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Abstract: The main objective of this work is to test whether some stochastic models typically used in
financial markets could be applied to the COVID-19 pandemic. To this end, we have implemented the
ARIMAX and Cox-Ingersoll-Ross (CIR) models originally designed for interest rate pricing but trans-
formed by us into a forecasting tool. For the latter, which we denoted CIR*, both the Euler-Maruyama
method and the Milstein method were used. Forecasts obtained with the maximum likelihood method
have been validated with 95% confidence intervals and with statistical measures of goodness of fit,
such as the root mean square error (RMSE). We demonstrate that the accuracy of the obtained re-
sults is consistent with the observations and sufficiently accurate to the point that the proposed CIR*
framework could be considered a valid alternative to the classical ARIMAX for modelling pandemics.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a lung disease caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). In December 2019, the Chinese authorities reported different
cases of this virus in Wuhan. This disease spread rapidly throughout the world from less than 30 cases
at the end of December 2019 to more than 8,455,738 confirmed cases on June 20, 2021.

The first case in Spain was a German tourist, on January 31, 2021. Since then, several cases were
confirmed throughout the country. In Andalusia, the first positive case was reported in Seville on
February 26, 2020. Two days later the first case was confirmed in the province of Jaén, and on March
6 the first case of coronavirus in the city of Jaén.
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As the days went by, due to the high number of infections in the country, the state of alarm was
decreed and a national lockdown was imposed on March 14, which was extended until June 21. The
application of measures such as the use of a mask, perimeter confinements, the closure of non-essential
services, etc., reduced the infection rate two weeks after the declaration of quarantine. During these
years, many researchers from various disciplines have used various modelling tools to analyze the
impact of the pandemic at the global and local levels. In our case, we are going to focus on modelling
the contagion in Jaén in two different ways. The first approach is based on the Autoregressive Integrated
Moving Average with Explanatory Variable (ARIMAX) model [1] which, we found, provides better
performances than the Autoregressive Integrated Moving Average (ARIMA) (on the same line, see
also [2–6]). This is a common model in time series forecasting and is often adopted in finance [7–10].

The second approach is based on the Cox, Ingersoll and Ross (CIR) model. This is a model de-
signed for interest rate pricing that we turn into a forecasting tool. The advantage of this model lies
in its simplicity (being a single factor model) and analytical tractability [11]. The CIR model is mean
reverting and is a squared Ornstein–Uhlenbeck process [12]. Notice that the “Ornstein-Uhlenbeck pro-
cess is a natural model to consider in a biological context because it stabilizes around some equilibrium
point. This corresponds to the homeostasis often observed in biology” [13], and the quasi-stationarity
is relevant with reference to mortality plateaus [13]. Furthermore, we point out a connection to models
for short-term interest rates in financial modelling.

We prove that the proposed transformation of the CIR model, which we have denoted CIR*, out-
performs the classical ARIMAX. For this purpose both the Euler-Maruyama method and the Milstein
method were used, and this is one of the main contributions of the present study. Notice that the sug-
gested approach not only extends the models available to scholars to model pandemics but, also, paves
the way for similar approaches where financial models can be converted into econometric models.

For the implementation of the models on real-world data, we use the data from the moving averages
for 14 days of the daily cases of the city of Jaén, that is, each value represents the average number
of people infected in each of the previous 14 days. This is because, due to the weekend effect and
occasional misreporting, we found that the moving average is a more reliable target. This is due to two
reasons: a) the relatively small size of the city of Jaén, which affects the number of cases, and b) the
effect of the weekend, when reporting is altered. The two effects lead to highly irregular behaviour in
the time series considered. Also, the 14-day moving average is the standard way of reporting data in
Spain during the pandemic, both for publishing data and deciding the different measures (lockdowns,
mobility restrictions, etc.). Over that time series, we estimate the parameters of the considered models,
in such a way that they best fit the data. The forecasts have been validated with 95% confidence
intervals and with statistical measures of goodness of fit, such as the RMSE.

This article is organized as follows. Section 2 briefly summarizes the literature. Section 3 reports
the data and describes the CIR model, as well as the methodology on which it is based. That is
followed by an explanation of the suggested adaptation to forecasting, its calibration and a sketch of
the ARIMAX model. Section 4 shows the obtained results of the two models by comparing them.
Section 5 concludes.
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2. Literature review

Among those works that adopted the ARIMA (and the like models) to estimate the cases of the
COVID-19 pandemic, we mention Ekinci [14], who considered data from USA, India, Brazil, France,
Russia, UK, Italy, Spain and Germany. When comparing ARMA-GARCH, ARMA-TGARCH and
ARMA-EGARCH models, it was found that while considering the conditional variance effect improves
the forecasting power, the asymmetric effect (such as asymmetric GARCH models) has mixed results.
Sahai et al. [15] adopted the ARIMA for analyzing the trend of COVID-19 cases in Spain, Italy, France,
Germany and the US. The authors claim that their model provides considerable forecast accuracy and
could be a useful tool for governments to ramp up their healthcare preparations. Subramaniam et al. [8]
drew a parallel between forecasting stock prices and cases of the pandemic by means of the ARIMA
model. Then, they explored the correlation between the predictive efficiency of the ARIMA model and
variation in the data. Katoch et al. [16] adopted an ARIMA model to analyzed the temporal dynamics
of the COVID-19 outbreak in India from 30 January 2020 to 16 September 2020. Their approach
suggests “varying epidemic’s inflexion point and final size for underlying states and the mainland,
India”. Regarding the alternative between ARIMA and ARIMAX, in the literature, it has been found
that the latter may yield better forecast compared to the seasonal ARIMA (SARIMA) model and Neural
Networks (e.g., see Suhartono [17]). This is because the ARIMAX is most suited to deal with calendar
effects [2–5, 18].

As regards the Cox, Ingersoll and Ross (CIR) model [19, 20], as already mentioned, it has been
proposed for the pricing of interest rates. At the time of its introduction, it quickly gained popularity in
finance because it was perceived as ”an improvement on the Vasicek model [21], not allowing for neg-
ative rates and introducing rate-dependent volatility, as well as for its relatively handy implementation
and analytical tractability” [11]. The CIR process is a variant of a squared Bessel process and, in the
physical community, its analogues were used both to enrich the list of modified stochastic processes
used for the description of various time series [22, 23] as well as to model some financial historical
data [24].

Other applications of the CIR model include stochastic volatility modelling in option pricing
problems [25, 26], FX [27] or default intensities in credit risk [28, 29]. As mentioned, the Orn-
stein–Uhlenbeck (OU) and the Cox–Ingersoll–Ross (CIR) processes are strongly linked, and the re-
flected OU (ROU) [30] is used in queuing theory [30, 31], in population dynamics [32], catastro-
phes [33, 34], etc. In this study, similar to what has been done by Orlando et al. [11, 35–38] when
developing the CIR# model, we transform the original CIR model into a forecasting tool and compare
its performance with that of the well-known ARIMAX model.

3. Materials and methods

3.1. Data

The available data are the moving averages of 14 days of infections in the city of Jaén, from
February 2, 2020 to October 8, 2021 and have been provided by the Health and Family Council of
the Andalusian Regional Government (see Figure 1). Jaén is a relatively small city (around 110,000
inhabitants), which represents a challenge since the number of COVID-19 daily cases is small and
with large fluctuations, even after the moving averages are computed. Therefore, we shall have the
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opportunity of testing different methods in unfavourable circumstances.

Figure 1. 14-day moving average of the daily cases of COVID-19 in the city of Jaén (ordi-
nate). The abscissa represents the days elapsed since February 2, 2020.

A visual inspection employing the partial autocorrelation function (PACF) confirms that the data is
correlated (see Figure 2).

3.2. ARIMAX model

Leaving aside the cases where data show evidence of non-stationarity where an initial differencing
removes the integrated (I) part, the ARMAX model can be described as:

y(t) + a1y(t − 1) + . . . + anay(t − na) =

b1x(t − nk) + . . . + bnb x(t − nk − nb + 1)+
c1ε(t − 1) + . . . + cncε(t − nc) + ε(t)

(3.1)

with y(t), dependent/output variable at time t; na, number of poles; nb number of zeroes plus 1; nc,
number of c coefficients; nk, dead time in the system. Moreover, y(t − 1) . . . y(t − na) denotes the
dependence between the current output and the previous outputs, x(t−nk) . . . x(t−nk−nb + 1) indicates
the dependence between the current output and both the previous and delayed inputs, and ε(t) expresses
a white-noise error.

The orders of the ARMAX model are given by the parameters na, nb and nc. nk is the delay, and q is
the delay operator. The ARMAX in compact form can be written as

A(q)y(t) = B(q)x(t − nk) + C(q)ε(t) (3.2)

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9080–9100.
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Figure 2. Partial autocorrelation function (PACF) over a 14-day moving average of the daily
cases of COVID-19 in the city of Jaén: ordinate PACF, abscissa lags. Notice the autocorre-
lation at lags 1, 2, 3, 4, 5, 14, 15 and 16.

such that,

A(q) = 1 + a1q−1 + . . . + anaq
−na

B(q) = b1 + b2q−1 + . . . + bnbq
−nb+1

C(q) = 1 + c1q−1 + . . . + cncq
−nc .

The ARIMAX model can be seen as a generalization of the ARIMA because adds to the structure
above described an integrator in the white noise ε(t) as follows:

A(q)y(t) = B(q)x(t − nk) +
C(q)

(1 − q−1)
ε(t). (3.3)

3.2.1. Estimation of the ARIMAX model

To estimate the ARIMAX model the following steps have been performed.

1) Ensure stationarity of the time series by conducting Augmented Dicky Fuller (ADF) Test.

2) Model identification, i.e., specification of the autoregressive (AR) and moving average (MA) terms
with the help of the autocorrelation function (ACF) and partial autocorrelation function (PACF).

3) Parameter estimation according to Ljung [39] and related implementation in Matlab [40]. The best
model is selected based on Akaike information criterion (AIC) values [41].

From now on, we refer to the ARMAX model (and not to the ARIMAX) assuming that the integra-
tion (I) has been removed.
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3.3. CIR* model

As mentioned, the CIR model emerged in 1985 from the hand of John C. Cox, Jonathan E. Ingersoll
and Stephen A. Ross [19,20] as an improvement of the Vasicek model to prevent negative interest rates.

The CIR model is defined by the following stochastic differential equation (SDE):{
dXt = α (µ − Xt) dt + σ

√
XtdWt

X0 = x0
(3.4)

Here, α, µ and σ are positive constants, X(t) is the interest rate, t is time, and Wt denotes the standard
Wiener process.

The parameters include the following:

• α(µ − Xt) is the same factor as in Vasicek’s model and represents a mean reversion term.
• The standard deviation factor σ

√
Xt removes negative rates.

•
√

Xt increases the standard deviation as the short-term rate increases.

This model can only have positive solutions since when the interest rate is 0 it ends up being positive
later on. Also, when it is low or close to 0, the standard deviation is close to 0.

Figure 3. Simulated paths of the CIR model. Ordinate simulated variable Xt, abscissa t.

The only solution to (3.4) is what is known as the CIR process. Integrating Eq (3.4):

Xt = Xs + α

∫ t

s
(µ − Xu)du + σ

∫ t

s

√
XudWu, s < t , (3.5)

and therefore

E[Xt|Xs] = Xs + α

∫ t

s
(µ − E[Xu|Xs])du, s < t .

If we call mt = E[Xt|Xs] we have
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d
dt

mt = α(µ − mt), s < t ,

whose solution is

mt = Xse−α(t−s) + µ(1 − e−α(t−s)) .

So
E[Xt|Xs] = Xse−α(t−s) + µ(1 − e−α(t−s)), s < t , (3.6)

and therefore
E[Xt|Xs] − µ = (Xs − µ)e−α(t−s), s < t . (3.7)

Thus, E[Xt|Xs]− µ has the same sign as Xs − µ. In addition, if µ > 0 and α > 0, starting with Xs > 0
we conclude that Xt > 0.

Figure 4. Numerical (blue) and theoretical (red) mean comparison of the CIR model with
Euler’s method for 1000 simulated paths, with x0 = 1, α = 2, µ = 2 and σ = 1 and 5000
subintervals. Ordinate mt, abscissa t.

Similarly, the variance is:

Var[Xt|Xs] =
Xsσ

2

α
(e−α(t−s) − e−2α(t−s)) +

µσ2

2α
(1 − e−α(t−s))2 (3.8)

As stated at the beginning, the fundamental advantage of this model is that the solutions are non-
negative. However, the distribution of the CIR model is not Gaussian, which makes it difficult to
analyze.

The density function is given by:

f (Xs, s, Xt, t) = ce−(u+v)
(v
u

) q
2

Iq(2
√

uv)
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Figure 5. Comparison of the numerical (blue) and theoretical (red) standard deviation of the
CIR model with the Euler method for 1000 simulated paths, with x0 = 1, α = 2, µ = 2 and
σ = 1 and 5000 subintervals. Ordinate σt, abscissa t.

where

c =
2α

σ2(1 − e−α∆t)
u = cXse−α∆t

v = cXt

q =
2αµ
σ2 − 1

∆t = t − s

Iq(·) is a Bessel function of first type and order q:

Iq(x) =

∞∑
j=0

( x
2

)2 j+q 1
k!Γ( j + q + 1)

where Γ is the gamma function.
Let zt = 2cXt. Then, the conditional distribution of zt given zs is a non-central chi-squared distribu-

tion χ2
d(2u), with d =

4αµ
σ2 degrees of freedom, and the non-centrality parameter is λ = 2u.

Therefore,
zt|zs ∼ χ

2(d, λ)

where:
d =

4αµ
σ2

λ =
4α

σ2(1 − e−α∆t)
e−α∆tXs
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Since zt = 2cXt, Xt conditional on Xs has the same distribution as zt/2c conditional on zs/2c. So,

Xt|Xs ∼
zt

2c
|
zt

2c
∼

1
2c
χ2(d, λ)

At this point, we are going to analyze the different behaviours that the deterministic solution of the
CIR model equation can present in terms of the relations among the different parameters, which will
be useful later to give an interpretation of the model parameters, although we know that the stochastic
part would give oscillations with respect to said behaviour. We shall allow in this analysis for negative
values of α since in certain regions of the data the calibrated values of α result in negative values.
According to Eq (3.7) we distinguish two cases, depending on whether Xt is greater or less than µ and
in each case two subcases, depending on whether α is positive or negative:

1) If Xt < µ:

• If α > 0, Xt approaches µ from below.
• If α < 0, Xt moves away from µ downwards.

2) If Xt > µ:

• If α > 0, Xt approaches µ from above.
• If α < 0, Xt moves away from µ upwards.

3.3.1. Estimation of the parameters

To approximate the data well, it is necessary to give a good adjustment of the parameters. In the
case of the CIR* model, we must estimate three parameters, α, µ and σ. We will generally refer to them
as the parameter vector θ ≡ (α, µ, σ). The procedure that will be followed to estimate the parameters is
the one shown in [42], and it is the maximum likelihood method (MLE), which is based on maximizing
the objective function under consideration. For the maximum likelihood estimation of the parameter
vector θ ≡ (α, µ, σ), the transition densities are required. The CIR process is one of the processes for
which we know its density function explicitly. Given Xt at time t, the density of Xt+∆t at time t + ∆t is:

p(Xt+∆t|Xt; θ,∆t) = ce−(u+v)
(v
u

) q
2

Iq(2
√

uv)

where

c =
2α

σ2(1 − e−α∆t)
u = cXte−α∆t

v = cXt+∆t

q =
2αµ
σ2 − 1

where Iq(2
√

uv) is a Bessel function.
The likelihood function for time series with N observations is:
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L(θ) =

N−1∏
i=1

p(Xti+1 |Xti; θ,∆t) (3.9)

To simplify the calculations, it is usual to work with the log-likelihood expression, which consists
of taking logarithms in the Eq (3.9).

ln L(θ) =

N−1∑
i=1

ln p(Xti+1 |Xti; θ,∆t) (3.10)

from which the log-likelihood function of the CIR process can be easily derived.

ln L(θ) = (N − 1) ln c +

N−1∑
i=1

[
−uti − vti+1 +

1
2

q ln
(
vti+1

uti

)
+ ln

(
Iq

(
2
√

utivti+1

))]
(3.11)

where uti = cXtie
−α∆t y vti+1 = cXti+1

To find the maximum likelihood estimate θ̂ of the parameter vector θ, we have to maximize the
function (3.11) over its parameter space.

θ̂ = (α̂, µ̂, σ̂) = arg max
θ

ln L(θ) (3.12)

Since the logarithm function is monotonically increasing, maximizing the log-likelihood function
is equivalent to maximizing the likelihood function.

To solve the problem (3.12), we resort to numerical computation. For global optimal convergence,
the initial optimization points are essential, for which the method of least squares will be used. We first
write the equation of the discretized CIR*:

Xt+∆t − Xt = α(µ − Xt)∆t + σ
√

XtWt (3.13)

where Wt is distributed with zero mean and variance ∆t.
Dividing Eq (3.13) by

√
Xt, we get

Xt+∆t − Xt
√

Xt
=
αµ∆t
√

Xt
− α

√
Xt∆t + σWt (3.14)

Based on Eq (3.14), the initial values of α̂ and µ̂ are found by minimizing the function:

(α̂, µ̂) = arg min
α,µ

N−1∑
i=1

Xti+1 − Xti√
Xti

−
αµ∆t√

Xti

+ α
√

Xti∆t

2

The exact expression of the solution is on page 3 of [42]. The estimate of σ̂ is the standard deviation
of the residuals.

To optimize the objective function (3.11), we need to evaluate the Bessel function Iq(2
√

uv). The
function besseli is implemented in Matlab, but this usually causes problems, because the function
Iq = (2

√
uv) approaches infinity very quickly. Fortunately, Matlab allows us to give another scaled

version, which we will call I1
q(2
√

uv), which solves the divergence problem in such a way that
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I1
q(2
√

uv) = Iq(2
√

uv) exp(−2
√

uv) ,

and therefore

Iq(2
√

uv) =
I1
q(2
√

uv)

exp(−2
√

uv)
.

Rewriting the expression (3.11), we get

ln L(θ) = (N − 1) ln c +

N−1∑
i=1

(−uti − vti+1 +
1
2

ln
(
vti+1

uti

)
+

+ ln
(
I1
q(2
√

utivti+1)
)

+ 2
√

utivti+1)

3.3.2. Numerical methods

To obtain an approximation of the exact solution of the CIR SDE we need to establish a numerical
scheme. In our case, we will implement the Euler-Maruyama and Milstein numerical schemes, to see
later if there are notable differences between them.

The Euler-Maruyama scheme or method is an extension of Euler’s method for ordinary differential
equations to SDEs.

Let {Xt, 0 ≤ t ≤ T } be an Itô process solution of the following SDE:{
dXt = f (t, Xt)dt + g(t, Xt)dWt

X0 = x0
(3.15)

where W(t) represents the Wiener process, and suppose we want to solve this SDE in the time interval
[0,T ].

The Euler-Maruyama approximation Yi to the true solution of X is defined as follows:

• Divide the interval [0,T ] in N subintervals of size ∆t = T/N being 0 = t0 < t1 < ... < tN = T .
• Set the initial condition Y0 = x0.
• Define recursively Yi for 1 ≤ i ≤ N ,

Yi+1 = Yi + f (ti,Yi)∆t + g(ti,Yi)∆Wi (3.16)

where ∆Wi = Wti+1 −Wti .
The variables ∆Wi are independent and identically distributed normal random variables, that is,

∆Wi ∼
√

∆tZ with Z ∼ N(0, 1).
The Milstein method [43] is used to increase the accuracy of the Euler-Maruyama method. This is

achieved by introducing a term of order 2 by using the partial derivative with respect to x of g(t, x).
Given an Itô process {Xt, 0 ≤ t ≤ T } which is a solution of the SDE (3.15), the approximation of the

Milstein method Yi to the true solution of X is given by the following:

• Divide the interval [0,T ] into subintervals of size ∆t = T/N with 0 = t0 < t1 < ... < tn = N.
• Take as initial condition Y0 = x0.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9080–9100.
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• Recursively define Yi for 1 ≤ i ≤ N by:

Yi+1 = Yi + f (ti,Yi)∆t + g(ti,Yi)∆Wi +
1
2

g(ti,Yi)
∂g(ti,Yi)
∂x

[(∆Wi)2 − ∆t] (3.17)

where ∆Wi = Wti+1 −Wti .
The variables ∆Wi are independent and identically distributed normal random variables, that is,

∆Wi ∼
√

∆tZ with Z ∼ N(0, 1). As we can see, the expression of the scheme is the same as that of the
Euler-Maruyama method, except that the following term is added:

1
2

g(ti,Yi)
∂g(ti,Yi)
∂x

[(∆Wi)2 − ∆t]

Therefore, if ∂g(t,x)
∂x turns out to be 0, this method is equivalent to the Euler-Maruyama method. When

a method satisfies E (|Yi − X(ti)|) ≤ K(∆t)γ for some γ, that method is said to be a strong approximation
of order γ. Applying this, the Euler-Maruyama method is a strong approximation of order γ = 1/2,
while the Milstein method is a strong approximation of order γ = 1 if f (t, Xt) and g(t, Xt) are C1

functions. The functions with which we are working in these models comply with this, so the order of
convergence of the Milstein method will always be greater than that of Euler-Maruyama.

4. Results

Since we have daily data, we set the time step ∆t = 1. To compare both the Euler-Maruyama and the
Milstein methods, we chose a specific time window and a number of forecasts. A window of 100 data
will be taken from the first real data available, and the next 500 days will be estimated. The prediction
is made for the day following the last one of the windows. Then the window is moved one unit to the
right, and the process is repeated until all the forecasts are performed.

Figure 6 shows a global view of the three estimates that we want to compare. Next, Figures 7
and 8 represent, for a given time window, the real data (in grey), the ARMAX model estimates (in
magenta) and the ones calculated with the CIR* model (blue) with the Milstein method. Note that
since the Euler-Maruyama and Milstein methods nearly overlap, the differences between the plotted
curves cannot be seen unless zoomed in further. For this reason, we refer the reader to Table 1.

It can be seen that the blue curve generally fits the real data better, so it stands to reason that the
CIR* model is better than the ARMAX model. To verify this rigorously, the root mean square error
(RMSE) of the CIR* model has been calculated with the Euler-Maruyama and Milstein method, and
the RMSE of the ARMAX model. These errors are collected in Table 1. As shown, the CIR* model
gives better results than the ARMAX model.

Table 1. Comparison of CIR* model errors (Euler-Maruyama and Milstein) and ARMAX in
the given time window.

CIR* with Euler CIR* with Milstein ARMAX
RMSE 1.0556 1.0558 2.2157

To verify that the ARMAX filters correctly the data, the PACF depicted in Figure 9 shows that
the errors/residuals are not correlated. This is further confirmed by the Durbin-Watson (DW) test. In
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Figure 6. Approximations of the CIR* with Milstein method and ARMAX. Window =

100, time interval = 1, and number of simulations = 1000. Real cases (light grey), CIR*
with Milstein method (blue), ARMAX (magenta), 95% confidence interval (dashed lines).
Ordinate 14-day moving average of real and modeled COVID-19 cases, abscissa number of
days elapsed since February 2, 2020.

Figure 7. Zoomed-in comparison between CIR* and ARMAX model of increasing and de-
creasing number of infections. Real cases (light grey), CIR* with Milstein method (blue),
ARMAX (magenta), 95% confidence interval (dashed lines). Ordinate 14-day moving aver-
age of real and modeled COVID-19 cases, abscissa number of days elapsed since February
2, 2020. Notice how the prediction stays within the dashed band.

fact, the DW statistic is 1.9868, and the p-value of 0.8753 suggests absence of autocorrelation in the
residuals.

Finally, we are going to give an interpretation of the parameters of the CIR* model at different
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Figure 8. Zoomed-in comparison between CIR* and ARMAX model of a decreasing number
of infections. Real cases (light grey), CIR* with Milstein method (blue), ARMAX (magenta),
95% confidence interval (dashed lines). Ordinate 14-day moving average of real and modeled
COVID-19 cases, abscissa number of days elapsed since February 2, 2020. Notice how the
prediction stays within the dashed band.

stages of the pandemic, based on the analysis of the deterministic solution of the CIR* model given in
Section 3.3.1.

4.1. Time frame in which COVID-19 cases increase

We begin by studying a stage in which infections are increasing. For the estimated parameters to
have the same trend, the window from which they are estimated must also be in the growth range,
which will force us to take a small window and estimate a few values, since if we look at Figure 1,
we see that the periods in which the infections grow are very short. Taking this into account, we are
going to focus on the section that goes from day 210 to 229, that is, 20 forecasts, taking a window of
30 days. Based on the results obtained, we observe that both the mean of α and µ are negative. Since
the estimated data values are greater than the mean, then Xt would move away from the mean upwards.

To corroborate that this is true, another stage of increase in cases of the pandemic has been taken,
specifically from day 310 to 319, that is, 10 days, and a window of 30 days. The number of forecasts
had to be reduced because, as previously mentioned, the window of days must be in the growth range
for good analysis. In Figure 10 one can see both sections and in Table 2, the exact values of the mean
of the parameters in the two stages.

Table 2. Growing stages of COVID-19 infections.

Stage 1 Stage 2
Average α -0.0562 -0.0990
Average µ -3.6346 -3.5105
Average σ 0.2253 0.2007
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Figure 9. PACF over the error of the ARMAX model. Ordinate PACF, abscissa lags. Notice
the absence of autocorrelation due to the ARMAX filtering.

Figure 10. Stage 1 (left) and stage 2 (right) of a steep growth of the COVID-19 pandemic
daily cases. Real cases (light grey), CIR* with Milstein method (red), 95% confidence inter-
val (dashed lines). Ordinate 14-day moving average of real and modeled COVID-19 cases,
abscissa number of days elapsed since February 2, 2020. Notice how the prediction stays
within the dashed band.

4.2. Tme frame in which COVID-19 cases decrease

Keeping the ideas we used from the previous case, we now take a period in which the cases decrease.
We estimate the interval that goes from day 265 to 284. In this case, we again obtain a negative mean
of α, which makes sense, since in periods of strong growth or decrease the values move away from
the mean. On the contrary, now the mean of the parameter µ is very large and exceeds the mean of
infections in that section, therefore, the values X are far from the mean, but this time below.

As in the previous case, another period has been taken to verify the results. The estimates of both
stages can be seen in Figure 11, and the comparison of the mean values of the parameters shown in
Table 3.
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Figure 11. Stage 3 (left) and stage 4 (right) of a decisive decrease in the daily cases of
the COVID-19 pandemic. Real cases (light grey), CIR* with Milstein method (red), 95%
confidence interval (dashed lines). Ordinate 14-day moving average of real and modeled
COVID-19 cases, abscissa number of days elapsed since February 2, 2020. Notice how the
prediction stays within the dashed band.

Table 3. Decreasing of COVID-19 infections.

Stage 3 Stage 4
Average α -0.01664 -0.0305
Average µ 190.5401 95.5082
Average σ 0.2644 0.2925

4.3. Time frame in which COVID-19 cases are stable

Finally, we are going to interpret the parameters in a section where the values are relatively constant.
As can be seen in Figure 1, there are only a few sections where this occurs. We are going to take days
between 110 and 139, in which it is observed that the COVID cases are close to the 0 value. This may
seem surprising, but it makes sense because it precisely coincides with the end of the state of alarm.
In fact, on the right side of the graph, from day 150 the cases begin to increase, coinciding with the
de-escalation process and the summer of 2020 when restrictions were relaxed.

At the aforementioned stage, the mean of the parameters α is 0.1397, that is, positive, unlike the
previous cases. The mean of the parameters µ is 0.3303, and that of σ is 0.1448, so we have a smaller
deviation than the previously analysed stages.

Table 4. Relatively constant stage of COVID-19 infections.

Stage 5
Average α 0.1397
Average µ 0.3303
Average σ 0.1448

According to the analysis of the deterministic solution, Xt will oscillate around the mean, which
makes sense, since the real mean of those days is around 0.33, and the value of the data varies between
0.25 and 0.55 cases.
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Figure 12. Example of a stage of the COVID-19 pandemic where the number of cases is
relatively flat. Real cases (light grey), CIR* with Milstein method (red), 95% confidence
interval (dashed lines). Ordinate 14-day moving average of real and modeled COVID-19
cases, abscissa number of days elapsed since February 2, 2020. Notice how the prediction
stays within the dashed bands.

5. Conclusions

The main objective of this work is the study and development of some stochastic models typically
used in financial markets applied to the COVID-19 pandemic in the city of Jaén.

For solving stochastic equations, both the Euler-Maruyama method and the Milstein method were
used with reference to the CIR* stochastic process. Over the reported COVID-19 daily cases of the
pandemic in the city of Jaén (Spain), the maximum likelihood method was used for parameter cali-
bration. The forecasts given with this model have been validated with 95% confidence intervals and
with statistical measures of goodness of fit, such as the RMSE (root mean square error). The results
obtained are consistent with the observations and quite accurate. For comparison, the classical ARI-
MAX model has been used, resulting in more accurate predictions for the suggested CIR* model. The
reason could be the relatively small size of the city of Jaén, causing large fluctuations in the number
of cases that are not sufficiently softened by the moving averages, resulting in a worse behaviour of
ARIMAX in comparison with CIR*. The importance of the suggested approach is twofold because
it not only extends the models available to scholars to model pandemics but, also, paves the way for
similar approaches in which financial models can be converted into econometric models.

Future research could be aimed at enlarging the scope to the whole province of Jaén and to other
cities and/or provinces of Andalusia. In such a case, we could expect that a greater number of data could
imply a longer time for the trend to change. In addition, the number of healed and deceased could also
be studied, although the latter, being much smaller, will present the aforementioned problems. In terms
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of considered models, future research could include a comparison with the more advanced CIR# by
Orlando et al. [11, 36–38].

In addition, although our work has only been done for one equation, it could also be generalized to
systems of equations to discover the interrelation between different cities or health districts. Finally,
note that stochastic differential equations are not only a very powerful tool for modelling economic-
financial variables, but also in the epidemiological field, being proven from this practical point of
view [32].

Acknowledgments

G.O. is a member of the research group of GNAMPA - INdAM (Italy) and acknowledges the project
on anomalous diffusion and its applications to fractal domains. J.G. acknowledges Junta de Andalucı́a
through the project FEDER-UJA-1381026. The Consejerı́a de Salud y Familia of Junta de Andalucı́a
is acknowledged for providing the COVID-19 data.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. T. C. Mills, Time Series Techniques for Economists, Cambridge University Press, Cambridge,
England, UK, 1990.

2. M. H. Lee, N. Hamzah, Calendar variation model based on ARIMAX for forecasting sales data
with Ramadhan effect, in Proceedings of the Regional Conference on Statistical Sciences 2010
(RCSS’10), 10 (2010), 349–361.

3. S. Chadsuthi, C. Modchang, Y. Lenbury, S. Iamsirithaworn, W. Triampo, Modeling sea-
sonal leptospirosis transmission and its association with rainfall and temperature in Thai-
land using time–series and ARIMAX analyses, Asian Pac. J. Trop. Med., 5 (2012), 539–546.
https://doi.org/10.1016/S1995-7645(12)60095-9

4. A. Suharsono, Suhartono, A. Masyitha, A. Anuravega, Time series regression and ARIMAX for
forecasting currency flow at Bank Indonesia in Sulawesi region, AIP Conf. Proc., 1691 (2015).
https://doi.org/10.1063/1.4937107

5. W. Anggraeni, R. A. Vinarti, Y. D. Kurniawati, Performance comparisons between Arima and
Arimax Method in Moslem kids clothes demand forecasting: Case study, Procedia Comput. Sci.,
72 (2015), 630–637. https://doi.org/10.1016/j.procs.2015.12.172

6. G. Shilpa, G. Sheshadri, ARIMAX model for short-term electrical load forecasting, Int. J. Recent
Technol. Eng. (IJRTE), 8 (2019), 2786–2790. https://doi.org/10.35940/ijrte.D7950.118419

7. A. A. Ariyo, A. O. Adewumi, C. K. Ayo, Stock Price Prediction Using the ARIMA Model, in
2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, IEEE,
(2014), 106–112.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9080–9100.

http://dx.doi.org/https://doi.org/10.1016/S1995-7645(12)60095-9
http://dx.doi.org/https://doi.org/10.1063/1.4937107
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.12.172
http://dx.doi.org/https://doi.org/10.35940/ijrte.D7950.118419


9098

8. G. Subramaniam, I. Muthukumar, Efficacy of time series forecasting (ARIMA)
in post-COVID econometric analysis, Int. J. Stat. Appl. Math., 2020.
https://doi.org/10.22271/maths.2020.v5.i6a.609

9. G. Orlando, M. Bufalo, Modelling bursts and chaos regularization in credit risk
with a deterministic nonlinear model, Finance Res. Lett., 47 (2022), 102599.
https://doi.org/10.1016/j.frl.2021.102599

10. G. Orlando, M. Bufalo, R. Stoop, Financial markets’ deterministic aspects modeled by a low-
dimensional equation, Sci. Rep., 12 (2022), 1–13. https://doi.org/10.1038/s41598-022-05765-z

11. G. Orlando, R. M. Mininni, M. Bufalo, A new approach to CIR short-term rates modelling, in New
Methods in Fixed Income Modeling, Springer, (2018), 35–43. https://doi.org/10.1007/978-3-319-
95285-7 2

12. Y. Mishura, A. Yurchenko-Tytarenko, Standard and fractional reflected Ornstein–Uhlenbeck pro-
cesses as the limits of square roots of Cox–Ingersoll–Ross processes. Stochastics, 95 (2022), 99–
117. https://doi.org/10.1080/17442508.2022.2047188

13. O. O. Aalen, H. K. Gjessing, Survival models based on the Ornstein-Uhlenbeck process, Lifetime
Data Anal., 10 (2004), 407–423. https://doi.org/10.1007/s10985-004-4775-9

14. A. Ekinci, Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected
countries: Considering conditional variance and asymmetric effect, Chaos, Solitons Fractals, 151
(2021), 111227. https://doi.org/10.1016/j.chaos.2021.111227

15. A. K. Sahai, N. Rath, V. Sood, M. P. Singh, ARIMA modelling & forecasting of COVID-19
in top five affected countries, Diabetes Metab. Syndr. Clin. Res. Rev., 14 (2020), 1419–1427.
https://doi.org/10.1016/j.dsx.2020.07.042

16. R. Katoch, A. Sidhu, An application of ARIMA model to forecast the dynamics of COVID-19
epidemic in India, Global Bus. Rev., 2021 (2021). https://doi.org/10.1177/0972150920988653

17. Suhartono, M. H. Lee, D. D. Prastyo, Two levels ARIMAX and regression models for
forecasting time series data with calendar variation effects, AIP Conf. Proc., 1691 (2015).
https://doi.org/10.1063/1.4937108

18. A. Tanyavutti, U. Tanlamai, ARIMAX versus Holt Winter methods: the case of blood demand
prediction in Thailand, Int. J. Environ. Sci. Educ., 13 (2018), 519–525.

19. J. C. Cox, J. E. Ingersoll Jr, S. A. Ross, A theory of the term structure of interest rates, Economet-
rica, 53 (1985), 385–407. https://doi.org/10.2307/1911242

20. J. C. Cox, J. E. Ingersoll Jr, S. A. Ross, A theory of the term structure of interest
rates, in Theory of Valuation, 2nd Edition, Singapore, World Scientific, (2005), 129–164.
https://doi.org/10.1142/9789812701022 0005

21. O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 5 (1977),
177–188. https://doi.org/10.1016/0304-405X(77)90016-2

22. A. V. Chechkin, F. Seno, R. Metzler, I. M. Sokolov, Brownian yet non-gaussian diffusion:
From superstatistics to subordination of diffusing diffusivities, Phys. Rev. X, 7 (2017), 021002.
https://doi.org/10.1103/PhysRevX.7.021002

Mathematical Biosciences and Engineering Volume 20, Issue 5, 9080–9100.

http://dx.doi.org/https://doi.org/10.22271/maths.2020.v5.i6a.609
http://dx.doi.org/https://doi.org/10.1016/j.frl.2021.102599
http://dx.doi.org/https://doi.org/10.1038/s41598-022-05765-z
http://dx.doi.org/https://doi.org/10.1007/978-3-319-95285-7_2
http://dx.doi.org/https://doi.org/10.1007/978-3-319-95285-7_2
http://dx.doi.org/https://doi.org/10.1080/17442508.2022.2047188
http://dx.doi.org/https://doi.org/10.1007/s10985-004-4775-9
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111227
http://dx.doi.org/https://doi.org/10.1016/j.dsx.2020.07.042
http://dx.doi.org/https://doi.org/10.1177/0972150920988653
http://dx.doi.org/https://doi.org/10.1063/1.4937108
http://dx.doi.org/https://doi.org/10.2307/1911242
http://dx.doi.org/https://doi.org/10.1142/9789812701022_0005
http://dx.doi.org/https://doi.org/10.1016/0304-405X(77)90016-2
http://dx.doi.org/https://doi.org/10.1103/PhysRevX.7.021002


9099

23. W. Wang, A. G. Cherstvy, A. V. Chechkin, S. Thapa, F. Seno, X. Liu, et al. Fractional Brownian
motion with random diffusivity: emerging residual nonergodicity below the correlation time, J.
Phys. A: Math. Theor., 53 (2020), 474001. https://doi.org/10.1088/1751-8121/aba467

24. S. Ritschel, A. G. Cherstvy, R. Metzler, Universality of delay-time averages for financial time
series: analytical results, computer simulations, and analysis of historical stock-market prices, J.
Phys.: Complexity, 2 (2021), 045003. https://doi.org/10.1088/2632-072X/ac2220

25. A. Canale, R. M. Mininni, A. Rhandi, Analytic approach to solve a degenerate
parabolic PDE for the Heston model, Math. Methods Appl. Sci., 40 (2017), 4982–4992.
https://doi.org/10.1002/mma.4363

26. G. Orlando, G. Taglialatela, A review on implied volatility calculation, J. Comput. Appl. Math.,
320 (2017), 202–220. https://doi.org/10.1016/j.cam.2017.02.002

27. G. Ascione, F. Mehrdoust, G. Orlando, O. Samimi, Foreign exchange options on Heston-
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