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Abstract: With the development of multimedia technology, the number of 3D models on the web 
or in databases is becoming increasingly larger and larger. It becomes more and more important to 
classify and retrieve 3D models. 3D model classification plays important roles in the mechanical 
design field, education field, medicine field and so on. Due to the 3D model’s complexity and 
irregularity, it is difficult to classify 3D model correctly. Many methods of 3D model classification 
pay attention to local features from 2D views and neglect the 3D model’s contour information, 
which cannot express it better. So, accuracy the of 3D model classification is poor. In order to 
improve the accuracy of 3D model classification, this paper proposes a method based on 
EfficientNet and Convolutional Neural Network (CNN) to classify 3D models, in which view 
feature and shape feature are used. The 3D model is projected into 2D views from different angles. 
EfficientNet is used to extract view feature from 2D views. Shape descriptors D1, D2, D3, Zernike 
moment and Fourier descriptors of 2D views are adopted to describe the 3D model and CNN is 
applied to extract shape feature. The view feature and shape feature are combined as discriminative 
features. Then, the softmax function is used to determine the 3D model’s category. Experiments are 
conducted on ModelNet 10 dataset. Experimental results show that the proposed method achieves 
better than other methods. 

Keywords: 3D model; EfficientNet; Convolutional Neural Network; shape feature; 2D view; 
discriminative feature 
 

1. Introduction 

Now, 3D models have been widely applied in construction industry, mechanical design, medical 
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treatment, education, computer vision, molecular biology, entertainment, e-commerce and so on. 3D 
model classification is an important task in computer graphics and computer vision [1]. It becomes 
increasingly important for retrieving, organizing, managing and storing 3D models. Therefore, 
research on 3D model classification is of great significance. In the beginning, features are extracted 
manually for 3D model classification. With the development of deep learning technology, artificial 
neural networks are applied for classifying 3D models. Now, scholars at home and abroad are 
focusing on it. It is complex to represent a 3D model and there are mainly 3 kinds of solutions to 3D 
model classification including the view-based method, voxel-based one, and point cloud-based one. 

In the view-based classification method, a set of 2D views are used to describe 3D model and 
deep learning algorithms are adopted to extract discriminative features from 2D views. It is relatively 
simple to extract features from 2D views, which are a simple expression form of the 3D model [2]. In 
the voxel-based one, 3D model is expressed as a voxel matrix. 3D voxel CNN is adopted to extract 
deep features from the voxel matrix. 3D voxel CNN effectively enhances the capability of extracting 
features from a 3D model, which significantly improves the accuracy of 3D model classification [3]. 
In the point cloud-based one, the point cloud is preprocessed to solve its sparseness and disorder. 
Then, neural networks are directly used to extract features for classifying 3D models [4].  

EfficientNet is a group of CNNs including 8 models between B0 and B7, in which the Swish 
activation function is used [5]. 

Feature descriptors are often used to express a 3D model’s shape and structure. According to 
feature descriptors, 3D model classification is divided into view-based classification methods, 
voxel-based ones, and point cloud-based ones. 

In the view-based classification method, the 3D model is projected into many 2D views. Nie 
proposes a multi-channel-attention CNN to represent a 3D model including view extraction, 
transform function learning, and descriptor generation [6]. Liu designs a fusion network to extract 
contextual information from continuous view sequences and get semantic information from 
individual views [7]. Chen uses multimodal SVM to combine 3 modalities of image features 
including Sift descriptor, Fourier descriptor and Zernike moments to classify objects [8]. Huang 
gives a view-based weight network for 3D object recognition, in which view-based weights are 
assigned to different projections [9]. Zhang presents an inductive multi-hypergraph learning 
algorithm to obtain optimal projection from 3D objects’ representations [10]. Sfikas gives a method 
of 3D model classification and retrieval, in which 2D panoramic views are input into an ensemble of 
CNNs to extract features [11]. Ma uses deformable CNN to learn details and features related to 
geometric transformation [12]. A view-pooling layer is adopted to combine descriptors from 
multiple views as 3D shapes’ representations. Alotaibi introduces a novel computational 
intelligence-based harmony search algorithm for real-time object detection and tracking 
(CIHSA-RTODT) technique on video surveillance systems [13]. Lin proposes a supervised 
classification method based on the sparse learning joint and the weighted elastic loss to extract 
important views for view classification task and decrease computational complexity [14]. 

In the voxel-based classification method, a 3D voxel matrix is used to describe 3D model. Yang 
applies voxelization technology to transform 3D polygon mesh into a voxel matrix. Deep voxel CNN 
is adopted to extract features from the voxel matrix [15]. Wang combines voxels and point clouds to 
design data structure Layer-Ring [16]. VoxPoint annular network on Layer-Ring is proposed to 
extract features and predict an object’s category. Liu develops a 3D object classification system in 
which a learning network with a feature extractor is used [17]. Wang presents a voxel-based CNN to 
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extract features from normal vectors of object surfaces for 3D vision tasks [18]. Muzahid designs a 
multi-orientation volumetric deep neural network for 3D object classification, which limits octree 
partition to a certain depth for reserving all leaf octants with sparse features [19]. Kang proposes a 
voxel-based method to classify 3D objects by analyzing spatial characteristics [20]. Wang gives an 
octree-based CNN for 3D shape analysis, which takes normal vectors of 3D models sampled from 
the finest leaf octants as the input [21]. 3D convolution is performed on octants occupied by a 3D 
shape surface. 

In the point cloud-based classification method, the neural network is used to extract features 
from a point cloud. Guo designs a network of feature fusion to classify and segment point cloud, 
including global feature extractor, local feature extractor and adaptive feature fusion [22]. Gao 
presents a 3D model classification method based on multi-head self-attention which consumes a 
sparse point cloud and learns its representation [23]. Ma designs a multiview-based network for 3D 
shape recognition and retrieval, which combines CNN with Long Short-Term Memory (LSTM) 
network to exploit correlative information from multiple views [24]. Maligo gives a two-layer 
classification model for 3D Lidar data [25]. The first layer consists of a Gaussian mixture model. This 
model is determined in an unsupervised manner and the second layer contains a group of categories. 
Zhang develops a graph CNN to classify 3D point clouds, which combines local graph convolutions with 
two graph down-sampling operations [26]. Ng presents a deep neural network, which uses radial basis 
function to exploit the local structure of point cloud and incorporates it into CNN [27]. Wang gives a 
neural network to classify and segment point cloud, which acts on graphs dynamically [28]. 

Zhang presents a transfer learning method based on pre-trained EfficientNet with a fine-tuning 
strategy to classify remote sensing images [29]. Alhichri designs a deep attention CNN to classify 
remote sensing scenes [30]. Successive convolutional layers are adopted to learn feature maps from 
larger regions. The attention mechanism is applied to compute the weighted average of original feature 
maps. Tan proposes a base network and scales it up to obtain a family of EfficientNets, which achieves 
better accuracy and efficiency than ConvNets [31]. Kamble uses a modified U-Net++ architecture and 
EfficientNet-B4 to detect OD with a cup and fovea [32]. Features from EfficientNet are utilized 
through skip connections in U-Net++ for precise segmentation. EfficientNet is used to extract view 
features from 2D views in this paper. CNN is applied to extract shape features from shape descriptors 
D1, D2, D3, Zernike moment and Fourier descriptor of 2D views. Softmax function is adopted to 
determine the 3D model’s category based on view features and shape features. 

This paper proposes to combine EfficientNet and CNN to classify 3D models. 3D model is 
projected into a series of 2D views. 2D views, and their shape descriptors, Zernike moments and 
Fourier descriptors are fused to express 3D models. The purpose is to enhance the ability of 
describing 3D models. EfficientNet and CNN are respectively applied to extract the view features 
and shape features. EfficientNet is used to extract local features from 2D views of the 3D models 
in which the contour boundary is not emphasized. The extracted feature is local. Points are 
randomly sampled from the contour boundary of the 2D view and statistical methods are used to 
compute shape descriptors D1, D2, D3, Zernike moment and Fourier descriptor. The contour 
boundary is emphasized and it makes up for the defects of view feature. CNN is adopted to extract 
global shape feature from shape descriptors D1, D2, D3, Zernike moment and Fourier descriptor. The 
extracted feature is global. Global and local features are fused as a discriminative feature. EfficientNet is 
used to extract view feature and CNN is adopted to extract contour features. View feature and contour 
feature are fused to describe 3D models better, which can improve the performance of 3D model 
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classification. Then, softmax function is used to determine the 3D model’s category. Its main 
contributions are shown as follows:  

1) Combine 2D view, shape descriptors, Zernike moment and Fourier descriptor to express 
3D model.  

2) EfficientNet is used to extract view feature from 2D views and CNN is adopted to extract 
shape feature from shape descriptor D1, D2, D3, Zernike moment and Fourier descriptor.  

3) Softmax function is applied to classify 3D models based on view feature and shape feature. 
Now, 3D models are often projected into 2D views which are applied to determine its category 

in many research work. But, 3D model’s contour information is not emphasized. Our work is to 
combine view feature extracted by EfficientNet from 2D views and shape feature extracted by CNN 
from shape descriptors D1, D2, D3, Zernike moment, Fourier descriptor for classifying 3D models. 
We fuse view information and contour detail to express the 3D model fully for improving the 
performance of the 3D model classification. 

The rest of the paper is arranged as follows. Expression of the 3D model and the network 
architecture used in this article is introduced in Section 2. Experiments are provided based on 
ModelNet 10 dataset and analyzed in Section 3. The work of this paper is summarized in the 
last section. 

2. Methods 

2.1. The expression of 3D model 

2.1.1. 2D views 

3D models are very complex, and it is difficult to express and deal with them. The 3D model is 
often projected into a series of 2D views, which can describe its shape and structure. The fixed 
projection algorithm is used here. The 3D model is fixed to the center of the virtual sphere, where a 
virtual camera is placed above it. 3D model is rotated one circle at 60° every step to render six 2D 
views. They are respectively V1, V2, V3, V4, V5, V6, and input into CNN for extracting features. 
The fixed projection algorithm has the advantages of comprehensive and easy sampling. For 3D 
model ‘bed’, the fixed projection algorithm is adopted to extract 2D views as shown in Figure 1. 

 

Figure 1. The projection of 3D model ‘bed’. 
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Edge detection algorithm is applied to extract contours from 2D views. 

2.1.2. Shape descriptior D1, D2, D3 

Osada uses shape distribution to represent the 3D model. Shape function is used as descriptor to 
calculate statistical distribution of distance and area of the 3D model. The main idea is to use shape 
function to represent the relationship between point pairs on the 3D model’s surface. The 2D shape 
distribution is principal component of the 3D shape distribution. Shape descriptor D1 is adopted to 
describe the distance between the centroid and a sampling point on the contour of 2D view. Shape 
descriptor D2 is used to describe the distance between two sampling points on the contour of the 2D 
view. Shape descriptor D3 is applied to describe the square root of area formed by 3 sampling points 
on the contour of 2D view. Figure 2 shows shape descriptors of the 2D view respectively.  

 

Figure 2. Shape descriptors of 2D view. 

The process of computing shape distribution of the 2D view is shown as follows: 
Points on the contour of 2D view are randomly sampled equidistantly, which are collected into 

PS = {(x1, y1), …, (xi, yi), …, (xn, yn)}. 
Extract N points from PS and collect them into PD1. Shape distribution D1 is {D1_1, …, 

D1_i, …, D1_Bins}. Here, D1_i is statistics in interval (BinsSize*(i-1), BinsSize*i), Bins 
represents the number of intervals, and BinsSize is the interval length. D1_i is computed as 
shown in formula (1). 

 1),),1((),(_1 PDPiBinSizeiBinSizeOPdistPiD 
     

(1) 

Where, BinsSize = max({dist(P, O)|P∈PD1})/N, dist() is Euclidean distance between two points, 
max() is the function of taking maximum value. O is the centroid of 2D view. 

Extract N point pairs from PS and collect them into PD2. A point pair is constructed by 2 points 
from PS. Shape distribution D2 is {D2_1, …, D2_i, …, D2_Bins}. Here, D2_i represents statistics in 
interval (BinSize*(i-1), BinsSize*i). D2_i is calculated as shown in formula (2). 

 2),),1(()(_2 PDPiBinSizeiBinSizePdistPiD 
    

(2) 

Where, BinsSize = max({dist(P)| P∈PD2})/N. 
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Extract N point triples from PS and collect them into PD3. A point triple is constructed by 3 
points from PS. Shape distribution D3 is {D3_1, …, D3_i, …, D3_Bins}. Here, D3_i represents 
statistics in interval (BinSize*(i-1), BinsSize*i). D3_i is computed as shown in formula (3). 

 3),),1(()(_3 PDPiBinSizeiBinSizePhersonPiD 
    

(3) 

Where, NPDPPhersonBinSize /})3|)(max({  . 

Here, herson() represents Helen formula, which is used to compute the area of triangle 
constructed by P = (P1, P2, P3) as shown in formulas (4) and (5).  

))()(()3,2,1()( csbsassPPPhersonPherson 
    

(4)
 

1
( )

2
s a b c   

         
(5)

 

Where, a = dist (P1, P2), b = dist (P1, P3), c = dist (P2, P3). 
D1_i, D2_i and D3_i (i = 1, 2, …, Bins) are concatenated to form shape distribution DV = 

(D1_1, …, D1_i, …, D1_Bins, D2_1, …, D2_i, …, D2_Bins, D3_1, …, D3_i, …, D3_Bins). Shape 
distribution feature has the scale invariance. 

2.1.3. Zernike moment 

In order to describe shape difference better, Zernike moment is used to express features of the 3D 
model. Zernike moment can express global feature of 2D view. Zernike moment of 2D view is extracted 
and normalized to the interval [0, 1]. Zernike moments are defined as Zernike polynomials inside unit 
circle. Formula (6) defines a set of complex functions Vnm(x,y) on unit circle. 

)exp()(),(),(  jmRVyxV nmnmnm 
      

(6) 

Where, ρ is the vector length from the origin to point (x, y). θ is the counterclockwise angle between 
the vector and x-axis. j is plural unit. n and m are the dimensions of Zernike moments. 

Zernike moment Znm of 2D view V(x, y) is shown in formula (7). 
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Where, m01 represents the sum of the abscissa of all black pixels in 2D view. m10 denotes the sum of 
vertical coordinates of all black pixels in the 2D view. m00 is the sum of white pixels in 2D view.  

A lot of experiments show that the larger value of Zernike moments are suitable to represent 
global view features. Here, the front 25 larger moments are selected to form feature vector. 

Zernike moment Znm of 2D view V (x, y) has the translation, scale and rotation invariance. 
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2.1.4. Fourier descriptor 

Fourier descriptor is used to express 2D view. The contour of 2D view is obtained. Its 1D 
Fourier operator is extracted and normalized to the interval (0, 1). The centroid distance is used, 
which is the distance between the point in the contour and the centroid.  

Suppose that PV represents the set of all pixels in the contour and N denotes the number of 
boundary pixels. The centroid of the object (xc, yc) is denoted as:  


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       (8) 

Where, (x(i), y(i)) denotes the location of the ith pixel in PV. Here, r(i) is the distance between (x(i), 
y(i)) to the centroid, as shown in formula (9). 

    2
122 ))()(()( cc yiyxixir 

      (9) 

Fourier transform is applied to r(i), and Fourier coefficient R(n) is shown in formula (10): 
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Where, j is complex unit. Fourier descriptor is shown in formula (11): 
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The smaller value of Fourier descriptor is suitable for representing global features. Here, the 
front 18 smaller values of Fourier descriptor are selected. Fourier descriptor has also the translation, 
scale and rotation invariance. 

2.2. 3D model classification based on EfficientNet and CNN 

The 3D model is projected into a set of 2D views for expressing its shape. The advantage is that 
the dimension is decreased from 3 to 2 and neural network can be applied to 2D view for extracting 
view feature. But, contour detail is not emphasized. Here, points are randomly sampled from contour 
boundary of 2D view and shape descriptors D1, D2, D3, Zernike moment and Fourier descriptor are 
computed. Contour feature is extracted. Then, contour feature is used to augment the description 
ability of view feature. 

EfficientNet and CNN are combined to extract discriminative features from the 3D model. The 
framework of the proposed network is designed as shown in Figure 3. It includes data-processing, 
EfficientNet, CNN, flatten layer, merge layer, fully connected layer and softmax function. The 3D 
model is rotated one circle at 60° every step and six 2D views including V1, V2, V3, V4, V5, V6 are 
gotten. They are input into EfficientNet for extracting view feature. Shape descriptors D1, D2, D3, 
Zernike moment and Fourier descriptor of 2D views are computed based on V1, V2, V3, V4, V5, V6. 
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Then, they are input into CNN for extracting shape feature. View feature and shape feature are 
processed in flatten layer. They are concatenated in merge layer. The fused feature is input into fully 
connected layer and softmax function is adopted to classify 3D models. 

 View1

 View2

View3

...

 View6

D1
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       ...
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Figure 3. The framework of the proposed network. 

Efficientnet-B0 is adopted in the proposed network. It consists of 16 mobile inverted 
bottleneck convolutions including 1 MBConv1 and 15 MBConv6, 2 convolution layers including 
Conv2D (1 × 1) and Conv2D (3 × 3), 1 global average pooling layer (GAP). Its parameters are 
shown in Table 1.  

Table 1. Efficientnet-B0 network parameter. 

Stage Operator Resolution Channels Layers 

1 Conv3 × 3 224 × 224 32 1 

2 MBConv1, k3 × 3 122 × 122 16 1 

3 MBConv6, k3 × 3 122 × 122 24 2 

4 MBConv6, k5 × 5 56 × 56 40 2 

5 MBConv6, k3 × 3 28 × 28 80 3 

6 MBConv6, k5 × 5 28 × 28 112 3 

7 MBConv6, k5 × 5 14 × 14 192 4 

8 MBConv6, k3 × 3 7 × 7 320 1 

9 Conv1 × 1 & Pooling & 
FC 

7 × 7 1280 1 

The expansion ratio of MBConv1 and MBConv6 is respectively 1 and 6. Here, k3 × 3 and k5 
× 5 represents the size of convolution kernels respectively. The size of the input 1 is 224*224*3. 

2D view with 224*224*3 is input into Conv2D (3 × 3) for extracting preliminary feature, in 
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which BN and Swish activation function are used. The feature is processed in stacked way by 16 
MBconvs whose expansion ratios are respectively 1 and 6. Conv2D (1 × 1), dropout layer, global 
average pooling layer and dense layer are used in sequence to get feature vector whose dimension 
is 1280. 

CNN is a feedforward neural network and is often used to process sequence data. In order to 
get discriminative information, multilayer CNN is adopted to compress shape descriptors D1, D2, 
D3, Zernike moment, Fourier descriptor for extracting efficient features. Two convolutional 
layers and two max-pooling layers are adopted. These two convolutional layers are respectively 
Conv1D (1, 256) and Conv1D (1, 128). Relu activation functions are used. In order to avoid the 
overfitting problem, dropout is added. Shape descriptors D1, D2, D3, Zernike moment, Fourier 
descriptor are normalized. The size of input 2 is 1*73 and it is input into multilayer CNN. After it 
is processed by Conv1D (1, 256), Conv1D (1, 128) and two max-pooling layers, the size of the 
output is 1*128. 

EfficientNet is used to extract view feature XE from 2D view. CNN is applied to extract shape 
feature XS from shape descriptors D1, D2, D3, Zernike moment and Fourier descriptor of 2D view. 
XE and XS are processed by flatten layer. They are fused in merge layer as shown in formula (12). 

),( SE XXMergeX 
        

(12) 

The fused feature is input into softmax layer for classifying 3D models. Softmax function has 
wide applications in machine learning and deep learning. When multi-class problems are processed, 
softmax function is used to convert the output into relative probabilities. Here, softmax function is 
adopted to determine category of 3D model M as shown in formula (13). 

)max( BWXsoftY 
        (13) 

Output is Y = (y1, y2, ..., ym). For model M, there are m categories. W and B are parameters in 
softmax layer. P(si|M) indicates the probability that the category of model M is si, as shown in 
formula (14).  





m

l

yy
i

li eeMsP
1

)|(
        

(14) 

Category of model M is determined as shown in formula (15). 

)|(maxarg
,...,2,1

MsPs i
mi


        

(15)
 

The process of classifying model M is shown as follows: 
Input: 2D views, shape descriptors D1, D2, D3, Zernike moment and Fourier descriptor. 
Output: Category of model M. 
Step 1. Use EfficientNet to extract view feature XE from 2D views. 
Step 2. Use CNN to extract shape feature XS from shape descriptors D1, D2, D3, Zernike 

moment and Fourier descriptor. 
Step 3. Merge XE and XS to get discriminative feature X according to formula (10). 
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Step 4. Category of model M is determined according to formulas (12)–(14). 

3. Experiments 

ModelNet10 dataset is used to evaluate the proposed method in this paper. It is a model library 
published by researchers in Princeton university for evaluating 3D model classification. It includes 4899 
CAD models and 10 categories. Training set and test set are officially specified, including 3991 training 
models and 908 test models respectively. We extract view features of training models and test models 
respectively. EfficientNet-B0 is chosen in experiments. The server includes CPU Intel (R) Core (TM) 
i5-6300HQ at 2.30 GHz and 12 GB RAM. GPU is NVDIA_Geforce GTX 950M. Keras 2.1.5 deep 
learning framework and python 3.6 programming language are used.  

Four groups of experiments are conducted. The first group of experiments are conducted to 
compare the performance of CNN-based method with D1 + D2 + D3 + Zernike + Fourier, 
Efficientnet-based method with view feature, the proposed one. The second group of experiments are 
performed to testify the influence of shape descriptors D1, D2, D3, Zernike moment, Fourier 
descriptor on the proposed network. The third group of experiments are conducted to investigate the 
influence of block number on the proposed network. The fourth group of experiments are performed 
to testify the influence of iteration time on the proposed network. 

The first group of experiments include Experiments 1–4, which investigate the influence of shape 
feature on the 3D model classification. In Experiment 1, Efficientnet is used to extract discriminative 
features from 2D views and softmax function is adopted to classify 3D models. Training set is used to 
optimize Efficientnet. Then, test set is adopted to testify the performance of Efficientnet. In Experiment 2, 
CNN is used to extract discriminative features from shape descriptors D1, D2, D3, Zernike moment and 
Fourier descriptor. Then, softmax function is adopted to classify the 3D models. Training set is used to 
optimize CNN. Then, test set is adopted to testify the performance of CNN. In Experiment 3, training 
set is used to optimize the proposed network. Then, test set is adopted to testify the performance of the 
proposed network. In Experiment 4, Mobilenet is used to extract discriminative feature from 2D views 
and softmax function is adopted to classify the 3D models. Training set is used to optimize Mobilenet. 
Then, test set is adopted to testify the performance of Mobilenet. The accuracies of 4 experiments are 
shown in Table 2. 

Table 2. Accuracies of the 3D model classification under Efficientnet, CNN, Efficientnet 
+ CNN and Mobilenet. 

 Exp 1 Exp 2 Exp 3 Exp 4 
bathtub 0.970 0.660 0.990 0.980 
bed 0.960 0.480 0.970 0.880 
chair 0.940 0.560 0.960 0.940 
desk 0.730 0.620 0.730 0.760 
dresser 0.740 0.560 0.820 0.730 
monitor 0.960 0.780 0.980 0.940 
night 0.830 0.580 0.800 0.800 
sofa 0.930 0.680 0.970 0.910 
table 0.820 0.490 0.870 0.810 
toliet 0.980 0.430 0.980 0.99 
Average accuracy 0.886 0.542 0.906 0.872 



9072 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9062–9079. 

From Table 2, it can be seen that average accuracy of Experiment 1 is better than that of 
Experiment 2. Average accuracies of Experiments 1 and 2 are respectively 0.886 and 0.542. This 
shows that view feature has better description ability for the 3D models than D1 + D2 + D3 + 
Zernike + Fourier. Efficientnet has better discriminative ability than CNN. The reason may be 
that 2D view gives more comprehensive information about the 3D model’s surface. Shape 
descriptors D1, D2, D3, Zernike moment, Fourier descriptor are computed based on points sampled 
from 2D view’s contour. The number of the sampled points is limited, and there is potential loss of 
information when the 3D model is described. So, average accuracy of Experiment 2 is bad. The 
performance of Experiment 3 is the best. This is because that when 2D views, shape descriptors D1, 
D2, D3, Zernike moment, Fourier descriptor are combined, they can describe the 3D model completely 
from different perspectives. Shape descriptors D1, D2, D3, Zernike moment, Fourier descriptor are 
fused to make up the deficiency of view feature and provide more contour information. The proposed 
network combines advantages of Efficientnet and CNN, and its discriminative ability is the best. View 
information and contour detail are all considered in the proposed network. Its accuracy is higher than 
that under view feature or contour feature. So, average accuracy of Experiment 3 is the best. 
Experiment 4 achieves better than Experiment 2 at average accuracy. This shows that the 2D views 
provide more discriminative information than shape descriptors D1, D2, D3, Zernike moment, Fourier 
descriptor. Average accuracy of Experiment 1 is better than that of Experiment 4. This shows that 
the discriminative ability of Efficientnet is better than that of Mobilenet. Average accuracy of 
Experiment 3 is higher than that of Experiment 4. The reason is that Mobilenet extracts 
discriminative features from the 2D views. The proposed network uses Efficientnet and CNN to 
extract discriminative features respectively from the 2D views and shape descriptors D1, D2, D3, 
Zernike moment, Fourier descriptor, which can express the 3D model adequately. 

In order to verify the influence of shape feature on 3D model classification, 6 comparative 
experiments are conducted based on view feature. The second group of experiments include 6 
experiments. View feature is input into Efficientnet of the proposed network. In Experiment 5, D1 is 
input into CNN of the proposed network. In Experiment 6, D2 is input into CNN of the proposed 
network. In Experiment 7, D3 is input into CNN of the proposed network. In Experiment 8, Zernike 
moment is input into CNN of the proposed network. In Experiment 9, Fourier descriptor is input into 
CNN of the proposed network. In Experiment 10, D1 + D2 + D3 + Zernike + Fourier is input into CNN 
of the proposed network. Training set is used to optimize the proposed network and test set is adopted 
to testify it as shown in Table 3. 

From Table 3, it can be seen that view + D1, view + D2 and view + D3 achieve better than view + 
Zernike and view + Fourier. Average accuracies of view + D1, view + D2 and view + D3 are 
respectively 0.894, 0.891 and 0.895, and they are almost equal. Shape descriptors D1, D2 and D3 have 
the same ability of describing the 3D model. Average accuracies of view + Zernike, view + Fourier are 
respectively 0.882 and 0.875. The description ability of Zernike moment is better than that of Fourier 

descriptor. This shows that shape descriptors D1, D2 and D3 can better describe the 3D model than 
Zernike moment and Fourier descriptor. This is because that D1, D2 and D3 features have better ability 
of description. The performance of view + D1 + D2 + D3 + Zernike + Fourier is the best. This is 
because that the 3D model can be described completely from different perspectives, when the 2D 
views, shape descriptors D1, D2, D3, Zernike moment, Fourier descriptor are combined. 
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Table 3. The influence of shape feature on the proposed network. 

 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 

bathtub 0.980 0.990 0.960 0.980 0.990 0.990 

bed 0.960 0.940 0.930 0.970 0.970 0.970 
chair 0.930 0.940 0.960 0.940 0.950 0.960 
desk 0.690 0.740 0.760 0.740 0.680 0.730 

dresser 0.790 0.780 0.750 0.690 0.720 0.820 

monitor 0.960 0.970 0.970 0.960 0.990 0.980 

night 0.790 0.820 0.840 0.880 0.850 0.800 

sofa 0.950 0.900 0.950 0.890 0.870 0.970 

table 0.900 0.840 0.840 0.860 0.840 0.870 

toliet 0.990 0.990 0.990 0.980 0.950 0.980 

Average 
accuracy 

0.894 0.891 0.895 0.882 0.875 0.906 

The block number of Efficientnet affects the performance of the proposed network. All blocks all 
contain 1*1 convolutional kernel. Each block contains 3*3 or 5*5 convolutional kernels. When there 
are more blocks in Efficientnet, accuracy of the proposed network increases. But, time and space costs 
will grow greatly. The third group of experiments are performed to investigate the influence of the 
block number on the 3D model classification. 1–7 blocks are respectively used in Efficientnet of the 
proposed network. The training set is respectively used to optimize these 7 networks and test set is 
adopted to testify them as shown in Table 4. 

Table 4. Accuracies of 3D model classification under different block number. 

 1 2 3 4 5 6 7 

bathtub 0.93 0.94 0.98 0.93 0.97 0.98 0.99 
bed 0.88 0.87 0.96 0.95 0.96 0.94 0.97 
chair 0.89 0.88 0.94 0.96 0.95 0.94 0.96 
desk 0.69 0.76 0.79 0.75 0.70 0.75 0.73 
dresser 0.64 0.66 0.69 0.74 0.74 0.81 0.82 
monitor 0.79 0.83 0.94 0.93 0.95 0.98 0.98 
night 0.77 0.73 0.75 0.75 0.82 0.78 0.80 
sofa 0.63 0.76 0.85 0.91 0.91 0.94 0.97 
table 0.72 0.74 0.83 0.83 0.85 0.82 0.87 
toliet 0.90 0.92 0.95 0.98 0.98 0.98 0.98 
Average 
accuracy 

0.788 0.806 0.865 0.877 0.884 0.893 0.906 

From Table 4, it can be seen that the larger is the block number, the higher is average accuracy of 
the proposed network. Average accuracy of the proposed network with 1 block is the lowest and its value 
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is 0.788. Average accuracies of the proposed network with 2 blocks and 3 blocks are respectively 0.806 
and 0.865. The proposed network increases greatly on average accuracy from 2 blocks to 3 blocks and 
there is an increase of nearly 7.3%. There is a fast growth from 3 blocks to 4 blocks. But, there is a slow 
growth from 4 blocks to 5 blocks. The growth rate from 5 blocks to 6 blocks becomes slower. There is 
only a smaller increase from 6 blocks to 7 blocks. But, time and space complexity is increasing greatly. 
At the same time, the growth speed of average accuracy is decreasing. 

Iteration number affects the performance of the proposed network. The fourth group of 
experiments are performed to testify the influence of iteration number on the 3D model classification. 
Training set is used to optimize the proposed network respectively with 20, 40, 60, 100 and 200 times. 
Then, test set is adopted to testify these 5 networks as shown in Table 5. 

Table 5. Accuracies of the proposed network under different iteration number. 

 20 40 60 100 200 

bathtub 0.980 0.960 0.960 0.990 0.990
bed 0.890 0.970 0.930 0.950 0.970 
chair 0.870 0.920 0.950 0.950 0.960 
desk 0.670 0.810 0.750 0.740 0.730 
dresser 0.710 0.710 0.710 0.790 0.820 
monitor 0.860 0.960 0.980 0.980 0.980 

night 0.810 0.820 0.830 0.810 0.800 

sofa 0.870 0.920 0.950 0.910 0.970 
table 0.840 0.790 0.800 0.830 0.870 
toliet 0.970 0.970 0.990 0.990 0.980 

Average 
accuracy 0.843 0.882 0.884 0.895 0.906 

From Table 5, it can be seen that as iteration time increases, average accuracy of the proposed 
network becomes the larger. When the proposed network is iterated 20 times and 40 times, its average 
accuracy is respectively 0.843 and 0.882. There is an increase of nearly 4.6% and the growth speed is 
very fast. When the proposed network is iterated 60 times, its average accuracy is 0.884. Average 
accuracy of the proposed network increases less from 40 epochs to 60 epochs. There is only an 
increase of 1.2% from 60 epochs to 100 epochs. But, iteration number increases greatly. There is only 
an increase of 1.2% from 100 epochs to 200 epochs. But, iteration number doubles. When iteration 
time is set to 200, the proposed network achieves the best. But, time and space complexity is 
increasing greatly. At the same time, the growth speed of average accuracy is decreasing. So, 
iteration time is set to 200 in experiments. For category ‘bathtub’, accuracy of the proposed network 
at 20 iterations is 0.98. At 40 and 60 iterations, accuracy of the proposed network is 0.96 and its 
accuracy decreases. This is because that there is the overfitting problem in the process of training the 
proposed network. But, with the increase of iteration number, the generalization ability of the 
proposed network is improved to some extent and it can extract effective features. So, accuracy of 
the proposed network is improved and its accuracy is 0.99 at 200 iterations. 

In order to investigate the convergence of the proposed network, 90% of training set are selected 
as training data and the rest is used as validation data. In order to extract effective features from 
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training data, initial learning rate is set to 1E-4 and batchsize is set to 16. Iteration number is set to 200. 
At each epoch, training data is used to optimize the proposed network. The optimized network is 
adopted to classify the 3D models in training data and accuracy is computed. At the same time, the 
optimized network is used to classify the 3D models in validation data and accuracy is calculated as 
shown in Figure 4. 

 

Figure 4. Accuracies of training data and validation data. 

From Figure 4, it can be seen that the proposed network has rapid convergence capability. With 
the increase of iteration number, accuracy of training data increases. But, accuracy of validation data 
fluctuates wildly. Sometime, accuracy of validation data is higher than that of training data. But, it is 
lower than that of training data for the rest time. The fluctuation range decreases with the increase of 
epochs. After 50 epochs, accuracies of training data and validation data are all over 90%. Training 
curve also reaches steady at 100 epochs. These two curves show that the proposed network is trained 
well. At the same time, the proposed network achieves the best at 200 epochs. At 200 epochs, 
accuracy of validation data reaches steady. Iteration number is set to 200 in experiment, and the 
proposed network is optimized. Then, the optimized network is applied to classify test data and 
accuracy achieves 90.6%. 

Loss of the proposed network for training data and validation data in training process is shown in 
Figure 5. 

From Figure 5, it can be seen that the loss steadily decreases and convergence speed is fast at 
learning rate 1E-4 on training data and validation data. With the increase of iteration number, the loss 
of training data decreases. But, the loss of validation data fluctuates wildly. Sometime, the loss of 
validation data is lower than that of training data. But, it is higher than that of training data for the rest 
time. The fluctuation range decreases with the increase of epochs. After 50 epochs, the loss of the 
proposed network is lower than 0.3 for training data and validation data. Training curve also reaches 
steady at 100 epochs. But validation curve reaches steady at 175 epochs. These two curves show that 
the proposed network is trained well at 175 epochs. At the same time, the proposed network achieves 
the best at 200 epochs. At 200 epochs, the loss of validation data reaches steady. Iteration number is set 
to 200 in experiment, and the proposed network is optimized. On training data and validation data, the 



9076 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9062–9079. 

loss tends to decrease and gradually achieves a balance. This shows that the proposed network has 
faster convergence rate and better convergence ability. 

 

Figure 5. Loss of the proposed network. 

4. Conclusions 

This paper combines Efficientnet and CNN to design a new network for 3D model classification. 
It includes Efficientnet, CNN, flatten layer, merge layer and softmax function. The 3D model is fixed 
to the center of the virtual sphere and virtual camera is placed above it. The 3D model is rotated one 
circle at 60° every step and six 2D views are gotten. View feature is extracted from 2D views by 
EfficientNet, which consists of 16 mobile inverted bottleneck convolutions including 1 MBConv1 
and 15 MBConv6, 2 convolution layers including Conv2D (1 × 1) and Conv2D (3 × 3), 1 global 
average pooling layer. An edge detection algorithm is applied to extract contours from 2D views. 
Shape descriptors D1, D2, D3, Zernike moment, Fourier descriptor of 2D views are adopted to 
describe the 3D model and the shape feature is extracted by CNN, which consists of 2 convolutional 
layers and 2 maximum pooling layers. Softmax function is adopted to classify 3D models based on 
the view feature and shape feature. Experiments are conducted on the ModelNet10 dataset and the 
proposed network is iterated with 200 epochs. Experiments show that the performance of the 
proposed network is better than those of CNN with D1 + D2 + D3 + Zernike + Fourier and 
Efficientnet with view feature. The accuracy of the proposed method achieves 90.6%. The reason is 
that EfficientNet is used to extract view information and CNN is adopted to extract contour detail. 
View information and contour detail are combined to describe a 3D model, which can discriminate 
between two 3D models better. 

The novelty of this paper is that local features extracted by Efficientnet and global features 
extracted by CNN are fused for classifying 3D models. Efficientnet extracts local features from 2D 
views, which does not pay more attention to contour boundary. CNN extracts global features from 
shape descriptors D1, D2, D3, Zernike moment and Fourier descriptor, which only consider points 
in the contour boundary of 2D views. Global features and local features are fused to make up for 
their defects. Previous methods only use view information or only contour detail. But, they are not 
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considered together to describe the 3D model. In this paper, we combine local feature extracted by 
Efficientnet and global feature extracted by CNN for the 3D model classification, which 
complements one another perfectly. 

It is key for 3D model classification to express 3D model’s shape and structure comprehensively. 
So, more descriptors will be introduced to describe 3D models in the future. At the same time, more 
neural networks will be tried to find effective discriminative features for classifying 3D models. 
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