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Abstract: Academic spaces in colleges and universities span classrooms for 10 students to lecture halls
that hold over 600 people. During the break between consecutive classes, students from the first class
must leave and the new class must find their desks, regardless of whether the room holds 10 or 600
people. Here we address the question of how the size of large lecture halls affects classroom-turnover
times, focusing on non-emergency settings. By adapting the established social-force model, we treat
students as individuals who interact and move through classrooms to reach their destinations. We find
that social interactions and the separation time between consecutive classes strongly influence how
long it takes entering students to reach their desks, and that these effects are more pronounced in larger
lecture halls. While the median time that individual students must travel increases with decreased
separation time, we find that shorter separation times lead to shorter classroom-turnover times overall.
This suggests that the effects of scheduling gaps and lecture-hall size on classroom dynamics depends
on the perspective—individual student or whole class—that one chooses to take.
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1. Introduction

Pedestrian crowds display complex, nonlinear dynamics [1], and understanding their collective
behavior is an active research area [2–6] with early empirical studies dating to over six decades ago [7].
As pedestrians move toward their destinations, they interact with each other, respond to external
signals, and account for physical obstacles in their environment, such as a classroom, train, or theater.
Understanding how crowds travel through these spaces has applications to design [1,5,8], disease tracing
or guidelines [9, 10], evacuation [11–15], crowd management [16], scheduling and route choice [17],
and other areas of societal interest. The study of pedestrian crowds is thus interdisciplinary, drawing
on fields including biology, sociology, psychology, physics, engineering, computer science, statistics,
and mathematics [2, 18–20]. Here we take a mathematical modeling perspective and, motivated by the
widespread presence of high-enrollment classes in universities, we focus on student movement and
classroom-turnover dynamics in large lecture halls.

Empirical methods for studying pedestrian dynamics include questionnaires [20], observations in the
field [21,22], and experiments in lab settings [14,20,23–25]; see [26] for a recent review. Complementing
these methods, mathematical approaches to crowd behavior have spanned many techniques, and
we highlight the reviews [2–5, 18, 27] (and references therein) for a more extended discussion than
we include here. Researchers have developed macroscopic models [28–33] for crowd density and
mesoscopic, kinetic-theory models [34–38]. On the microscopic side, prior work includes cellular-
automaton [21, 39–45] and lattice-gas models [46–48] that treat pedestrians as individuals moving in
discrete space. Off-lattice microscopic models feature differential equations for pedestrian movement
and can be velocity- or acceleration-based [3]. Models built on the social-force concept [1, 19, 49]—the
framework that we use here—are a prominent off-lattice approach that has been widely studied and
adapted (e.g., [12, 16, 50–54]). Researchers have also developed hybrid models [55] and detailed
agent-based approaches [56,57], as well as optimal-control and game-theoretic perspectives [17,58–64].

Mathematical modeling of crowds often centers on evacuation in venues including airplanes [45],
theaters [22, 44], classrooms [40, 41, 46, 56, 57, 65, 66] , and general rooms without internal
barriers [39,42,47,67]. By combining experiments with a lattice-gas model, Helbing et al. [46] found a
broad distribution of escape times for students in a small, 30-seat classroom. Focusing on a larger room
with 168 seats, Fu et al. [65] simulated student movement using a cellular-automaton model. Design
questions related to barrier placement, door number, aisle organization, and door width also come up
naturally in evacuation studies [1]. For example, Varas et al. [40] tested how different doors affect egress
in classrooms of 50–70 seats, and Gao et al. [44] implemented alternative aisle configurations in a
theater with 900 seats. In a related vein, Li et al. [15] investigated the effects of exit width on evacuation
in classroom environments using a cellular automaton approach.

Across evacuation models and experiments, motion is unidirectional rather than bidirectional:
everyone (with the possible exception of emergency workers) seeks to exit the space. The “faster is
slower” dynamic [12,68] can emerge in these settings. This is a phenomenon in which evacuation slows
down when pedestrians attempt to move too fast. Another common feature of unidirectional flows, the
“zipper effect” occurs when pedestrians stagger themselves as they encounter bottlenecks [24, 25]. On
the other hand, bidirectional motion arises in day-to-day environments including transit platforms [7,16],
where models can be used to help address questions surrounding efficiency, route choice, and design. In
bidirectional motion, collective dynamics such as lane formation or oscillating flows have been observed
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empirically [20] and reproduced in models (e.g., [19, 27, 33, 39, 49, 64, 69, 70]).
Lecture halls in colleges are a venue that combine questions related to evacuation, efficiency, design,

and scheduling. Universities also offer unique pedestrian dynamics to investigate since classes can
vary in size from under 10 to over 500 people. Despite the associated breadth in room size, there is
generally a common scheduling gap between consecutive classes at the same institution. During this
break, students from one class must exit and the next class must find their desks. This raises questions
about how the time that it takes to empty and fill an academic space is related to lecture-hall size,
particularly as universities continue to build or renovate large classrooms [71]. With this motivation,
here we address classroom-turnover dynamics in lecture halls of 200 to 600 desks. Unlike prior models
of pedestrian dynamics in classrooms (e.g., [15, 40, 46, 65]) that have focused on emergency evacuation
or room design for small or moderately-sized classes, we instead directly compare daily movement of
entering and exiting students in large classrooms with different capacities. By considering large lecture
halls with a broad range of sizes, we take a university-campus level perspective that differs from other
studies on emergency evacuation or design in rooms with a fixed capacity. In particular, we use a social-
force modeling approach to elucidate how lecture halls of different sizes—and similar design—affect
bidirectional student movement and classroom-turnover times in routine, non-emergency settings.

2. Model and methods

To better understand how lecture-hall size is related to classroom-turnover time, we develop
an off-lattice model of student dynamics by building on the social-force approach to treat the
movement of entering and exiting classes in lecture-hall domains [1, 19, 49]. In the social-force
framework [1, 12, 19, 49], general pedestrian “particles” experience acceleration toward their desired
velocity, repulsive forces to account for physical obstacles in the domain or interactions with
other pedestrians, and possible attractive forces. Importantly, social-force models have been able to
replicate many realistic phenomena such as lane and stripe formation [1, 19, 49] or oscillating flows at
bottlenecks [19, 49]. Given the flexibility of this off-lattice approach, its widespread use, and its ability
to reproduce a range of observed crowd dynamics, we choose it as the basis for student movement in our
work. In addition to developing rules for student behavior related to arrival, exit, and finding desks, we
adapt the social-force approach to account for forces from realistic obstacles and walls in lecture halls.

Treating each student as an independent agent with their own set of intrinsic features (such as a
preferred desk in the classroom), we couple a social-force approach for pedestrian movement with a
model of entering and exiting classes that includes rules for how individuals transition between different
destinations, such as a door or a desk. We account for heterogeneity in a simplified way by assigning
each agent several individual parameters, including a preferred speed, classroom desk, and (depending
on if they are entering or exiting the room) an arrival or pre-movement time, among other variables.
Informed by the size of large lecture halls at many universities [71–73], we develop several realistic
lecture-hall domains, including features such as desks and a vestibule, for student agents to move
through in our simulations. In Sections 2.1 and 2.2, we describe how we model lecture-hall spaces and
student behavior, respectively. Figure 1 and Table 1 summarize our model and notation. To encourage
further work on student dynamics in large lecture halls, all of our code is available on GitLab [74] and
our model parameters are given in Table 2 in Section 2.3 and in supplementary material. We discuss
how we test the impact of stochasticity in our model on our results in Section 2.4.
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Figure 1. Model overview. (a) We model our baseline domain roughly after our measurements
of Rock Hall at the University of California, Davis [72]. We refer to this baseline domain as
“our Rock Hall”. (b) In our simulations, the symbol shape marking each student’s position
indicates the region of the building in which the student is located. We consider student i to
be in their aisle (desk row) if they are in the classroom with row status Ri(t) = 0 (Ri(t) = 1);
see Section 2.2.1. (c) All students experience no-flux boundary conditions along the building
walls and desk rows; students with a row status of zero also experience no-flux conditions
along the aisles. (d) As an entering (exiting) student moves toward a desk (building door),
their current destination changes. (e) Each student’s movement is governed by repulsion from
other students and strong local repulsion to model agents not occupying the same space. The
maximum of f col is about 140 m/s2 at d = 0. (f) Students feel a force directing them toward
their destination and desired speed. To allow pedestrians to make sharp turns when they enter
or exit their row of desks, we use a stronger desired-velocity force for students with Ri(t) = 1.
We plot ||fdes(d)|| for vavg = 1.34 m/s in Eq (2.13) [75].
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<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

Output at!
next time:

Vi(t + �t) = 0
<latexit sha1_base64="4EYq71jw1xqQRO+slBJXPxYTlZA=">AAACBXicbVDJSgNBEO2JW4xb1KMeGoMQEcJMFPQiBPXgMYJZIAmhp1OTNOlZ6K4Rw5CLF3/FiwdFvPoP3vwbO8tBEx8UPN6roqqeG0mh0ba/rdTC4tLySno1s7a+sbmV3d6p6jBWHCo8lKGqu0yDFAFUUKCEeqSA+a6Emtu/Gvm1e1BahMEdDiJo+awbCE9whkZqZ/ebCA/oekl12BZ5PG5eg0RG8YheULudzdkFeww6T5wpyZEpyu3sV7MT8tiHALlkWjccO8JWwhQKLmGYacYaIsb7rAsNQwPmg24l4y+G9NAoHeqFylSAdKz+nkiYr/XAd02nz7CnZ72R+J/XiNE7byUiiGKEgE8WebGkGNJRJLQjFHCUA0MYV8LcSnmPKcbRBJcxITizL8+TarHgnBSKt6e50uU0jjTZIwckTxxyRkrkhpRJhXDySJ7JK3mznqwX6936mLSmrOnMLvkD6/MHeeaXPQ==</latexit>

Update!
velocity!
using !

Eq. (2.5)

Velocity and position:!
Calculate each student's !
velocity and apply their current !
boundary conditions.!
  !

Update student positions.

Implement no-flux!
BCs at building!

boundaries using!
Eq. (S5)

Implement no-flux BCs!
at row boundaries and,

Update position using Eq. (2.6) Xi(t + �t)
<latexit sha1_base64="qbeHbpz0VHCNXvr5bDTI2nMkKhA=">AAACAXicbVDJSgNBEO2JW4zbqBfBS2MQIkKYiYIeg3rwGMEskITQ06lJmvQsdNeIYYgXf8WLB0W8+hfe/Bs7y0GjDwoe71VRVc+LpdDoOF9WZmFxaXklu5pbW9/Y3LK3d2o6ShSHKo9kpBoe0yBFCFUUKKERK2CBJ6HuDS7Hfv0OlBZReIvDGNoB64XCF5yhkTr2XgvhHj0/bYw6ooDHrSuQyCgedey8U3QmoH+JOyN5MkOlY3+2uhFPAgiRS6Z103VibKdMoeASRrlWoiFmfMB60DQ0ZAHodjr5YEQPjdKlfqRMhUgn6s+JlAVaDwPPdAYM+3reG4v/ec0E/fN2KsI4QQj5dJGfSIoRHcdBu0IBRzk0hHElzK2U95liHE1oOROCO//yX1IrFd2TYunmNF++mMWRJfvkgBSIS85ImVyTCqkSTh7IE3khr9aj9Wy9We/T1ow1m9klv2B9fAO9zJZq</latexit>

Update student   's row status in Eq. (2.2)
Ri(t + �t) =

(
1 if student i has not yet left their row

0 if i has already left their row (Ri(t) = 0)
<latexit sha1_base64="r5gK7wXJ9dT4NWp7JRTGH1oZAMk="></latexit>

Ri(t + �t) =

8
><
>:

0 if student i has not yet left their row

1 if i has already left their row (Ri(t) = 0)
<latexit sha1_base64="T6G8vyhtjG1eCnCxhRrZVnIOk6U="></latexit>Set student   's destination using Eqns. (2.3)–(2.4)

Ri(t + �t) =

(
1 if student i has not yet left their row

0 if i has already left their row (Ri(t) = 0)
<latexit sha1_base64="r5gK7wXJ9dT4NWp7JRTGH1oZAMk="></latexit> Check if student    has reached their final destination for the first time

Entering students who are not yet active!
arrive (                                 ) with rate    

Update the set!
of active students

Remove exiting students if they have reached their building door 

↵
<latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>

Di(t + �t)
<latexit sha1_base64="yb5u6Kv3lWFS1Sv85ICcaF7TrN4=">AAACAXicbVDJSgNBEO2JW4xb1IvgpTEIESHMREGPQXPwGMEskITQ06lJmvQsdNeIYYgXf8WLB0W8+hfe/Bs7y0ETHxQ83quiqp4bSaHRtr+t1NLyyupaej2zsbm1vZPd3avpMFYcqjyUoWq4TIMUAVRRoIRGpID5roS6O7ge+/V7UFqEwR0OI2j7rBcIT3CGRupkD1oID+h6SXnUEXk8bZVBIqN40snm7II9AV0kzozkyAyVTvar1Q157EOAXDKtm44dYTthCgWXMMq0Yg0R4wPWg6ahAfNBt5PJByN6bJQu9UJlKkA6UX9PJMzXeui7ptNn2Nfz3lj8z2vG6F22ExFEMULAp4u8WFIM6TgO2hUKOMqhIYwrYW6lvM8U42hCy5gQnPmXF0mtWHDOCsXb81zpahZHmhySI5InDrkgJXJDKqRKOHkkz+SVvFlP1ov1bn1MW1PWbGaf/IH1+QOeUJZW</latexit>

At+�t
<latexit sha1_base64="4QHsKdMcMgNM2+CZaZsoRnfqCOg=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCIJSkCrqsj4XLCvYBTQiT6aQdOnkwcyOUUDf+ihsXirj1L9z5N07aLLT1wIXDOfdy7z1+IrgCy/o2FhaXlldWS2vl9Y3NrW1zZ7el4lRS1qSxiGXHJ4oJHrEmcBCsk0hGQl+wtj+8zv32A5OKx9E9jBLmhqQf8YBTAlryzH0nJDCgRGSXYy+DE+eGCSAYxp5ZsarWBHie2AWpoAINz/xyejFNQxYBFUSprm0l4GZEAqeCjctOqlhC6JD0WVfTiIRMudnkgzE+0koPB7HUFQGeqL8nMhIqNQp93Znfq2a9XPzP66YQXLgZj5IUWESni4JUYIhxHgfucckoiJEmhEqub8V0QCShoEMr6xDs2ZfnSatWtU+rtbuzSv2qiKOEDtAhOkY2Okd1dIsaqIkoekTP6BW9GU/Gi/FufExbF4xiZg/9gfH5A226lt4=</latexit>

Ri(t + �t) =

8
><
>:

1 if student i has not yet left their row

0 if i has already left their row (Ri(t) = 0)
<latexit sha1_base64="Swax5CaR26stYWcwraoK+FaCLL4="></latexit>Ri(t + �t) =

(
1 if student i is already in their row (Ri(t) = 1)

0 if i has not yet reached their desired row
<latexit sha1_base64="/zVjKrbSGMf/H6h8FN93Gtme51A="></latexit>

Ri(t + �t) =

(
1 if student i has not yet left their row

0 if i has already left their row (Ri(t) = 0)
<latexit sha1_base64="r5gK7wXJ9dT4NWp7JRTGH1oZAMk=">AAACh3icbVHLbtNAFB27BdrwCmXJ5ooYKQUptduKdoNUHguWBZG2UhxF4/F1Mup4bM1ct7Ws/AofxY6/YeK6EqRcaaSjc8+5r0lKJS2F4W/P39h88PDR1nbv8ZOnz573X+yc2aIyAseiUIW5SLhFJTWOSZLCi9IgzxOF58nl51X+/AqNlYX+QXWJ05zPtcyk4OSoWf/n95kc0rv4CyriQLvwAeIE51I3wlW1y15MeENNEAUgM7BUpagJAhnAglvQBUGNBAozAlqgNGCK6yXE8Z0vbH13eq7cbGm9podh0E7hmofBrmuJOu3az/qDcBS2AfdB1IEB6+J01v8Vp4WocjelUNzaSRSWNG24ISkUutqVxZKLSz7HiYOa52inTXvHJbxxTApZYdxzW7bs346G59bWeeKUOaeFXc+tyP/lJhVlx9NG6rIi1OK2UVYpoAJWnwKpNChI1Q5wYaSbFcSCGy7IfV3PHSFaX/k+ONsfRQej/W+Hg5NP3Tm22Cv2mg1ZxI7YCfvKTtmYCW/Te+sdeIf+tr/nv/ePb6W+13lesn/C//gH9Iy+xw==</latexit> If student    has reached their final target for the first time, set              

Ri(t + �t) =

(
1 if student i has not yet left their row

0 if i has already left their row (Ri(t) = 0)
<latexit sha1_base64="r5gK7wXJ9dT4NWp7JRTGH1oZAMk="></latexit>

tactivej = t + �t
<latexit sha1_base64="1xpnGW3flr38tnLsuzxYrekDBWU=">AAACCXicbVDJSgNBEO2JW4zbqEcvjUEQhDATBb0IQT14jGAWSGLo6VSSNj0L3TXBMOTqxV/x4kERr/6BN//GznLQxAcFj/eqqKrnRVJodJxvK7WwuLS8kl7NrK1vbG7Z2ztlHcaKQ4mHMlRVj2mQIoASCpRQjRQw35NQ8XqXI7/SB6VFGNziIIKGzzqBaAvO0EhNm2Lz/q6O8IAJ4yj6MKTnFOkRrV+BRGZsO+vknDHoPHGnJEumKDbtr3or5LEPAXLJtK65ToSNhCkUXMIwU481RIz3WAdqhgbMB91Ixp8M6YFRWrQdKlMB0rH6eyJhvtYD3zOdPsOunvVG4n9eLcb2WSMRQRQjBHyyqB1LiiEdxUJbQgFHOTCEcSXMrZR3mTKZmPAyJgR39uV5Us7n3ONc/uYkW7iYxpEme2SfHBKXnJICuSZFUiKcPJJn8krerCfrxXq3PiatKWs6s0v+wPr8ASvsmVU=</latexit>

j
<latexit sha1_base64="sezUAcifLCsPU4ANWRbU4nmBeg4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANJPjPI=</latexit>

Record                            for each entering student    in Eq. (2.15)   

(a) (b)

tfinal
i = t + �t

<latexit sha1_base64="U4uUWmehZmsgKsOJUnBKWiCRDew=">AAACB3icbVDLSgNBEJz1GeMr6lGQwSAIQthVQS+CqAePEcwDsjHMTnp1yOzsMtMrhiU3L/6KFw+KePUXvPk3TpI9+CpoKKq66e4KEikMuu6nMzE5NT0zW5grzi8sLi2XVlbrJk41hxqPZaybATMghYIaCpTQTDSwKJDQCHqnQ79xC9qIWF1iP4F2xK6VCAVnaKVOaQOvfIQ7zEKhmBx0BD2iSHf8M5DIKHZKZbfijkD/Ei8nZZKj2il9+N2YpxEo5JIZ0/LcBNsZ0yi4hEHRTw0kjPfYNbQsVSwC085GfwzollW6NIy1LYV0pH6fyFhkTD8KbGfE8Mb89obif14rxfCwnQmVpAiKjxeFqaQY02EotCs0cJR9SxjXwt5K+Q3TjKONrmhD8H6//JfUdyveXmX3Yr98fJLHUSDrZJNsE48ckGNyTqqkRji5J4/kmbw4D86T8+q8jVsnnHxmjfyA8/4F7O+Yrg==</latexit>

Xj(t + �t) = Dbldg
j

<latexit sha1_base64="ug2OqrCwz7/9Lf3DmPhI1qXQCEs=">AAACHHicbVBNS0JBFJ1nX2ZfVss2QxIYgbxnQW0CKRctDTIFNZk33qdT8z6YuS+Shz+kTX+lTYsi2rQI+jeNZlDagYHDOedy5x43kkKjbX9aqZnZufmF9GJmaXlldS27vnGpw1hxqPJQhqruMg1SBFBFgRLqkQLmuxJq7s3p0K/dgtIiDC6wH0HLZ91AeIIzNFI7u99EuEPXS+qD9nUe95plkMgo7tJj+mOVB1cjmriy0zWxdjZnF+wR6DRxxiRHxqi0s+/NTshjHwLkkmndcOwIWwlTKLiEQaYZa4gYv2FdaBgaMB90KxkdN6A7RulQL1TmBUhH6u+JhPla933XJH2GPT3pDcX/vEaM3lErEUEUIwT8e5EXS4ohHTZFO0IBR9k3hHElzF8p7zHFOJo+M6YEZ/LkaXJZLDj7heL5Qa50Mq4jTbbINskThxySEjkjFVIlnNyTR/JMXqwH68l6td6+oylrPLNJ/sD6+AL+EaH0</latexit>

{Xi(t),Vi(t),Di(t), Ri(t)}i2At
<latexit sha1_base64="vSl/v9sk2qleZh2r4ZL4O0YXSTw="></latexit>

Figure 2. Simulation flowchart. (a) To implement one time step ∆t, we follow three main
steps. (b) First, we synchronously update the velocity and then the position of each active
student (i.e., student in the building) using Eqs (2.5)–(2.6). Second, we check if each student
i’s row status has changed; update each student’s current destination using Eqs (2.3)–(2.4);
and log the time tfinal

i if student i has just reached their final destination. Third, we determine
if any new students have arrived to the building; if so, each of these students j is activated
(i.e., joins At+∆t) and tactive

j is logged. Similarly, we check if any exiting students have
reached a building door; if so, we inactivate these students. Equations (S5)–(S8) are in
supplementary material.

2.1. Lecture-hall domains

Large universities in the United States frequently have classes with 300 or more students (e.g.,
see [73] and Supplementary Figure 1), and institutions have continued to build or renovate large lecture
halls [71]. We construct our baseline domain after Rock Hall at the University of California, Davis. Rock
Hall has functioned as a movie theater and a concert hall, but it is now used mainly for high-enrollment
classes. Rock Hall (Supplementary Figures 1(c)–(d)) can accommodate 416 people and is a good
example of a generic large classroom. As we show in Figure 1(a), our baseline domain—i.e., “our Rock
Hall”—has a vestibule with four external doors and a classroom with two doors and two aisles.

In addition to our baseline domain, we develop four other lecture-hall domains of different sizes;
see Supplementary Figure 2. In particular, in Section 3.3, we investigate how lecture-hall size affects
classroom-turnover times. To do so, we adapt our baseline domain to construct smaller and larger rooms,
spanning 200 to 600 desks (Supplementary Figure 2). Because our focus is on size rather than design,
we make minimal changes to the room geometry and instead accommodate more students by adding
more rows of desks and increasing the length of the room from classroom door to the last row of desks
nearest the instructor. See supplementary material for more details.
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2.2. Student dynamics

We model each student as an agent with seven intrinsic features and four time-dependent variables
as below:

student i = {Ci, τ
pre
i , v

des
i ,D

bldg
i ,D

class
i ,Daisle

i ,D
desk
i︸                                         ︷︷                                         ︸

time-independent features

,

Xi(t),Vi(t),Di(t),Ri(t)︸                      ︷︷                      ︸
time-dependent variables

}, (2.1)

where Ci denotes student i’s class (entering or exiting); τpre
i is the time that it takes student i to prepare to

leave their desk (if they are in the exiting class); vdes
i is their desired speed; Dbldg

i ,D
class
i , Daisle

i , and Ddesk
i

correspond to student i’s desired building door, classroom door, aisle destination, and desk, respectively;
Xi(t) is their position; Vi(t) is their velocity; Di(t) is their current destination; and Ri(t) is a status
variable that logs whether or not student i is in a desk row. Figure 2 overviews how we update student
i’s time-dependent features.

We assume that there are Nenter ≥ 0 and Nexit ≥ 0 students in the entering and exiting classes,
respectively. We letAt ⊂ {1, ...,Nenter + Nexit} be the set of students who are in the building (or “active”)
at time t, and we only track this set of active students in our simulations (Figure 1(a)). Our model of
student behavior then includes three main components: differential equations for agent movement in
lecture-hall domains (Section 2.2.2), discrete-time rules for arrival and exit at the building doors (Section
2.2.3), and discrete-time rules that govern how each student i’s current target Di(t) is selected from among
Dbldg

i , Dclass
i , Daisle

i , and Ddesk
i and how their row status Ri(t) evolves (Section 2.2.1). As initial conditions,

we assume that each student i in the exiting class starts at a desk with zero velocity. Once active, entering
students begin with zero velocity at one of the building doors. We also allow Nearly ≥ 0 entering students
to start in the vestibule. See supplementary material for details about our initial conditions.

To account for some variability, we assign each student i a pre-movement time τpre
i and desired speed

vdes
i . We draw the desired speeds from a normal distribution with mean vavg = 1.34 meters per second

(m/s) and standard deviation vstd = 0.37 m/s; these values are based on prior studies [1,23,49,54,70,75].
To our knowledge, data on the time that it takes people to gather their belongings and prepare to move
after a lecture in non-emergency settings is limited. Notably, Zhang et al. [66] track pre-movement
times in classrooms during evacuation experiments. The study [22] also provides pre-movement times
for evacuations in a theater. Motivated in part by the distributions in [22], we sample τpre

i for exiting
students from a normal distribution with mean µpre = 35 s and standard deviation σpre = 20 s. We set
τ

pre
i = 0 for entering students. In practice, we truncate the distribution for vdes

i at one standard deviation
from the mean, and we implement cutoffs for τpre

i to ensure this delay time is positive and no longer
than 2 minutes.

2.2.1. Student destinations

In our model, entering students become active at building doors and have a final goal of reaching the
position of their desk (Ddesk

i ). Each exiting student i starts at a desk and has a building door (Dbldg
i ) from

which they seek to exit. At the start of a simulation, we assign desks and building doors to pedestrians
uniformly at random from the set of desks and four building doors, respectively; see Figure 1(a).
However, if a student immediately moved toward their desk when they entered the building, they would
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attempt to travel through walls. We thus introduce two intermediate destinations, and student i’s current
target Di(t) changes as they move through space.

As we show in Figure 1(d), if student i is in the entering class and has arrived to the building, their
first destination is Dclass

i , corresponding to the internal door that they will use to enter the classroom.
Their next target is Daisle

i , the location in the center of the aisle associated with their desired row of
desks. Once student i has reached this “aisle destination”, their final target is the coordinates of their
desk, namely Ddesk

i . Similarly, if student i is in the exiting class, their first target is Daisle
i . Once they

have exited their row of desks, student i seeks to move toward their classroom door (Dclass
i ) and then

their building door (Dbldg
i ). Importantly, Dclass

i and Daisle
i depend on Ddesk

i : we assume students use the
classroom door and travel in the aisle closest to their desk. See supplementary material for details.

To select Di(t) from Dbldg
i , Dclass

i , Daisle
i , and Ddesk

i , we introduce a status variable that tracks whether
or not student i has reached Daisle

i , as below:

Ri(t) =

1 if student i is in their narrow desk row
0 otherwise.

(2.2)

The row status of each student in the entering (exiting) class starts at zero (one) and changes to
one (zero) once they reach their aisle destination. Student i has reached their aisle destination when

||Xi(t) − Daisle
i || < dtol, where dtol = 0.3 m is a tolerance distance and ||x|| =

√
x2

1 + x2
2. We then update

Di(t) as follows:

Di(t) =


Dclass

i if i is not inside the classroom
Daisle

i if i is in the classroom and Ri(t) = 0
Ddesk

i otherwise.

(2.3)

See Figure 1(a). Similarly, for each student i in the exiting class, we specify their current destination as
below:

Di(t) =


Daisle

i if Ri(t) = 1 (i is in their desk row)
Dclass

i if Ri(t) = 0 and i is in the classroom
Dbldg

i otherwise.

(2.4)

We update Ri(t) and Di(t) as appropriate at each time step ∆t = 0.01 s. As we discuss next in Section 2.2.2,
Di(t) and Ri(t) play a role in student movement.
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Table 1. Our notation; see Figures 1 and 2 for a model overview and flowchart, respectively.

Notation Meaning
At set of students that are in the building (i.e., active) at time t
τ

pre
i time that exiting student i takes to prepare to leave their desk (if i is in the entering class,

τ
pre
i = 0)

vdes
i student i’s desired speed

Dbldg
i entering student i’s initial condition or exiting student i’s final target (a building door to

outside; see Figure 1(d))
Dclass

i coordinates of internal door (between vestibule and classroom) that student i uses
Daisle

i student i’s desired destination in the aisle near their row of desks
Ddesk

i exiting student i’s initial condition or entering student i’s final target (a desk in the class-
room)

Xi(t) position of student i at time t
Vi(t) velocity of student i at time t
Di(t) current destination of student i at time t (Dbldg

i , Dclass
i , Daisle

i , or Ddesk
i , depending on their

location and class); see Eqs (2.3)–(2.4)
Ri(t) row status of student i at time t (Ri(t) = 1 if student i is in their narrow desk row and 0

otherwise)
tactive
i time that student i is first active (in the building)

tfinal
i time that student i first reaches their final destination

2.2.2. Student movement

We describe student movement through a social-force modeling approach [1, 19, 49]. This model
treats pedestrians as particles that react to social forces. Pedestrians do not want to bump into other
agents, so they feel a repulsive force from other individuals. At the same time, pedestrians experience
attractive forces toward their destinations. For each active student i ∈ At, the evolution of their position
Xi(t) and velocity Vi(t) is given by:

dVi(t) =


∑

j∈At , j,i

fcol(xi j)dt︸              ︷︷              ︸
collision avoidance

+
∑

j∈At , j,i

frep(xi j, vi j)dt︸                   ︷︷                   ︸
student repulsion

+ fdes(Di − Xi,Vi, vdes
i ,Ri)dt︸                           ︷︷                           ︸

desired velocity

+σdWi(t)︸   ︷︷   ︸
stochasticity

if t ≥ τpre
i

0 otherwise,
(2.5)

dXi

dt
(t) = Vi(t), (2.6)

where Wi is a Wiener process; σ is the noise strength; τpre
i is student i’s pre-movement time (τpre

i = 0 if i
is in the entering class); and the forces fcol and frep depend on the difference between student positions
(centers of mass) xi j = Xi − X j and between their velocities vi j = Vi − V j.

The force fcol operates strongly over a short distance to prevent collisions, and frep acts weakly over a
longer range to help students maintain a comfortable distance from one another. These forces can be
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expressed in terms of potentials U rep and Ucol (see Eq. (2.12)) as below:

fcol(x) = −∇xUcol(ξC(x)), (2.7)
frep(x, v) = −∇xU rep(ξE(x, vδt)),

where ξC(xi j) and ξE(xi j, vi jδt) correspond to the perceived distance between individuals i and j. These
distances can depend on the current difference between their positions (xi j) and on the projected
difference in their future positions (xi j + vi jδt) over a timescale δt, assuming that vi j is constant on the
time interval [t, t + δt).

Following the example of [19, 53], we use two methods for specifying the interaction forces between
students: one depends only on the current distance between their positions (“the circular force speci-
fication”) and the other accounts for their current and projected future positions (“the elliptical force
specification”). The circular distance is ξC(x) = ||x||, and the elliptical distance is given by:

ξE(x, vδt) =

√
(||x|| + ||x + vδt||)2

− ||vδt||
2

2
. (2.8)

As we introduced in Eq (2.7), we define the repulsive forces in our model by taking the gradient of
the potentials U*** with respect to x [49], which yields the following expressions:

fcol(x) = f col(ξC(x))∇xξC(x), (2.9)
frep(x, v) = f rep(ξE(x, vδt))∇xξE(x, vδt),

where, given Eq (2.8), the gradients of ξ∗(·) are given by:

∇xξC(x) =
x
||x||

(2.10)

∇xξE(x, vδt) =
||x|| + ||x + vδt||

2
√

(||x|| + ||x + vδt||)2
− ||vδt||

2

(
x
||x||
+

x + vδt
||x + vδt||

)
, (2.11)

and

f ∗∗∗(x) = B∗∗∗e(r−x)/b∗∗∗ . (2.12)

Here B∗∗∗ is related to the force strength; b∗∗∗ is the interaction range; ∗∗∗ ∈ {col, rep} indicates that
we use different parameters [53] for each force (see Figure 1(e) and Table 2); and r = 0.6 m is the
diameter of the privacy sphere that pedestrians seek to maintain [1]. When δt = 0 s, Eq (2.11) simplifies
to Eq (2.10) and frep has the same form as fcol in Eq (2.9). The elliptical model specification (δt > 0)
allows pedestrian interactions to depend on relative velocity as well as on distance, and it enables the
repulsive force to have a lateral component. As a consequence, this approach leads to smoother, less
confrontational pedestrian behavior [19, 53]. We use δt = 0.1 s, which is similar to values used in [19].

Lastly, to account for each student’s current destination, we specify that agent i ∈ At feels an
attractive force [49, 53] in the direction of d = Di(t) − Xi(t):

fdes(d, v, vdes,R) =


1
τ

(
vdes d
||d||
− v

)
if R , 0

1
τrow

(
vdes d
||d||
− v

)
if R = 0

, (2.13)
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where {τ, τrow} are the relaxation times in which students adapt their velocity Vi(t) to move toward their
current destination Di(t) with speed v; R , 0 means the student is not in a desk row; and R = 0 means
the student is in a desk row. Similar to prior studies [1, 49], we choose a baseline relaxation time of
τ = 1 s. However, we find that students need to make sharper adjustments to their velocity when turning
into (or out of) their desk row and navigating the narrow rows of the classroom. Following the example
in [49], we thus set τrow = 0.1 s for entering (exiting) students who have reached (not yet left) the row
of their desired desk.

We implement no-flux boundary conditions along the building outline. We also treat the boundaries
of the desk rows as physical walls to model desks that are too close together for students to move between
rows; see Figure 1. Additionally, if Ri(t) = 0 in Eq (2.2), we include no-flux boundary conditions along
the aisle boundaries. This models our assumption that entering students do not want to step out of the
aisle unless they have arrived at their desk row. See supplementary material for more information.

2.2.3. Student arrival and exit

At each time step ∆t, if the entire entering class is not yet in the building, students arrive at the doors
stochastically with rate α. In particular, if entering student i < At, then i ∈ At+∆t with probability

p =
α∆t

number of entering students not yet active
. (2.14)

Once all of the entering students are active, no new students enter the building. We define the time that
each student i first becomes active as

tactive
i = earliest time that i is in the building, (2.15)

and we note that tactive
i = 0 s for each exiting student i, since these students begin in the classroom. For

our simulations with only an entering class, we also include Nearly > 0 students who start active in the
vestibule; when we include an exiting class, we use Nearly = 0.

Students from the exiting class become inactive and are removed from our simulation when they are
within a tolerance distance dtol of their assigned building door (Dbldg

i for student i) or have left the building.
Entering students, on the other hand, are active from the time of their arrival onward. We define

tfinal
i = time that i reaches their final destination, (2.16)

where this is the time that entering students first reach their desks and exiting students exit the building
(or reach a distance dtol from their desired building door). If a student does not reach their final target
during our simulation, we set tfinal

i = tmax + 1, where tmax is the total simulation time.
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Table 2. Parameters. See supplementary material for values that are simulation-specific by figure.

Parameter Value Motivation and meaning
vavg 1.34 m/s Mean speed at which students desire to move [49, 75]
vstd 0.37 m/s Standard deviation for the students’ desired speed [75]
τ 1.0 s Relaxation timescale for the force that students outside of desk rows

feel to align with their desired velocity (Eq (2.13)) [1]
τrow 0.1 s Relaxation timescale for the force that aligns students in desk rows

with their desired velocity (Eq (2.13)); less than τ to allow for quick
changes in velocity in desk rows

δt 0.1 s Timescale for how far in advance students can predict the movement
of others (Eqs (2.8)–(9)); similar to choice in [19]

Brep 0.11 m/s2 Repulsion strength to maintain a comfortable distance between pedes-
trians (Eq (2.12)) [53]

brep 0.84 m Interaction range for repulsive force (Eq (2.12)) [53]
Bcol 0.11 m/s2 Repulsion strength in the collision-avoidance force (Eq (2.12)); cho-

sen equal to Brep

bcol 0.084 m Interaction range for collision-avoidance force (Eq (2.12)); chosen to
be 0.1Brep

r 0.6 m Diameter of pedestrian privacy sphere (Eq (2.12)) [1]
σ 0.001 m/s3/2 Noise strength in the differential equation for student velocity

(Eq (2.5)); chosen to include weak noise
µ 0.01 m Small amount of noise in Dclass

i for entering student i (supplementary
material); helps prevent rare head-on collisions in the vestibule

Nenter Varies Number of students in the entering class
Nearly Varies Number of students who are inA0 and start in the vestibule
Nexit Varies Number of students in the exiting class
tsep Varies Time in seconds between when the first class ends and when entering

students begin arriving (range of values tested)
dtol 0.3 m Tolerance distance when updating row status and tfinal (Eq (2.16)–

(3.1)); chosen to be r/2
bbnd 0.6 m Distance from the building walls in which velocity is reduced for

boundary conditions (supplementary material); chosen to be r
btight 0.3 m Distance from doors, aisle walls, or desk-row walls in which velocity

is reduced for boundary conditions (supplementary material); chosen
less than bbnd to accommodate movement in tight spaces

α 0.004175Nenter

students/s
Rate of entering students arriving at the building doors (Eq (2.14));
chosen so that the class arrives over about 4 minutes

µpre 60 s Mean pre-movement time for exiting students; informed by [22]
σpre 35 s Standard deviation in the pre-movement times for exiting students;

informed roughly by [22]
λ

pre
min 0 s Cutoff parameter in our distribution for τpre

i ; chosen so exiting students
do not leave before class ends

λ
pre
max 120 s Cutoff parameter in our distribution for τpre

i ; chosen to be 2µpre
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2.3. Model parameters

We include all of our model parameters in Table 2. To support the reproducibility of our work, we
also list the simulation-specific values of Nenter, Nexit, Nearly, and tsep by figure in supplementary material.

2.4. A-test analysis

Our model includes several stochastic features, such as each student’s initial position and final
destination (e.g., desired desks for the entering class). Uncertainty quantification is helpful to determine
the number of simulations needed to capture the variance in the summary statistics that we use to describe
our results, as shown in [76–78]. We perform this analysis using the A-test measure, as described in [79].
The A-test involves completing 20 sets of k simulations each with the same parameters, and extracting
a relevant measure for describing the simulations. Each set from 1 to 20 is then compared with set 1
based on this measure to return an A-score, which represents the probability that a randomly selected
sample from the first population is larger than a random sample from the second population [80]. More
specifically, the score Ai, j compares sets i and j to determine the significance of the sample size k of
simulations within each set. Following the approach in [79], we compute the discrete approximation of
the A-score as:

Ai, j =
#(Xm > Yn)

k2 + 0.5
#(Xm = Yn)

k2 , (2.17)

where m, n = 1, . . . , k and #(Xm > Yn) is the number of times an element (measure Xm) in set i is greater
than an element (measure Yn) in set j, for all Xm’s in set i and all Yn’s in set j. Similarly, #(Xm = Yn)
is the number of times an element (Xm) in set i is equal to an element (Yn) in set j. Sets i and j each
consist of k simulations.

Figure 3 shows the A-score for 20 sets of our baseline entering simulations (Figures 4 and 5), with
sample sizes ranging from k = 50 to k = 100 and using the parameter values in Table 2. We use
the mean time that it takes students to reach their seat as our measure to compute the A-scores. The
results in Figure 3 are based on k simulations of 400 students entering our Rock Hall. The different
lines in Figure 3 provide a means of interpreting test results: scores above 0.71 or below 0.29 (outside
the dot-dashed lines) mark a large effect of the sample size k on the model results; scores above 0.64
or below 0.36 (outside the dotted lines) indicate a medium effect of the sample size k on the results,
and scores between 0.44 and 0.56 (within the solid lines) illustrate a small effect on the model results.
Therefore, the closer the A-score is to 0.5 for the set comparisons, the smaller the effect that the number
of simulations k has on the mean travel time for entering students in our model. An A-score of exactly
0.5 corresponds to no effect of k on the model results. Note that A1,1 = 0.5, since set 1 is compared to
itself, which provides validation for our A-test analysis.

As the number of simulations increases from 50 (Figure 3(a)) to 100 (Figure 3(c)), we find that
the number of scores Ai, j falling within the solid lines increases. This shows that as the number of
simulations k increases, the impact of stochastic factors on our results decreases. In Figure 3(c), where
each set contains k = 100 simulations, we find that all of the A-scores—except for one—fall within
the solid line interval closest to 0.5. This means that k = 100 simulations are sufficient to capture most
of the variance driven by the stochastic elements in our model. With the exception of the example
simulations in Figures 4, 6(d)–(h), 7(d)–(h) and Supplementary Figure 3, all of our results are thus
based on summary statistics calculated across 100 simulations.
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Figure 3. A-test analysis of our model for the case of 400 students entering our Rock Hall
with no exiting class. We show the A-score, computed using student travel times, for (a) 50,
(b) 75, and (c) 100 simulations. At k = 100, all of the A-scores but one fall within the target
region (solid lines), so we base our results on 100 simulations under each condition.

3. Results

Using our model from Section 2.2, we now present a study of the effects of lecture-hall size on
classroom-turnover times. We discuss our results in terms of two time quantities, both measured in
seconds: the simulation time t and the travel time of individual students. When there is an exiting class
present, t = 0 s is the time when this first class ends. Understanding how long it takes all of the entering
students to reach their desks measured from t = 0 s thus provides information about classroom-turnover
times. From a single student i’s perspective, we also find it useful to define their travel time from
building door to desk (or vice versa), namely

ttrav
i = tfinal

i − tactive
i , (3.1)

where tactive
i and tfinal

i are defined in Eqns. (2.15)–(2.16), respectively.
In Section 3.1, we begin with a baseline study of how quickly an entering (exiting) class of students

can reach their desks (leave the building) in the absence of another class. This models dynamics
in the first or last class of the day, respectively. In Section 3.2, we consider two classes, scheduled
consecutively, in the same lecture hall. Lastly, in Section 3.3, we test the effects of lecture-hall size on
classroom-turnover times. Our results indicate that lecture-hall size and the time between consecutive
classes work together to control how long it takes students to exit the classroom or reach their desks.

3.1. Baseline: our Rock Hall with one class

To establish a baseline for our model, we first simulate 400 students entering our Rock Hall domain,
with no exiting class. Figure 4 shows time snapshots of students entering the classroom, as well as
summary statistics of pedestrian dynamics. The students’ mean speed is close to their average desired
velocity in the vestibule, and it decreases with time as students reach their desks (Figure 4(a)). Similarly,
students are relatively spread out in the vestibule, but the mean distance between nearest-neighboring
students eventually decreases to the distance between desks (Figure 4(b)). We provide the distribution
of student travel times ttrav

i in Figure 4(c).
Since our model is stochastic, we also investigate if these trends are consistent across multiple

simulations. In Section 2.4, we described the A–test method for uncertainty quantification based on [79];
also see Eq (2.17). Using this method, we find that 100 simulations of our model are sufficient to
mitigate the uncertainty introduced by stochastic model elements on the mean student travel time in
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Eq (3.1). For the remainder of our paper, we therefore show summary statistics based on 100 simulations
for our results, with the exception of sample simulation snapshots.
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Figure 4. Example simulation of 400 students entering our Rock Hall, with no exiting class.
(a) We show the mean speed of active students through time for a representative simulation. (b)
As time (from the start of the simulation) passes, the mean distance between nearest students
approaches the average distance between desks. In panels (a)–(b), solid lines denote the mean,
and shaded areas indicate the standard deviation over all active students at each time point.
(c) The distribution for the time (i.e., ttrav

i for student i) that it takes students to travel from a
building door to their desk is right-skewed. Our histogram bin width is 3 s. (d)–(h) We show
positions and velocities of students at five time points for an example simulation.

Figure 5(a)–(c) display speeds and student–student distances across 100 simulations of 400 entering
students in our Rock Hall. Across our 100 simulations, all of the students reach their desks by the total
simulation time (tmax = 280 s). However, we find that 36 students take longer than 100 s to reach their
desk, which can occur when they enter the wrong desk row. This amounts to 0.9% of the total number
of students in these simulations, and as a result we crop the long tail in our travel-time distributions in
Figure 5(c). We similarly observe very low percentages of stuck pedestrians in other simulation settings,
where we again omit these students from our figures; see supplementary material for details.

We next simulate 400 students exiting Rock Hall, with no entering class. Figure 6 shows summary
statistics across 100 simulations, as well as time snapshots for an example simulation. The mean speed
of exiting students in Figure 6(a) behaves opposite to that of entering students in Figure 5(a). Students
initially move slowly as they navigate tight rows and crowded aisles, and they later approach their
desired speed. The mean distance between neighboring students is initially determined by the spacing
between desks, but it increases as students leave their desks (Figure 6(b)). As more students exit the
building, the standard deviation in student–student distance increases, since it is calculated over a smaller
number of agents. The time that it takes students to exit appears to roughly follow a normal distribution;
see Figure 6(c). As we discuss in Section 2.2, we model the amount of time τpre

i that students take to
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gather their belongings by a truncated normal distribution with parameters in Table 2. The travel-time
distribution is, as we would expect, a shifted version of this distribution of pre-movement times.
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Figure 5. Entering class of 400 students in our Rock Hall, with no exiting class. All panels
present summary statistics across 100 simulations. In agreement with Figure 4, the (a) mean
speed and (b) mean distance between nearest students decays in time. In panels (a)–(b), solid
(shaded) lines are the mean (standard deviation) across 100 simulations. (c) We show the
travel-time distribution for all students across 100 simulations. The histogram bin width is 0.5
s, and we crop the long tail in the distribution at 100 s; a few outlier agents (about 0.9% of
the total number of students across 100 simulations) take a longer time to reach their desks.
For comparison with Figures 4(d)–(h), we show in (d)–(h) mean mass (number of students in
grid squares with area 1.5 m2) and (i)–(m) associated mean speed in those grid squares across
100 simulations at five time points; see supplementary material. Each grid square contains at
most one desk, and desk positions are indicated as gray or black squares. Note Nentering > 0
students start in the vestibule, visible in panels (d) and (i). In panels (l)–(m), most students
have reached their desks, so the velocities are means across a limited number of agents.

3.2. Our Rock Hall with both entering and exiting classes

Scheduling consecutive classes in the same lecture hall is likely to impact student travel times.
To investigate this, we consider bidirectional simulations in our Rock Hall. Specifically, we model
Nexiting = 400 students who begin to exit the lecture hall at the end of their class, and Nentering = 400
students who start arriving to the building for the next class. We specify a separation time tsep = 90 s
between the end of the first class and the time when students in the next scheduled class begin to arrive
at the building doors. For all of our simulations with both entering and exiting classes, we set Nearly = 0,
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so there are no students who start in the vestibule.

We show summary statistics across 100 simulations in Figure 7, as well as time snapshots illustrating
how students from the two classes interact in an example simulation. Prior to the separation time of 90 s,
only exiting students are active. As students in the entering class begin to arrive at the building doors,
we observe more interactions between the two classes, especially in the vestibule and at the classroom
doors. Once all of the exiting students have left the building, entering students are the only pedestrians
present. In our model implementation, these observations correspond to changes in the set of active
studentsAt. The mean overlap time in which students from both classes are active (i.e., the time frame
in which the mean number of entering students and the mean number of exiting students in the building
are both positive) is illustrated in Figure 7(b).

Since more students are present, mean speeds stay below the levels that our pedestrians achieved in
entering- or exiting-only simulations, as we show in Figure 7(a). These social-force interactions also
increase the mean time that students take to reach their desired desk or building door, depending on their
class. The travel-time distributions for entering and exiting students in Figure 7(c) both show longer
tails than the corresponding distributions in Figures 5(c) and 6(c).
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Figure 6. Exiting class of 400 students in our Rock Hall, with no entering class. Panels (a)–(c)
present summary statistics across 100 simulations. (a) Students start with zero velocity at their
desks and approach the mean desired speed in time. (b) As time passes, more students depart
the building and the standard deviation in student–student distances grows. In panels (a)–(b),
solid (shaded) lines indicate the average (standard deviation) over 100 simulations. (c) The
distribution for the time that it takes students to exit the building after class ends has a similar
shape as our distribution for the time (τpre

i for student i) that it takes students to gather their
belongings and leave their desk. Histogram bin width is 3 s. (d)–(h) In this example simulation,
blue squares denote students who are active but still gathering their belongings; these students
can exert forces on others but do not feel forces themselves until t ≥ τpre

i ; see Eq (2.5).
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Figure 7. Consecutive classes of 400 students each in our Rock Hall, with one class exiting and the
next class entering. Panels (a)–(b) present summary statistics across 100 simulations. (a) We indicate
the mean desired speed (dashed line; see Eq (2.13)) and the mean speed for each class of students
through time. We assume entering students do not begin arriving at the building doors until tsep = 90 s
after the end of the first class. (b) As time passes, fewer exiting students remain, and more entering
students become active. In panels (a)–(b), solid (shaded) lines are the average (standard deviation)
over 100 simulations. (c) The travel-time distributions have longer tails than in the entering-only
(Figure 5(c)) and exiting-only (Figure 6(c)) simulations. Histogram bin widths are 2 s and 3 s for
entering and exiting students, respectively. (d)–(h) In this example simulation, pedestrians interact
with students from the other class mainly in the vestibule and at the classroom doors.

3.3. Effects of lecture-hall size on classroom-turnover times

Larger lecture halls require students to travel farther, so we expect the time that it takes a single class
to enter or an isolated class to exit to scale with the size of the room. In cases of bidirectional movement,
the possibility for congestion at the classroom doors adds further complexity. Here we investigate the
impact of class size on the time that it takes for the prior class to exit and the new one to find their desks.
We show how this classroom-turnover time also depends on the separation time between the end of the
first class and when entering students start arriving.

To account for lecture halls of different sizes, we adapt our baseline Rock Hall domain to produce four
more domains with 200, 328, 500, and 600 desks, respectively; see supplementary material for details. As
we show in Supplementary Figure 2, all of our domains have the same vestibule, doors, and aisle widths,
and they differ primarily in aisle length, rather than row length. This means that students spend more
time moving down aisles as the room size increases, but the distance that they travel in tight rows of
desks is about the same across our domains. In all of our simulations, we assume class sizes of 200
students in our 200-desk room, 300 in our 328-desk room, 400 in our baseline 416-desk room (Rock
Hall), 500 in our 500-desk room, and 600 in our 600-desk room; we set Nearly = 0 and Nenter = Nexit.
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Figure 8. Consecutive classes for different lecture-hall sizes and separation times. We show
summary statistics across 100 simulations for each class size and separation time. (a) The
travel-time distributions for exiting students are positive-skewed. As class size increases, the
long tails become more prominent. (b) The distributions for the time that it takes entering
students to reach their desks (once they arrive at the building doors) also have long tails, and
the mean travel time increases with class size. Panels (a)–(b) show different class sizes under
a separation time of 90 s; histogram bin width is 3 s. (c) Medians, first and third quartiles
(Q1 and Q3), and non-outlier minimum and maximum travel times for entering students. We
observe a shift in the median travel time and growing positive skew as class size increases and
separation time (or “delay” after the end of the class before the arrival of entering students)
decreases. We define outlier travel times as values that fall below Q1 − 1.5(Q3 − Q1) or above
Q3 + 1.5(Q3 − Q1); see supplementary material. “No social” refers to setting Brep = Bcol = 0
in Eq (2.12). We compute the results in panels (a)–(c) across all agents in 100 simulations.
(d)–(f) We show the mean fraction of students in the exiting (dashed) and entering (solid) class
who have reached their target under a separation time of 120 s, 90 s, and 60 s, respectively,
across our 100 simulations. As the separation time decreases, there is a broader region of
overlap with both classes present. (g)–(i) To highlight how congestion at the classroom doors
increases with decreasing separation time, we show the mean mass (number of students in
grid squares with area 1.5 m2) at t = 120 s across 100 simulations of 400 entering and 400
exiting students in our Rock Hall. See supplementary material for more details and examples.
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Figure 8(a) illustrates the effects of lecture-hall size on the time that it takes students in the first
class to leave the building, assuming a separation time of 90 s between the end of the first class and
the time that students in the next class begin arriving at the building doors. Similarly, Figure 8(b)
shows the time that entering students spend travelling to their desks after they arrive to the building
for rooms of different sizes. The mean travel time for exiting students changes relatively little—by
about 15%—between the 200- and 600-person classrooms. In comparison, the mean travel time for
entering students increases from about 16 s for the 200-person room to about 35 s for the 600-person
room, more than doubling.

We now focus on entering students, since lecture-hall size has the largest impact on their travel times
and classroom turnover depends on all of the students in the next class reaching their desks. Because
the increase in mean travel time for entering students is partly due to the increasingly long tails in our
distributions in Figure 8(b), it is also useful to consider median travel times in Figure 8(c). We find
a similar dynamic: as class size increases from 200 to 600 students for a separation time of 90 s, the
median time that it takes entering students to reach their desks grows from about 15 s to about 26 s.

To tease out whether increased student interactions are responsible for the additional time that
entering students spend travelling in Figure 8(b) or if this is simply due to an increase in lecture-hall
size, we simulate our model with no social forces. This means fcol = frep = 0 in Eq (2.5). Since
each pedestrian in our model acts independently when there are no social forces, this is equivalent to
considering only one student moving in the lecture hall. As we show in Figure 8(c), the median time that
it takes entering students to reach their desks differs by only about 5 s between the 200- and 600-person
classes, under the case of no social forces.

If we instead include social forces but assume that there is no exiting class, the median travel time
for entering students increases by about 6 s between the 200- and 600-person classes. In comparison,
there is a difference of about 11 s between the median travel times of entering students for 200-
and 600-person classes when an exiting class is present (under a separation time of 90 s). We thus
conclude that interactions between students in different classes—rather than simply an increase in the
physical distance that students need to travel—are responsible for extending classroom-turnover times
as lecture-hall size increases.

These observations suggest that the impact of lecture-hall size on classroom-turnover times may
grow as the separation time between the end of the first class and when students in the next class begin
arriving decreases. To test this, we simulate 100 realizations of our model for different lecture-hall
sizes under a separation time of 120 s and 60 s, respectively. As we show in Figure 8(c), the impact
of lecture-hall size on the time that entering students spend travelling to their desk (after arriving) is
most pronounced under a 60 s separation time. In contrast, a separation time of 120 s leads to entering
students having similar dynamics to the setting where there is no exiting class. Across our simulations,
as lecture-hall size increases and separation time decreases, the median travel time for entering students
increases and the long tail in our distributions becomes more prominent.

Our results in Figures 8(a)–(c) take a student-centered perspective, evaluating how long individuals
spend travelling to their desks after they arrive at the building doors. To better understand the influence
of separation time on overall classroom dynamics, we next consider the mean fraction of exiting and
entering students who have reached their final target (a door or desk) as a function of time from the
end of class, across 100 simulations for each lecture-hall size and separation time. As we show in
Figures 8(d)–(f), the mean fraction of exiting students still in the building decays from one to zero in
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time, and the mean fraction of entering students who are not yet at their desk, initially zero until the
separation time has passed, grows as students arrive at the building doors and later reach their desks.

For the 120 s separation time in Figure 8(d), nearly all of the exiting students have left the building
before entering students begin arriving. This can also be seen in Figure 8(g), which provides a heat map of
the number of students in the building at t = 120 s. In comparison, a separation time of 90 s leads to a
longer time interval in which both exiting and entering students are active. As we show in Figure 8(h), this
creates congestion near the classroom doors. Finally, a separation time of 60 s in Figure 8(f) produces an
even longer overlap region and heavy congestion (Figure 8(i)) at classroom doors.

Taken together, Figures 8(a)–(f) highlight that separation times have an opposite effect on the overall
classroom dynamics than they do on the experiences of many individual students. As likely intended
when scheduling classes, we find that a reduction in the time between classes generally leads to faster
overall classroom-turnover times, amongst the separation times that we consider: Figures 8(d)–(f)
show that the time that it takes from the end of the first class for 90% of the next class, on average, to
have reached their desks is shorter for smaller separation times in our model. On the other hand, most
entering students travel for a longer time to reach their desks as the separation time decreases. Our
results therefore suggest that shorter separation times may increase frustration for these students, who
arrive closer to the end of the first class and must wait in the vestibule due to congestion before they can
enter the classroom.

4. Conclusions

Motivated by large lecture halls at colleges in the United States [72, 73, 81], we developed an off-
lattice model for the movement of pedestrians in academic spaces. With a basis in the well-studied
social-force approach [19, 49], which allows for the extensions necessary for our application, our model
allows students in the entering class to arrive at building doors, move through a vestibule, and travel
down classroom aisles to reach the row of their desk. Similarly, we modeled students in the exiting class
as agents who leave their desks at random times after class ends and move toward building doors. We
investigated classroom dynamics—with a focus on classroom-turnover times and the travel times of
individual students—under different class settings (namely entering only, exiting only, or bidirectional),
lecture-hall sizes, and separation times between classes.

Simulating our model without social forces showed that interactions between students play a critical
role in classroom-turnover times. The separation time between the end of class and when students in
the next class begin arriving determines how much exiting and entering students interact, and shorter
separation times increase congestion at classroom doors. We found that the impact of the separation time
between classes on student travel times is more pronounced in larger lecture halls. Interestingly, we also
observed a discrepancy between the effect that separation time has on the travel time of individuals and on
the time that it takes to empty and fill a classroom. While the median travel time for entering students
decreased with increasing separation time, the time required to fill 90% of the class increased with
increasing separation time, particularly in large lecture halls. This suggests that it is important to balance
different perspectives when evaluating how the size of a lecture hall will influence student dynamics.

There are many directions for future work and points of improvement to address limitations of our
model. For example, it is worth noting that the differences in student travel times for different room sizes
seem relatively small—on the order of seconds—in Figure 8. Indeed, while in agreement with prior
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studies of free, unhindered pedestrian movement [75], the speed that agents move in our model may be
too high for a classroom environment. On the other hand, from an individual pedestrian’s perspective,
needing to wait an additional 16 s to enter a 200- versus a 600-person room may be tangible and
frustrating. Future work could adjust our parameters to match data specific to lecture halls or theaters,
and investigate how students perceive different waiting times [20]. It is also important to consider a
broader range of pedestrian movement, including students travelling with wheelchairs or crutches, as
well as classroom features such as changes in elevation (e.g., inclines or stairs) and other obstacles.
We expect that some of these features may be more challenging to incorporate into the framework of
social-force models.

One of the main limitations of our work is that our study focused fully on simulated dynamics.
Designing experiments to track student volunteers moving in large lecture halls, including Rock Hall, is
an especially important area for future research. Figure 8 shows that the time that it takes classrooms
to fully turn over—roughly 5 minutes—in our simulations fits into the common separation time of
about 10 minutes between consecutive classes in many universities; while this suggests that our model
parameters may be in the right ballpark, future empirical studies with student volunteers will provide
a valuable place for further model validation and testing. As empirical data becomes available, our
modeling approach could be adapted and extended to help address questions about how large lecture
halls affect the dynamics of student movement and class scheduling across a campus. For example,
what is the limiting lecture-hall size at which universities need to increase the separation time between
consecutive classes? By extending our model to include travel times between buildings, can one provide
insight into class scheduling as universities build or adapt new lecture halls? To help support future
modeling studies of student dynamics in large lecture halls, all of our code is available on GitLab [74].

In terms of additional limitations and future work, it is also important to better understand the role
of modeling choices in our results. In particular, it will be interesting to compare alternative choices
in model structure and implementation. For example, Chraibi et al. [82] have studied how directing
pedestrians to target destinations according to different strategies affects movement. As we discuss in
the supplementary material, we specified that students move toward the midpoint of classroom doors
with some stochastic variation; future work could test how sensitive our results are to this simplification,
particularly because we see higher congestion near doors. In a related direction, motivated by [83], one
could implement alternative methods for assigning desired speeds.

Several studies (e.g., [84–86]) have compared multiple models of pedestrian dynamics alongside one
another, particularly in the case of bidirectional movement and lane formation. It would be especially
interesting to determine how alternative models affect the dynamics that we see near classroom doors
and to quantify whether or not lane formation is present in our bidirectional simulations. In order to
better understand if our results are model-dependent, implementing alternative models in our classroom
domains is an important direction for future research. For example, the social-force approach can be
adapted to incorporate features such as an effective angle of sight [1, 49] (to model pedestrians in front
of a student having a larger impact on their movement than individuals behind them), or attractive forces
between students in the same class [49] (which may lead to the formation of pedestrian groups). It
would also be interesting to consider approaches such as the centrifugal-force model, which modifies
the repulsion between two pedestrians depending on if the person in front is slowing down [87], and
related models [82]. To further test our results, one could implement cellular automaton approaches, as
well as other models that incorporate anticipation into movement (e.g., [86]).
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Our results on separation times suggest that individuals may shorten how long it takes to reach their
desk by choosing to arrive at the building doors later, particularly for large lecture halls. In contrast,
from a collective perspective, arriving later prolongs the time that it takes to fill the classroom. In the
future, it may be interesting to incorporate game-theoretic decision making into our model. Using our
modeling setup, one could test whether different arrival choices create a dilemma in which the interests
of individuals (i.e., minimizing their social interactions and travel times) conflict with the collective
interest of emptying and filling the lecture hall in an efficient manner. Similar questions of strategic
arrival times have been explored in many contexts, including queuing systems [88, 89], congestion and
congestion pricing in traffic [90, 91], and start times for meetings [92].

More generally, our model does not include dynamic changes in the rules governing pedestrian
behavior, and we assign each student their desk and building door at the start of a simulation. Future
work could include allowing students to actively select their desks and doors in response to the current
conditions in the lecture hall. For example, students could attempt to minimize the number of people
that they must pass in narrow rows to reach their desk, or they could seek to optimize their preference
to be near the front or the back of the class. It would also be interesting to extend our study to allow
students to moderate their speeds based on perceived justness [20] or urgency. While our focus has
been on understanding the role of lecture-hall size in routine settings, our modeling setup and code [74]
could be adapted to investigate other conditions, including evacuation dynamics, lecture-hall design,
or—related to the Covid-19 pandemic [93]—classroom dynamics under social distancing [10].
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