 and 0.3037, respectively. For 2X , 

the MLEs of parameters 2( , )  , the K-S statistic and the corresponding p -value are (7.5507, 3.9070), 

0.1660 and 0.3417, respectively. For T , the MLEs of parameters 3( , )  , the K-S statistic and the 

corresponding p  -value are (17.8408,7.5439), 0.2047 and 0.9212, respectively. It is observed that 

Weibull distribution is considered as an appropriate model for 1 2,X X  and T . Moreover, for further 

illustration, the empirical cumulative distributions plot and overlay the theoretical Weibull distribution 
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are shown in Figure 2, and the probability-probability (P-P) plots are shown in Figure 3, which also 
imply that the Weibull distribution could be considered as an appropriate model. To check the 
correlation, we compute the correlation coefficient of 1X  and 2X  using the Pearson’s method, it is 

0.9918 and the p -value is 0.0000, so the data ( 1 2,X X ) can be considered to be dependent. 

 

Figure 2. Empirical distribution under real data. 

 

Figure 3. Fitted Weibull models P-P plots under real data. 

Regard 1X  and 2X  as the dependent elements of strength variable and T  as the stress variable. 

The probability P  (at least s of the ( 1 2, , , kZ Z Z ) exceed T ) can be viewed as the measure of no 

excessive drought. Based on the proposed methods, the estimates and 95% confidence intervals of the 
model parameters and reliability are listed in Table 6.  
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Table 6. Estimates and 95% CIs for data ( ,Z T ). 

 1  2  3      2,5R  
2,5R  

MLEs 4.0798 5.1597 3.5496 4.0182 4.4405 0.5227 0.5707 

ACI_Lower 3.0553 4.0073 2.6484 3.2071 3.5417 0.4242 0.4799 

ACI_Upper 5.1043 6.3121 4.4508 5.0345 5.3393 0.6212 0.6786 

ACI_Length 2.0490 2.3048 1.8024 1.8274 1.7976 0.1970 0.1987 

BCI_Lower 3.0634 3.9896 2.4534 3.3251 3.4979 0.4294 0.3329 

BCI_Upper 5.0213 6.2142 4.2781 5.1210 5.3015 0.6215 0.6201 

BCI_Length 1.9579 2.2246 1.8247 1.7959 1.8036 0.1921 0.2872 

7. Conclusions 

In this paper, we have studied the reliability analysis of multicomponent stress-strength model for 
the s -out-of- k  system when the strength variable is constructed by a pair of s-dependent elements, 
which is described by a Clayton copula function. Based on the observed sample and the copula theory, 
the MLEs, ACIs as well as the BCIs for unknown parameters and ,s kR   are obtained using the 

asymptotic normality property, delta method and the sampling theory. The simulation study indicates 
that the ERs, ACI lengths and BCI lengths for the unknown parameters and ,s kR are decreasing as the 

sample size increases. The BCIs are more attractive than the associated ACIs in terms of the average 
confidence interval lengths, and all the confidence intervals cover the true value of the corresponding 
parameter. The ERs, ACI lengths and BCI lengths of 1, 3R  and 2, 4R  for the case of considering the 

dependence perform better than those for the case of ignoring the dependence. The MLEs of   are 
close to the true value for 2  , rationally close for 1, 4   and move away from the true value for

6,8   . The variables in ,s kR  with respect to  is moderate, and ,s kR  increases with respect to  for 

different parameters. 
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Nomenclature 

1 2,i iX X           strength variable 

1 2min( , )i i iZ X X  minimum of the strength variables 

T               stress variable 
k               number of components  

,s kR            reliability of s -out-of- k system 

PDF           probability density function 
CDF           cumulative distribution function 

( )F             CDF of strength variable 
( )G             CDF of stress variable 

( )Zf            PDF of Z  

1 2( , )f x x        joint PDF of 1X and 2X  

( )C            survival copula  
( )C            failure distribution copula 

( , )WE         Weibull distribution with shape parameter and scale parameter  

MLE          maximum likelihood estimate 


,s kR            MLE of ,s kR when the dependence is considered 


,s kR            MLE of ,s kR when the dependence is ignored 

ER            estimated risk 
ACI           asymptotic confidence interval 
BCI           bootstrap confidence interval 


