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Abstract: Knowledge of viral shedding remains limited. Repeated measurement data have been rarely 

used to explore the influencing factors. In this study, a joint model was developed to explore and 

validate the factors influencing the duration of viral shedding based on longitudinal data and survival 

data. We divided 361 patients infected with Delta variant hospitalized in Nanjing Second Hospital into 

two groups (≤ 21 days group and > 21 days group) according to the duration of viral shedding, and 

compared their baseline characteristics. Correlation analysis was performed to identify the factors 

influencing the duration of viral shedding. Further, a joint model was established based on longitudinal 
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data and survival data, and the Markov chain Monte Carlo algorithm was used to explain the 

influencing factors. In correlation analysis, patients having received vaccination had a higher antibody 

level at admission than unvaccinated patients, and with the increase of antibody level, the duration of 

viral shedding shortened. The linear mixed-effects model showed the longitudinal variation of 

logSARS-COV-2 IgM sample/cutoff (S/CO) values, with a parameter estimate of 0.193 and a standard 

error of 0.017. Considering gender as an influencing factor, the parameter estimate of the Cox model 

and their standard error were 0.205 and 0.1093 (P = 0.608), the corresponding OR value was 1.228. 

The joint model output showed that SARS-COV-2 IgM (S/CO) level was strongly associated with the 

risk of a composite event at the 95% confidence level, and a doubling of SARS-COV-2 IgM (S/CO) 

level was associated with a 1.38-fold (95% CI: [1.16,1.72]) increase in the risk of viral non-shedding. 

A higher antibody level in vaccinated patients, as well as the presence of IgM antibodies in serum, can 

accelerate shedding of the mutant virus. This study provides some evidence support for vaccine 

prevention and control of COVID-19 variants. 

Keywords: COVID-19; SARS-CoV-2; viral shedding; joint model; antibodies 

 

1. Introduction 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), was first reported in December 2019 in Wuhan, China [1]. The COVID-19 

pandemic has brought with over 528 million cases and more than 6.29 million confirmed deaths, 

overwhelming the healthcare system worldwide [2]. As the pandemic progresses, virus variants have 

showed up unabatedly. The B.1.617.2 (Delta) variant has a higher transmissibility and a stronger 

immune evasion capacity than B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants [3], and its 

high infectivity is associated with a high viral load and a short incubation period [4]. The Delta variant 

shows many mutations in the spike protein, which can bind to the angiotensin converting enzyme 2 

(ACE2) receptor, thus contributing to the fusion and integration of the virus with the host cell [5]. As 

one of the two currently circulating variants of concern (VOCs) [6], the public health threat posed by 

Delta variant around the world cannot be underestimated. 

Viral clearance in a COVID-19 patient is defined as two consecutive negative (polymerase chain 

reaction) PCR results with an interval of at least 24 hours [7]. A longer viral shedding indicates a worse 

prognosis of COVID-19 patients [8]. Some studies observed a significant increase in antibodies against 

spike protein after vaccination and a positive correlation with the level of 50% neutralizing titer [9,10]. 

There was a remarkably strong non-linear relationship between the mean neutralization level and the 

protective effect of vaccines [11]. Vaccines are effective to reduce the odds of hospitalization and 

severe disease due to the Delta variant [4]. Some studies adapted a cohort design to investigate the 

relationship between disease severity and viral shedding, found that the more severe the disease, the 

longer the viral shedding time [12–14]. A retrospective study with 410 COVID-19 patients showed 

that coronary heart disease (CHD), albumin level, and time of initial antiviral treatment all impacted 

viral shedding time [15]. Another retrospective cohort study found that delayed admission to hospital 

after illness onset and male sex were associated with prolonged SARS-CoV-2 RNA shedding [16]. 

Also, an observational, retrospective, single-centre study found that viral clearance was negatively 

with respiratory disease severity, comorbidities and delayed hospital admission [17]. Besides, a 
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prospective study observed prolonged viral shedding in older, female and those with longer interval 

from symptom onset to admission [18]. 

Gong et al. [19] performed a simple correlation analysis of viral shedding and antibody level 

under a retrospective cohort of 564 participants, but found that viral shedding duration was not 

significantly correlated with antibody concentration. However, in this correlation analysis, the dynamic 

change of antibody level was not considered for exploring its influence on the duration of virus 

shedding. Significantly reduced duration of infectious viral shedding has been found among vaccinated 

individuals compared with unvaccinated individuals with a difference test [20]. But it failed to fully 

exploit longitudinal data on individual antibody levels to dynamically predict the timing of viral shedding 

in individuals. The joint model (JM) is a popular tool to process time-depending variables [21], which 

combines the mixed model or random effect model into the Cox model to construct the relationship 

between longitudinal covariates and the duration of an event [22]. Therefore, we monitored the 

dynamic change in antibody levels of hospitalized patients, and quantitatively analyzed its influence 

on the duration of viral shedding by using the JM model. 

In this study we analyzed the effect of the vaccine on the patient's antibody levels at first 

admission using correlation analysis, then explored the relationships between prolonged viral shedding 

and the antibody level in patients infected with COVID-19 using JM based on repeated measurement 

indicators. Our findings could provide some theoretical support for the effectiveness and application 

of vaccines. 

2. Materials and methods 

2.1. Study participants 

From July to August, 2021, we recruited a group of patients diagnosed with COVID-19 caused 

by SARS-CoV-2 B.1.617.2 (Delta) variant in Nanjing Second Hospital, the designated hospital for 

COVID-19 treatment in Jiangsu Province of China. The clinical classification was based on the “New 

Coronavirus Pneumonia Prevention and Control Program (Eighth Edition)”. Enrollment criteria for 

this study were as follows: a. positive RT-PCR test for COVID-19 at admission; b. disappearance of 

symptoms after standardized treatment in the hospital; c. age ≥  18 years old. This study was 

approved by the ethics committee of the Second Hospital of Nanjing (reference number: 2020-LS-

ky003). Due to the anonymous processing of all patient private information in the article, the informed 

consent was waived with the approval of the Ethics Committee of Nanjing Medical University. 

Demographics, clinical and laboratory parameters, treatment management and outcome data were 

derived from the patients’ medical history. 

Initially, 544 patients were recruited, and 27 patients aged < 18 years old were excluded. 

According to the definition of viral shedding, 143 patients lacking nucleic acid test information within 

48 hours were also excluded. In further analysis, 13 patients with outliers were excluded (Figure 1). 

Finally, 361 patients were included. 
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Figure 1. Flow diagram of data processing. 

2.2. Statistical analysis 

The joint model is constructed to infer the dependence and degree of correlation between 

longitudinal data and survival data, thus enabling a better assessment of the effectiveness of a decision 

or treatment measure [22,23]. The joint model has two basic components: the longitudinal submodel 

and the survival submodel. 

In this study, we assumed a generalized linear mixed-effects model with the following structure: 

 𝑔[𝐸{𝑦𝑖(𝑡) ∣ 𝑏𝑖}] = 𝜂𝑖(𝑡) = 𝑥𝑖
𝑇(𝑡)𝛽 + 𝑧𝑖

𝑇(𝑡)𝑏𝑖 (1) 

where 𝑔(⋅) denoted a known one-to-one monotonic link function, 𝑦𝑖(𝑡) denoted the value of the 

𝑖th subject at time point 𝑡, 𝜂𝑖(𝑡)denoted the true level of potential longitudinal measurement values 

at time 𝑡 and 𝑥𝑖(𝑡) and 𝑧𝑖(𝑡) denoted the design vectors for the fixed effects 𝛽 and the random 

effects 𝑏𝑖. 𝑏𝑖  was assumed to follow a multivariate normal distribution with mean zero and variance-

covariance matrix D. For the survival submodel, we assumed that the risk of an event at moment t 

depended on an individual-specific linear predictor function 𝜂𝑖(𝑡). Specifically, we had 

 
ℎ𝑖(𝑡 ∣ ℋ𝑖(𝑡), 𝜔𝑖(𝑡)) =

𝑙𝑖𝑚
Δ𝑡→0

 Pr{𝑡≤𝑇𝑖
∗<𝑡+Δ𝑡∣𝑇𝑖

∗≥𝑡,ℋ𝑖(𝑡),𝜔𝑖(𝑡)}

Δ𝑡
, 𝑡 > 0

= ℎ0(𝑡)exp[𝛾
⊤𝜔𝑖(𝑡) + 𝑓{ℋ𝑖(𝑡), 𝑏𝑖 , 𝛼}],

 (2) 
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where ℋ𝑖(𝑡) = {𝜂𝑖(𝑠),0 ≤ 𝑠 ≤ 𝑡} denoted the history of the underlying longitudinal process up to 𝑡 

for subject 𝑖 . ℎ0(⋅)  denoted the baseline hazard function and 𝜔𝑖(𝑡)  was covariates (exogenous, 

possibly time-varying) with corresponding regression coefficients 𝛾. 

 𝑓{ℋ𝑖(𝑡), 𝑏𝑖 , 𝛼} = 𝛼𝜂𝑖(𝑡), (3) 

where ℋ𝑖(𝑡) = {𝜂𝑖(𝑠),0 ≤ 𝑠 ≤ 𝑡}  denoted the true observed longitudinal process trajectory up to 

time point 𝑡 for subject 𝑖, and ℎ0(⋅) denoted the baseline hazard function. 𝜔𝑖(𝑡) was a vector of 

covariates, and 𝛾  was the regression coefficient. The longitudinal and survival submodels were 

connected by the parameter 𝛼, which quantified the effect of potential longitudinal outcomes on event 

risk. The baseline hazard function ℎ0(⋅) was usually not specified in the standard Cox model, but 

ℎ0(⋅)  needed to be explicitly defined in the joint model. The baseline hazard function ℎ0(⋅)  was 

flexibly modeled using a B-splines approach, 

 log ℎ0(𝑡) = 𝛾ℎ0,0 + ∑  𝑄
𝑞=1 𝛾ℎ0,𝑞𝐵𝑞(𝑡, 𝑣), (4) 

𝐵𝑞(𝑡, 𝑣) denoted the qth basis function 1, · · ·, 𝑣𝑄 and 𝛾ℎ0 spline coefficient vector of the B-splines 

with 𝑣 as the node, usually 𝑄 = 15 or 20. 

The Bayesian approach was used to develop a joint model for longitudinal and survival data, and 

the estimation method followed the Markov chain Monte Carlo (MCMC) algorithm. The JMbayes 

package in R was implemented. The theoretical development of the posterior distribution was based 

on the assumption that both longitudinal and survival processes were independent under the influence 

of a given random effect. In addition, the longitudinal response needed to consider the general 

assumption of independence of random effects. If 𝜃 denoted the set of all fixed parameters and 𝑏 

denoted the set of random parameters, , it was possible to determine the probability density function 

𝑝(⋅) as 

 𝑝(𝑦𝑖 , 𝑇𝑖 , 𝛿𝑖 ∣ 𝑏𝑖 , 𝜃) = 𝑝(𝑦𝑖 ∣ 𝑏𝑖 , 𝜃)𝑝(𝑇𝑖 , 𝛿𝑖 ∣ 𝑏𝑖 , 𝜃), (5) 

and 

 𝑝(𝑦𝑖 ∣ 𝑏𝑖 , 𝜃) = ∏  𝑙 𝑝(𝑦𝑖𝑙 ∣ 𝑏𝑖 , 𝜃), (6) 

Under these assumptions, the posterior distribution was similar to 

 𝑝(𝜃, 𝑏) ∝ ∏  𝑛
𝑖=0 ∏  

𝑛𝑖
𝑙=1 𝑝(𝑦𝑖𝑙 ∣ 𝑏𝑖 , 𝜃)𝑝(𝑇𝑖 , 𝛿𝑖 ∣ 𝑏𝑖 , 𝜃)𝑝(𝑏𝑖 ∣ 𝜃)𝑝(𝜃). (7) 

3. Results 

3.1. Baseline description 

After data processing, 361 patients were included. The outliers and null values were imputed, 

the most frequent values were used to impute categorical variables, while the mean values were used 

to express continuous variables. Based on the fact that the duration of viral shedding was generally 2 

or 3 weeks in different variants, and the median time of viral shedding in this study is 25 days, we 

chose 3 weeks as the time point of the viral shedding group. We divided the patients into two groups 
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according to the duration of viral shedding (≤  21 days group and > 21 days group). Patients’ 

characteristics were compared between the two groups, categorical variables were expressed as 

frequency (%), and continuous variables were expressed as medians (with interquartile range [IQR]). 

The statistically significant level was set at 0.05 (Table 1). No obvious difference was found in the 

median age between the two groups (49 years vs. 50 years, p = 0.101). Female patients accounted for 

a higher proportion than males. Among all patients, 104 (28.8%) suffered basic diseases (such as 

hypertension, diabetes, heart attack, and tumor), and the rate of basic diseases showed no difference 

between the two groups (p = 0.706). Totally, 240 patients (66.5%) received vaccination, and the impact 

of vaccination on the duration of viral shedding was obvious (p = 0.046). The median time from illness 

onset to hospitalization was about 2 days. The main symptoms were fever, cough, sputum production 

and shortness of breath. The blood laboratory indicators included C-reactive protein (mg/L), 

procalcitonin (ng/mL), interleukin-6 (pg/mL), white blood cell count (109/L), neutrophil count (109/L), 

lymphocyte count (109/L), hemoglobin(g/L), platelet count(109/L), albumin(g/L), total bilirubin 

(umol/L), AST (U/L), ALT (U/L), urea nitrogen (mmol/L), creatinine (mol/L), eGFR (ml/min), 

creatine kinase (U/L), CK-MB (ng/mL), myoglobin (ng/mL), troponin I (pg/mL), LDH (U/L), 

prothrombin time (s), D-dimer (mg/L), and FDPs (ug/mL) (Table1). Two types of antibodies, SARS-

COV-2 IgM sample/cutoff (S/CO) and SARS-COV-2 IgG (S/CO), were included in this study and the 

patient’s antibody level at admission showed obvious difference between the two groups. Bar plot of 

the number of new admissions stratified by vaccination status was drawn (Figure 2). Since 20 July, the 

number of cases admitted to hospital has fluctuated. The peak was between August 2 and August 4, 

and the proportion of unvaccinated people on these three days was relatively high. 

Table 1. Baseline characteristics of Delta COVID-19 patients. 

 Overall (n =361) 

Duration of viral 

shedding ≤ 21d  

(n =111) 

Duration of viral 

shedding > 21d  

(n =250) 

 

P-

value 

Demographics and clinical characteristics 

Sex     

Male 139 (38.5) 47 (42.3) 92 (36.8) 0.349 

Female 222 (61.5) 64 (57.7) 158 (63.2)  

Age, years 50.00 [40.00, 65.00] 49.00 [34.50, 62.00] 50.00 [41.00, 66.00] 0.101 

With any comorbidity     

No 257 (71.2) 81 (73.0) 176 (70.4) 0.706 

Yes 104 (28.8) 30 (27.0) 74 (29.6)  

Hypertension     

No 284 (78.7) 90 (81.1) 194 (77.6) 0.489 

Yes 77 (21.3) 21 (18.9) 56 (22.4)  

Diabetes     

No 330 (91.4) 105 (94.6) 225 (90.0) 0.221 

Yes 31 (8.6) 6 (5.4) 25 (10.0)  

Heart disease     

No 349 (96.7) 106 (95.5) 243 (97.2) 0.525 

Yes 12 (3.3) 5 (4.5) 7 (2.8)  

continue to next page 
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 Overall (n =361) 

Duration of viral shedding ≤ 

21d  

(n = 111) 

Duration of viral 

shedding > 21d  

(n = 250) 

 

P-

value 

COPD     

No 361 (100.0) 111 (100.0) 250 (100.0)  

Yes 0(0.0) 0(0.0) 0(0.0)  

Carcinoma history     

No 353 (97.8) 111 (100.0) 242 (96.8) 0.113 

Yes 8 (2.2) 0 (0.0) 8 (3.2)  

Asthma     

No 356 (98.6) 111 (100.0) 245 (98.0) 0.329 

Yes 5 (1.4) 0 (0.0) 5 (2.0)  

Autoimmune diseases     

No 357 (98.9) 110 (99.1) 247 (98.8) 1.000 

Yes 4 (1.1) 1 (0.9) 3 (1.2)  

Vaccination Status     

Unvaccinated 121 (33.5) 29 (26.1) 92 (36.8) 0.046 

Partially vaccinated 64 (17.7) 17 (15.3) 47 (18.8)  

Fully vaccinated 176 (48.8) 65 (58.6) 111 (44.4)  

Time from illness onset 

to hospitalization 

(median [IQR]) 

2.00 [1.00, 4.00] 2.00 [1.00, 4.00] 2.00 [1.00, 4.00] 0.192 

Symptoms 

Fever     

No 247 (68.4) 77 (69.4) 170 (68.0) 0.902 

Yes 114 (31.6) 34 (30.6) 80 (32.0)  

Cough     

No 179 (49.6) 56 (50.5) 123 (49.2) 0.909 

Yes 182 (50.4) 55 (49.5) 127 (50.8)  

Sputum production     

No 294 (81.4) 90 (81.1) 204 (81.6) 0.885 

Yes 67 (18.6) 21 (18.9) 46 (18.4)  

Shortness of breath     

No 349 (96.7) 109 (98.2) 240 (96.0) 0.357 

Yes 12 (3.3) 2 (1.8) 10 (4.0)  

Nausea or vomiting     

No 355 (98.3) 110 (99.1) 245 (98.0) 0.671 

Yes 6 (1.7) 1 (0.9) 5 (2.0)  

Abdominal pain or 

diarrhea 
    

No 340 (94.2) 103 (92.8) 237 (94.8) 0.470 

Yes 21 (5.8) 8 (7.2) 13 (5.2)  

continue to next page 
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 Overall (n =361) 

Duration of viral 

shedding ≤ 21d  

(n = 111) 

Duration of viral 

shedding > 21d  

(n = 250) 

 

P-

value 

Loss of smell or taste     

No 347 (96.1) 105 (94.6) 242 (96.8) 0.377 

Yes 14 (3.9) 6 (5.4) 8 (3.2)  

Myalgia     

No 351 (97.2) 108 (97.3) 243 (97.2) 1.000 

Yes 10 (2.8) 3 (2.7) 7 (2.8)  

Stuffy nose or runny 

nose 
    

No 311 (86.1) 92 (82.9) 219 (87.6) 0.249 

Yes 50 (13.9) 19 (17.1) 31 (12.4)  

Headache or dizziness     

No 334 (92.5) 106 (95.5) 228 (91.2) 0.195 

Yes 27 (7.5) 5 (4.5) 22 (8.8)  

Fatigue     

No 291 (80.6) 93 (83.8) 198 (79.2) 0.387 

Yes 70 (19.4) 18 (16.2) 52 (20.8)  

Pharyngeal discomfort     

No 280 (77.6) 91 (82.0) 189 (75.6) 0.219 

Yes 81 (22.4) 20 (18.0) 61 (24.4)  

Blood laboratory findings 

C-reactive protein, mg/L 5.41 [2.04, 14.31] 5.77 [1.31, 17.01] 5.21 [2.52, 13.53] 0.868 

Procalcitonin, ng/mL 0.04 [0.02, 0.06] 0.04 [0.02, 0.07] 0.04 [0.03, 0.06] 0.583 

Interleukin-6, pg/mL 10.06 [2.81, 21.13] 10.69 [4.54, 21.02] 9.80 [2.33, 20.95] 0.453 

White blood cell count, × 

109/L 
4.82 [3.91, 5.98] 4.79 [3.84, 6.30] 4.85 [3.94, 5.90] 0.918 

Neutrophil count, × 

109/L 
3.00 [2.19, 4.02] 2.94 [2.06, 4.19] 3.04 [2.28, 3.86] 0.679 

Lymphocyte count, × 

109/L 
1.15 [0.88, 1.54] 1.23 [1.00, 1.60] 1.11 [0.86, 1.47] 0.017 

Hemoglobin, g/dL 13.20 [12.30, 14.60] 13.40 [12.35, 14.85] 13.10 [12.30, 14.50] 0.352 

Platelet count, × 109/L 
157.00 [121.00, 

192.00] 
165.00 [130.00, 200.50] 152.00 [118.25, 189.00] 0.102 

Albumin, g/L 42.80 [40.40, 45.30] 43.10 [40.60, 45.45] 42.70 [40.20, 45.20] 0.261 

Total bilirubin, umol/L 9.70 [7.60, 12.30] 9.90 [7.75, 12.10] 9.50 [7.53, 12.57] 0.981 

AST, U/L 17.00 [13.90, 23.10] 16.10 [13.65, 23.30] 17.30 [14.35, 23.10] 0.189 

ALT, U/L 18.10 [12.20, 28.50] 19.50 [12.00, 30.80] 17.40 [12.35, 28.10] 0.702 

Urea nitrogen, mmol/L 4.36 [3.59, 5.24] 4.33 [3.62, 5.22] 4.40 [3.59, 5.27] 0.615 

Creatinine, μmol/L 60.80 [51.90, 74.90] 63.50 [54.80, 76.50] 59.15 [51.12, 74.12] 0.045 

eGFR, mL/min 
111.95 [105.75, 

117.14] 
111.95 [104.68, 119.67] 111.95 [106.93, 115.50] 0.944 

continue to next page 
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 Overall (n = 361) 

Duration of viral 

shedding ≤ 21d  

(n = 111) 

Duration of viral 

shedding > 21d  

(n = 250) 

 

P-

value 

Creatine kinase, U/L 71.00 [50.00, 112.00] 71.00 [51.50, 104.00] 69.50 [50.00, 115.75] 0.698 

CK-MB, ng/mL 0.50 [0.30, 0.80] 0.50 [0.30, 0.85] 0.50 [0.30, 0.80] 0.990 

Myoglobin, ng/mL 34.05 [23.60, 49.50] 34.05 [25.80, 49.90] 34.05 [22.22, 48.98] 0.464 

Troponin I, pg/mL 3.00 [1.00, 6.20] 3.00 [0.80, 5.45] 3.00 [1.10, 6.40] 0.580 

LDH, U/L 237.00 [202.00, 280.00] 234.00 [200.00, 269.50] 238.50 [206.00, 284.00] 0.251 

D-dimer, mg/L 0.39 [0.25, 0.60] 0.40 [0.25, 0.67] 0.38 [0.25, 0.60] 0.957 

FDPs, ug/mL 2.70 [1.70, 5.10] 3.10 [1.55, 5.40] 2.70 [1.70, 4.10] 0.242 

SARS-COV-2 IgM 

(S/CO) 
0.19 [0.06, 0.75] 0.34 [0.11, 1.36] 0.15 [0.05, 0.60] <0.001 

SARS-COV-2 IgG 

(S/CO) 
1.13 [0.15, 7.61] 3.31 [0.38, 25.44] 0.67 [0.11, 3.95] <0.001 

Abbreviations: AST, Aspartate Transaminase; ALT, Alanine Aminotransferase; eGFR, estimated Giomerular Filtration Rate; CK-MB, 

Creatine Kinase Isoenzyme; LDH, Lactic Dehydrogenase; FDPs, Fibrinogen Degrdtion Products; SARS-COV-2 IgM, Severe Acute 

Respiratory Syndrome Coronavirus 2 Immunoglobulin M; SARS-COV-2 IgG, Severe Acute Respiratory Syndrome Coronavirus 2 

Immunoglobulin G. 

 

Figure 2. Bar plot of the number of new admissions stratified by vaccination status. 

3.2. Correlation analysis 

The median interval between a patient’s last vaccination and the first sampling was 47 days. We 

found that the patients having received vaccination had a higher antibody level at admission than 
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unvaccinated patients, and the overall median of SARS-COV-2 IgM and SARS-COV-2 IgG were 0.19 

and 1.13, respectively (Figure 3). The median levels of SARS-COV-2 IgM and SARS-COV-2 IgG in 

unvaccinated patients were 0.05 and 0.10, respectively; while in fully vaccinated patients, the median 

levels were 0.30 and 4.77, respectively (Table 2). Furthermore, we drew the scatter plot of the 

relationship between the antibody level and duration of viral shedding (Figure 3 (C), (D)) and found 

that with the increase of antibody concentration, the duration of viral shedding turned shorter. To 

explore how the dynamic antibody concentration influenced the patient’s prolonged viral shedding 

duration, we made further analysis using the JM with repeated measurement antibody data. 

 

Figure 3. Correlation analysis of vaccination status, antibody concentration and duration 

of viral shedding. A. Boxplot of the relationship between SARS-COV-2 IgM level(S/CO) 

and vaccine status (fully vaccinated, partially vaccinated, and unvaccinated); B. Boxplot 

of the relationship between SARS-COV-2 IgG level(S/CO) and vaccine status (fully 

vaccinated, partially vaccinated, and unvaccinated); C. Marginal Density Scatter Plot of 

the relationship between SARS-COV-2 IgM level(S/CO) and duration of viral shedding 

(d); D. Marginal Density Scatter Plot of the relationship between SARS-COV-2 IgG 

level(S/CO) and duration of viral shedding (d). 
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Table 2. Distribution of antibody in different vaccination status. 

Abbreviations: SARS-COV-2 IgM, Severe Acute Respiratory Syndrome Coronavirus 2 Immunoglobulin M; SARS-COV-2 IgG, 

Severe Acute Respiratory Syndrome Coronavirus 2 Immunoglobulin G. 

3.3. JM Analysis 

Figure 4 provides sample subject-specific longitudinal traces for log SARS-COV-2 IgM (S/CO) 

in patients with and without endpoints. The figure clearly depicts the complexity of the data and the 

flatter SARS-COV-2 IgM (S/CO) levels in patients with 21-day viral shedding. The fitted model takes 

into account the relevant random intercept and slope of the model. The results of the linear mixed-

effects model showed the longitudinal variation of logSARS-COV-2 IgM (S/CO) values, with a 

parameter estimate of 0.193 and a standard error of 0.017 (Table 3). A significant increasing trend was 

observed in Log (SARS-COV-2 IgM (S/CO)) over time. Then, a Cox model was fitted, with gender as 

an interdependent variable, and the risk function of viral shedding (or not) within 21 days was modeled 

as the outcome variable. The parameter estimates of the model and their standard errors are given in 

Table 4. Figure 5 shows the Kaplan-Meier of the probability of survival of viral shedding between the 

different genders. Finally, the joint model output showed that SARS-COV-2 IgM (S/CO) level was 

strongly associated with the risk of a composite event at the 95% confidence level (Table 5). A doubling 

of SARS-COV-2 IgM (S/CO) level was associated with a 1.38-fold1 (95% CI: [1.16,1.72]) increase 

in the risk of viral non-shedding. 

Table 3. Liner mixed model fixed parameter estimates. 

Effects Parameter Estimate Std Err P value 

Log(SARS-COV-2) 

IgM (S/CO)) 

Intercept -1.405 0.082 < 0.001 

days 0.193 0.017 < 0.001 

Abbreviations: SARS-COV-2 IgM, Severe Acute Respiratory Syndrome Coronavirus 2 Immunoglobulin M 

 
1 The difference on the logarithmic scale of IgM is 0.693, which corresponds to a ratio of 2 on the original scale, so exp(0.693 Assoct) 

gives the corresponding hazard ratio for doubling of IgM. 

 Vaccination status 

Type of antibody Overall fully vaccinated partially vaccinated unvaccinated 

SARS-COV-2 IgM 

(median [IQR]) 
0.19 [0.06, 0.75] 0.30 [0.10, 1.17] 0.36 [0.08, 0.96] 0.05 [0.03, 0.31] 

SARS-COV-2 IgG 

(median [IQR]) 
1.13 [0.15, 7.61] 4.77 [2.24, 24.41] 0.43 [0.15, 1.62] 0.10 [0.05, 0.25] 
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Figure 4. Subject-specific log SARS-COV-2 IgM (S/CO) longitudinal trajectories in 

patients with viral shedding and viral non-shedding. Red line indicates smoother. 

 

Figure 5. Kaplan-Meier estimates of 21-day viral shedding probability by gender. 
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Table 4. Cox proportional hazards model parameter estimates. 

Parameter Estimate exp(coef) Std Err P value 

Sex 0.205 1.228 0.1093 0.0608 

Table 5. Joint model parameter estimates. 

Parameter Estimate Std Err P value 

Sex 0.274 0.005 0.056 

Assoct 0.430 0.039 <0.001 

3.4. Dynamic prediction 

Based on the joint model, we made dynamic prediction about the survival outcome of a randomly 

selected individual. More formally, based on the joint model, we were interested in deriving a 

probability prediction of viral shedding in a subject who provided a set of longitudinal measurements. 

With the help of the survivfitJM () and predict () functions in the JMbayes package, we dynamically 

predicted the time to viral shedding in Patient 361 based on the values of longitudinal changes in 

SARS-COV-2 IgM (S/CO) antibody level (Figure 6). 

 

Figure 6. The dynamic survival probability of Patient 361 during follow-up under the joint 

model. The vertical dashed line indicates the time point of the last SARS-COV-2 IgM 

(S/CO) antibody test. The left side of the vertical line depicts the fitted longitudinal 

trajectory. The solid line to the right of the vertical line indicates the median estimate of 

the dynamic survival probability, and the dashed line corresponds to the point-by-point 95% 

confidence interval. 
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We observed that Patient 361 had a low baseline SARS-COV-2 IgM (S/CO) antibody level at 

admission and her probability of no shedding virus within 21 days was high. But her longitudinal 

profile showed a sharp increase in IgM antibody level, and accordingly, her probability of shedding 

virus within 21 days increased. 

4. Discussion 

In this study, we established a joint model, which took full advantage of repeated measurements, 

to explore the factors contributing to the prolonged viral shedding. We found little connection between 

the duration of viral shedding and some basic variables varying with time, such as routine blood 

indicators, though they had been measured at many time points with slight fluctuation. Through 

correlation analysis, patients having received vaccination were found to have higher antibody levels, 

and at the same time, baseline information showed that prolonged viral shedding was related to a low 

antibody level. Using the linear mixed-effects model, we found that the concentration of SASRS-

COV-2 IgM (S/CO) varied with time obviously. Through the Cox proportional hazards model, 

difference was found in the length of viral shedding between the two genders. By combining the 

results of the linear mixed-effects model into the Cox model, the joint model output showed that 

SARS-COV-2 IgM (S/CO) level was strongly associated with the risk of a composite event at the 95% 

confidence level, with a doubling of SARS-COV-2 IgM (S/CO) level and an increased risk of 1.38-fold 

(95% CI: [1.16,1.72]). A study has found that COVID-19 patients with positive anti-SARS-CoV-2 IgM 

results have a short duration of viral shedding [24], which is consistent with the finding in this study. 

Our study is the first to investigate the correlation between SARS-COV-2 IgM (S/CO) and Delta 

variant-infected patients using datasets with repeated measurements and time-to-event outcomes. 

SARS-CoV-2 spike binds to its receptor ACE2 through its receptor-binding domain (RBD) to 

enter human cells [25]. High levels of IgM, and IgG anti-SARS-CoV-2 spike protein and RBD binding 

titer were found in volunteers after the second vaccine injection [26]. Besides, IgM plays a pivotal role 

in both humoral and mucosal immunity and it is a mucosal antibody that constitutes the first line of 

defense against mucosal pathogens [27]. Moreover, IgM antibodies that contain neutralizing antibodies 

directed against different epitopes of the Spike glycoprotein [28,29]. When infected by SARS-CoV-2, 

neutralizing antibodies recognize multiple regions within the spike glycoprotein, primarily in but not 

limited to the RBD, and inhibit viral infectivity through multiple mechanisms, including blocking the 

initial spike binding to ACE2 [29,30]. Ku et al. [31] engineered an IgM neutralizing antibody, which 

offered broad protection from SARS-CoV-2 variants. Vaccines can reduce the COVID-19-related 

hospitalization and death, as well as the asymptomatic SARS-CoV-2 infection [32]. A study has 

showed that infections occurring 12 days or longer after vaccination can significantly reduce viral 

loads, potentially affecting viral shedding and contagiousness [33]. Also, Chia et al. 9 have found a 

faster decrease of viral load and stronger boosting of anti-spike antibodies in vaccinated patients with 

Delta variants compared to those unvaccinated. 

There are some advantages in this research. We made full use of the patients’ longitudinal dada, 

adding to the credibility of the results. Using the joint model we established, the dynamic prediction 

was made about the survival outcome of a given individual, providing more accurate anticipations to 

health workers. Also, we confirmed that patients having been vaccinated had a higher antibody level, 

thus accelerating viral shedding. However, there are some limitations in our study: We failed to find 

the impact of SARS-CoV-2 IgG on viral shedding, which might be attributed to insufficient sample 
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size. And we guess that the longitudinal data of IgG may exert impacts on severe patients, which needs 

further study. Moreover, with the emergence of the new variant of COVID-19, the Omicron variant 

has spread widely in China, but this study on the relationship between antibodies and viral shedding 

can still provide certain methods and ideas for similar research on different variants in the future. 

5. Conclusions 

By making full use of the patients’ longitudinal records, we established the joint model, 

suggesting that higher antibody level in vaccinated patients, along with the presence of high-level 

SARS-COV-2 IgM antibodies in the serum, can accelerate viral shedding. This model can maximize 

the use of individual repeated data, explore the influencing factors of virus shedding, and provide 

certain ideas for relevant personnel to formulate prevention and treatment strategies for SARS-CoV-2. 
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