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Abstract: In the Salp Swarm Algorithm (SSA), the update mechanism is inspired by the unique chain 

movement of the salp swarm. Numerous versions of SSA were already put forward to deal with various 

optimization problems, but there are very few discrete versions among them. d-opt is improved based 

on the 2-opt algorithm: a decreasing factor d is introduced to control the range of neighborhood search; 

TPALS are modified by Problem Aware Local Search (PALS) based on the characteristics of Travelling 

Salesman Problem (TSP); The second leader mechanism increases the randomness of the algorithm 

and avoids falling into the local optimal solution to a certain extent. We also select six classical 

crossover operators to experiment and select Subtour Exchange Crossover (SEC) and the above three 

mechanisms to integrate them into the SSA algorithm framework to form Discrete Salp Swarm 

Algorithm (DSSA). In addition, DSSA was tested on 23 known TSP instances to verify its performance. 

Comparative simulation studies with other advanced algorithms are conducted and from the results, it 

is observed that DSSA satisfactorily solves TSP. 

Keywords: traveling salesman problem; metaheuristics; Discrete Salp Swarm Algorithm 

 

1.  Introduction  

Dealing with optimization problems is maximizing or minimizing objective functions by selecting 

optimal parameters and schemes under given constraints. From the perspective of objective function, 

there are two branches of optimization problems, multi-objective problems and single-objective 

problems. The single-objective problems have a unique objective function and the result is an 
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undisputed optimal solution. Multi-objective problems usually have multiple objective functions, and 

the result is usually a pareto optimal solution set, which usually requires trade-offs to select the 

relatively better solution. 

From the perspective of decision variables, optimization problems are classified into continuous 

problems and discrete problems. In continuous problems, the decision variables belong to the field of 

real numbers. The range of continuum problems is vast, and the literature is rich, covering such hot 

fields as engineering, medical science, and machine learning [1–3]. However, the decision variables 

are often the elements of an integer set in discrete problems. There are many practical optimization 

problems in the field of discrete optimization, e.g., the Traveling Salesman Problem (TSP) [4–6], 

Graph Coloring Problem (GCP) [5] and DNA Sequence Design Problem (DSDP) [7]. TSP is classified 

as an Np problem because its time complexity is O (N!) [8]. Although the solution of TSP is very time-

consuming [9], it still has many practical applications in many areas, e.g., DNA Fragment 

Assembly Problem (DFAP) [10], Job Shop Scheduling Problem (JSP) [11,12] and Vehicle Routing 

Problem (VRP) [13]. 

The methods for solving TSP are roughly classified into two categories in literature: deterministic 

algorithms and nondeterministic algorithms. The deterministic algorithms include, Branch and bound 

(BnB) [14], Dynamic Programming (DP) [15] and Lagrangian Dual (LD) [16], etc. However, as the 

size of TSP increases, the performance of such algorithms declines significantly [17]. nondeterministic 

algorithms are generally referring to approximation algorithms and meta-heuristic algorithms, where 

meta-heuristic algorithms can solve TSP well in controllable time cost. Numerous meta-heuristic 

algorithms for solving TSP were put forward in the existing literature. These algorithms usually use 

discrete operators to reconstruct the original algorithms. For example, Karuna Panwar reconstructed 

the Gray Wolf Optimizer (GWO) by 2-optimization (2-opt) and hamming distance to solve TSP [6]. 

Mesut Gunduz proposed a Discrete JAYA algorithm (DJAYA) to solve TSP. In DJAYA, roulette is used 

to control the behavior of the transformation operator, and two search trend parameters ST1 and ST2 

are added to enhance comprehensive optimization ability [18]. Huang et al. put forward a nearest 

neighbor heuristic information mechanism and obtained Discrete Shuffled Frog-leaping Algorithm 

(DSFLA). In DSFLA, population diversity is maintained by adopting a reverse roulette strategy, and 

exploration ability is enhanced by utilizing a separate elite set mechanism [19]. Akhand et al. realized 

the discreteness of the Discrete Spider Monkey Optimizer (DSMO) by utilizing two new cross 

operators [20]. To deal with TSP, Cinar et al. put forward Discrete Tree Seed Algorithm (DTSA). In 

DTSA, a combination of multiple transformation operators is introduced to increase exploration ability, 

and the final solution is improved by 2-opt [21]. Yongquan Zhou et al combined 3-Opt and 2-Opt to 

propose a discrete invasive weed optimization algorithm (DIWO) to solve the TSP problem [22], and 

the team also proposed discrete flower pollination algorithms based on the order-based crossover, 

pollen discarding behavior and partial behaviors [23]. Although these algorithms have good 

performance, they still have room for improvement in robustness and time cost. In particular, The TSP 

is a practical problem with more stringent requirements for robustness and time cost. We hope to 

propose a new discrete algorithm with stable performance and fast running speed to solve TSP. 

We put forward a Discrete Salp Swarm Algorithm (DSSA) for solving TSP. Salp Swarm Algorithm 

(SSA) is a swarm-based algorithm [24]. It was originally used to solve benchmark and real problems 

of continuous optimization, and SSA also has satisfactory performance in solving engineering design 

problems. There are two main reasons for proposing a discrete version of SSA to solve the TSP problem: 

(1) There are few pieces of literature on the discretization of SSA, especially on TSP. 
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(2) The exploration mode of the SSA algorithm is that the leader leads the follower to move, which 

makes the approach of the whole population towards the optimal solution gradually, which is similar 

to the common neighborhood search idea in the TSP problem.  

Therefore, this paper proposes an improved DSSA based on the properties of TSP, and compares 

it with many advanced meta-heuristic algorithms on 23 benchmark instances. Experimental results 

reflect DSSA the effectiveness and robustness in solving TSP. In addition, the application results of 

DSSA on TSP also illustrate the application prospect of this algorithm in solving discrete optimization 

problems. The rest is arranged as follows: In Section 2, TSP and the corresponding mathematical model 

are briefly described. The original SSA is briefly described in Section 3. In section 4, the d-opt operator, 

TPALS operator and DSSA are introduced. Section 5 proves that DSSA has good performance and 

robustness in solving TSP through several experiments. Finally, in Section 6, the conclusion is presented.  

2.  Traveling Salesman Problem (TSP) 

We can describe TSP as follows, a salesman should pass multiple cities and towns to sell goods. 

The salesman starts in one city, passes through all the planned cities along the way, and ends his trip 

in the starting city. And to cut down time costs, the salesman should choose the shortest travel path as 

far as possible. The main difficulty of the TSP is that there are too many potential travel routes: for 

symmetric TSP of n cities, there is a total of (n-1)/2! Possible paths. The distance from the ith city to 

the jth city is calculated using Euclidean distance, as shown in Formula Eq (1) [6]: 

 𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
  (1) 

The distance from the ith city to the jth city is defined di,j. xi and yi are x coordinate and y coordinate 

of the ith city, xj and yj are x coordinate and y coordinate of the jth city. To calculate the length of the 

travel path, we use the f function in Eq (2) [6]: 

 𝑚𝑖𝑛(𝑓) = 𝑑𝑛,1 + ∑ 𝑑𝑘,𝑘+1
𝑛−1

𝑘=1
  (2) 

Where n is city numbers. If dj,i and di,j are equivalent(i = 1,2,…,n), then it is called symmetric TSP. 

We need to find a least cost Hamiltonian path on a weighted graph in TSP [6]. 

3.  Salps Swarm Algorithm (SSA) 

SSA is a very efficient algorithm which is put forward by Seyedali Mirjalili in 2017, which is 

inspired by the phenomenon that salps move in a chain when foraging. There is one leader and many 

followers in salps, where the leader leads swarm to the food position, while followers directly or 

indirectly follow the leader [24]. 

The leader position is renew using Formula Eq (3): 

 𝑥1,𝑗 = {
𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)      𝑐3＞0.5

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)     𝑐3 ≤ 0.5
  (3) 

Where x1,j represent the jth dimension leader position and Fj represents the jth dimension food 

position. ubj represents the jth dimension upper bound, lbj represents the jth dimension lower bound. 
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c2 and c3 are random numbers in [0,1]. c1 is the key coefficient used to balance exploration and 

exploitation, its calculation formula is shown in Eq (4): 

 𝑐1 = 2ⅇ−(
4𝑡

𝑇
)
 (4) 

Where T is maximum iterations and t is current iteration. The followers position is renewed using 

formula Eq (5): 

 𝑥𝑖,𝑗 =
1

2
(𝑥𝑖,𝑗 + 𝑥𝑖−1,𝑗)     𝑖 ≥ 2  (5) 

Where xi,j represents the jth dimension position of follower i. See 1 for pseudocode about SSA. 

 

Algorithm 1 The Classical SSA 

Initialize the salp population xi (i = 1, 2, ..., n) considering ub and 

lb  

while (end condition is not satisfied) 

     calculate the fitness of each salp 

     F = the best salp 

     update c1 by (4) 

     for each salp (xi) 

        if (i = = 1) 

          update the position of the leading salp by (3) 

        else  

          update the position of the follower salp by (5) 

        end if  

     end for 

     amend the salps based on the upper and lower bounds of 

variables 

end while 

return F 

4.  Discrete Salps Swarm Algorithm (DSSA)  

4.1. d-opt 

To cut down the time cost of 2-optimization (2-opt), we improved it to obtain a d-optimization (d-

opt). 2-opt is a local search algorithm proposed by Croes [25] which is broad applied by researchers 

to deal with various discrete problems. The core idea of 2-opt is to select i and j, and then reverse the 

subsequence from i to j. If the path cost becomes smaller, perform this operation; otherwise, keep the 

original solution. For example, the original solution is A−D−C−B−E. If i = 2 and j = 5 are selected, 

the original solution is converted to A−E−B−C−D. The algorithm continuously improves the solution 

by repeating these steps. 

The time cost of 2-opt is high for two main reasons: 1) 2-opt traverses all possible i and j (i ≠ j), 

2) and calculates the total length of the path in each iteration. d-opt improves the above two 
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disadvantages respectively. Firstly, parameter d is introduced to reduce the traversal scale. Where d 

represents the minimum distance from i to j selected, only subsequences with a length greater than d 

are selected to attempt inversion. Secondly, d-opt only calculates the change of path length after 

inversion, not the total path length. See Algorithm 2 and Algorithm 3 for pseudocode about d-opt. 

4.2. TPALS 

In order to better integrate the Problem Aware Local Search (PALS) algorithm into DSSA to solve 

TSP. We improve it to obtain Tsp Problem Aware Local Search (TPALS). PALS is a heuristic algorithm 

proposed by Alba and Luque in 2007 to solve DNA Fragment Assembly Problem (DFAP) [26]. The 

solutions of PALS are defined as sequences of ordinal numbers of DNA fragments and replaced the 

current solution with neighborhood information in each iteration. The neighborhood solution set is 

obtained by reversing the subsequence from given i to j in the current solution. Unlike 2-opt, the 

termination condition of PALS is that no better solution exists in the domain solution set.   

 

Algorithm 2 d-opt (tour, d) 

tour: Initial solution  

for i = 1: n-d 

   for j = i+d:n   

      deltaF ← CalculateDeltaF(tour,i,j)  

      if (deltaF < 0)  

        ApplyMovement (tour, I, j)                 

      end if 

   end for 

end for 

return tour 

 

Algorithm 3 CalculateDeltaF(tour,i,j) 

calculate the path length len 

if (i != 1 and j != len)  

    deltaF ← dtour[i-1],tour[j] – dtour[i-1],tour[i] + dtour[i],tour[j+1] 

– dtour[j],tour[j+1] 

else if (i == 1 and j != len)  

    deltaF ← dtour[i],tour[j+1] – dtour[j],tour[j+1] + 

dtour[len],tour[j] – dtour[len],tour[i] 

else if (i != 1 and j == len)  

    deltaF ← dtour[i-1],tour[j] – dtour[i-1],tour[i] + dtour[i],tour[1] 

– dtour[j],tour[1] 

else if (i == 1 and j == len)  

    deltaF ← dtour[i],tour[j] – dtour[j],tour[i]  

end if 

return deltaF 
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Two problems need to be overcome in applying PALS to TSP. Firstly, the indicator for evaluating 

the neighborhood solution set in PALS is contig, so we delete the calculation about contig and take the 

solution with a shorter path length as the better solution among the neighborhood solutions. Secondly, 

there is no need to consider the overlap score between the last fragment and the first fragment in DFAP, 

so we add the calculation of the last path back to the starting point in TPALS. See Algorithm 4 for 

pseudocode about TPALS, where deltaF is also calculated with Algorithm 3. 

4.3. The proposed Discrete Salps Swarm Algorithm (DSSA) 

SSA was originally put forward to solve continuous problems, while TSP is discrete. Therefore, 

we use discrete operators to reconstruct the original SSA to solve the TSP. The discrete operators used 

are d-opt and TPALS mentioned above. To increase the exploration ability, we verify the effectiveness 

of five classical discrete crossover operators respectively, and introduced the operator with the best 

performance into DSSA. Each slap in the swarm represents a viable solution to TSP. 

 

Algorithm 4 TPALS (tour) 

tour: Initial solution  

repeat  

      L ← ∅  

      for i = 1:n-1 

         for j = i+1:n   

            deltaF ← CalculateDeltaF(tour,i,j)          

            if (deltaF < 0)  

              L ← L ∪ (i, j, deltaF)  

            end if 

         end for 

      end for 

      if L ≠ ∅  

           (i, j) ← SelectMovement (L)  

           ApplyMovement(tour, i, j)     

      end if 

until no changes;  

return tour 

 

In the proposed method, d-opt is used to update leaders, and the update formula is shown in Eq (6): 

 𝑇𝑜𝑢𝑟𝑖 = 𝑑 − 𝑜𝑝𝑡(𝑇𝑜𝑢𝑟𝑖, 𝑑) (6) 

Where Touri represents ith slap. d is a parameter used to control the search intensity of d-opt, and its 

updating formula is shown in Eq (7): 

 𝑑 = [𝑛 × (𝑑𝑀𝑎𝑥 −  (𝑑𝑀𝑎𝑥 − 𝑑𝑀𝑖𝑛) ×
𝑡

𝑇
)] (7) 

Where n is city numbers in TSP. The minimum and maximum value of d are defined as dMax and 

dMin. T is the maximum iterations and t is the current iteration. [.] is integer function. 
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We use TPALS and crossover operators to renew the followers position. There are 6 alternative 

crossover operators in this paper, and the best crossover operator is determined in Experiment 5.1. The 

update formula of followers is shown in Eq (8):  

 𝑇𝑜𝑢𝑟𝑖 = 𝑜𝑝ⅇ𝑟𝑎𝑡𝑜𝑟(𝑇𝑜𝑢𝑟𝑖, 𝑇𝑜𝑢𝑟𝑖−1) (8) 

Where operator is the best crossover operator determined in the experiment. 

To enhance the exploration ability, DSSA introduced a mechanism named Second Leader Principle 

(SPL), whose core idea is that in each iteration, a second leader will appear among followers, and the 

second leader will also use TPALS to renew the position. The formula of second leader is shown in Eq (9): 

 𝑇𝑜𝑢𝑟𝑖 = 𝑇𝑃𝐴𝐿𝑆(𝑇𝑜𝑢𝑟𝑖) (9) 

The formula for calculating the probability of followers becoming the second leader is shown in Eq (10): 

 𝑝𝑖 =
𝑖

𝑁
   𝑖 = 2, … , 𝑛 (10) 

Note that there is only one second leader in each iteration. In Algorithm 5, the pseudo code about 

DSSA can be obtained. 

 

Algorithm 5 DSSA 

Initialize the salp population Touri(i = 1, 2, ..., n)  

while (end condition is not satisfied) 

     calculate the fitness of each salp 

     bestTour = the best salp 

     update c1 by (8) 

     for each salp (Touri) 

        if (i = = 1) 

          update the position of the leading salp by 

(6) 

        else  

          update the position of the follower salp by 

(8) and (9) 

        end if  

     end for 

end while 

return bestTour 

5.  Experiments and results 

We tested it on 23 benchmark instances of small, medium, and large symmetric TSP to verify the 

effectiveness of the DSSA [18]. Table 1 provides the relevant information of benchmark instances that 

appeared in the article. Where the number after the instance name represents the number of cities, for 

example, Oliver30 indicates that the benchmark instance has 30 cities. All the benchmark functions 

used in the paper are from TSPLIB. 
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Table 1. TSP instance used in the experiments.  

Instance Dimension size Optimal  

oliver30 30 420 

att48 48 33522 

eil51 51 426 

berlin52 52 7542 

st70 70 675 

eil76 76 538 

pr76 76 108159 

kroA100 100 21282 

kroB100 100 22141 

kroC100 100 20749 

kroD100 100 21294 

kroE100 100 22068 

eil101 101 629 

lin105 105 14379 

pr124 124 59030 

pr136 136 96772 

kroB150 150 26130 

pr152 152 73682 

u159 159 42080 

pr226 226 80369 

pr264 264 49135 

pr299 299 48191 

pr439 439 107217 

 

All methods run 20 times for a comprehensive comparison. Each was run with the set parameters: 

population number 𝑁 = 50, iterations number 𝑇 = 𝐷 + 𝛴𝑖=1
𝐷 , where 𝐷 is the scale of the problem. 

The results were analyzed by Best, Avg, Standard deviation (Std) and Relative error (Re). The 

calculation formula of Re is shown in Eq (10) [18]: 

 𝑅𝑒 =
𝐴𝑣𝑔−𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
× 100  % (10) 

Where Avg is the average value of the best path cost obtained by running the algorithm 20 times, and 

Optimal is the Optimal path cost of the benchmark instance. All experiments were carried out under 

the same experimental environment: Intel(R) Core (TM) I510500 3.10 GHz CPU and 16.00 GB RAM, 

and were programmed on MATLAB R2020b. The parameters of the algorithm used in this article are 

shown in Table 2. 
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Table 2. Parameter settings. 

Algorithms Parameters Values 

DSSA Population size 50 

Crossover function SEC 

C1 ∈ [0.1, 0.9] 

DGWO Population size 50 

Crossover function 2-opt 

ESA Population size  50 

Successor functions  2-opt & insertion 

Temperature  −sup∆f/ln(p) 

Cooling constant  0.95 

GA Population size  50 

Crossover function  OX 

Mutation functions Insertion &3-opt 

Cross. prob.  0.95 

Mut. prob  0.25 

Selection function  Binary tournament 

Survior function  Binary tournament 

FDA Population size  50 

Movement functions 2-opt & 3-opt 

Initial 𝐴𝑖
0 Random number in [0.7,1.0] 

Initial 𝑟𝑖
0  Random number in [0.0,0.4] 

α & γ 0.98 

IDGA Population size  50 

Crossover function  OB & OBX 

Mutation functions  Insertion & 3-opt 

Cross. prob. [0.95,0.9,0.8,0.75] 

Mut. prob  [0.05,0.1,0.2,0.25] 

Selection function  Binary tournament 

Survior function  Binary tournament 

Migration strat. Best–Replace–Worst 

5.1.Experiment 1: Determine the best crossover operator  

In order to determine the influence of crossover operators and parameter c1 on DSSA, this 

experiment studied five crossover operators and five parameter combinations on the 19 benchmark 
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instances. The alternative Crossover operators are Partial-Mapped Crossover (PMX) [27], Order 

Crossover (OX) [28], position-based Crossover (PBX) [29], Order Based Crossover (OBX) [29] and 

Subtour Exchange Crossover (SEC) [30]. Table 3 shows the influence of different crossover operators 

on DSSA performance, in which bold numbers represent best results. From Table 3, When the SEC 

crossover operator is used, the Re of 19 instances is the smallest among all algorithms, and is less than 

one percent. In addition, see Table 4 for the Friedman test results of Best and Avg. From Table 4, the 

rank of DSSA-SEC is the smallest on both Best and Avg, and the p-value is much less than 0.05, which 

indicates that DSSA-SEC is obviously superior to other algorithms in performance and robustness. 

Therefore, SEC is regarded as the best crossover operator of DSSA.   

Table 3. Performance analysis of crossover operators. 

Instance Algorithm Best Avg Re Time 

oliver30 

DSSA-PMX 420 420.1 0.02% 0.43  

DSSA-OX 420 420.75 0.18% 0.36  

DSSA-PBX 420 420.05 0.01% 0.47  

DSSA-OBX 420 421.1 0.26% 0.41  

DSSA-SEC 420 420 0.00% 0.46  

att48 

DSSA-PMX 33522 33738.3 0.65% 1.63  

DSSA-OX 33522 33817.7 0.88% 1.41  

DSSA-PBX 33522 33706.65 0.55% 1.74  

DSSA-OBX 33522 33866.1 1.03% 1.64  

DSSA-SEC 33522 33564.7 0.13% 1.78 

eil51 

DSSA-PMX 426 430.65 1.09% 1.95  

DSSA-OX 426 431.8 1.36% 1.70  

DSSA-PBX 428 433.6 1.78% 2.08  

DSSA-OBX 428 435.4 2.21% 1.97  

DSSA-SEC 426 427.55 0.36% 2.04 

berlin52 

DSSA-PMX 7542 7566.5 0.32% 2.07  

DSSA-OX 7542 7708.3 2.20% 1.79  

DSSA-PBX 7542 7577.75 0.47% 2.27  

DSSA-OBX 7542 7646.8 1.39% 2.14  

DSSA-SEC 7542 7542 0.00% 2.14 

st70 

DSSA-PMX 675 679.5 0.67% 4.93  

DSSA-OX 675 684.35 1.39% 4.48  

DSSA-PBX 675 680.45 0.81% 5.29  

DSSA-OBX 675 684.85 1.46% 5.33  

DSSA-SEC 675 675.05 0.01% 5.29 

eil76 

DSSA-PMX 541 549 2.04% 6.45  

DSSA-OX 542 553.3 2.84% 5.82  

DSSA-PBX 545 554.05 2.98% 6.84  

DSSA-OBX 538 555.25 3.21% 6.91  

DSSA-SEC 538 540.5 0.46% 7.02 

Continued on next page 
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Instance Algorithm Best Avg Re Time 

pr76 

DSSA-PMX 108159 108479.2 0.30% 6.38  

DSSA-OX 108280 109228.9 0.99% 5.79  

DSSA-PBX 108159 109075.8 0.85% 6.77  

DSSA-OBX 108309 109317.6 1.07% 6.83  

DSSA-SEC 108159 108159 0.00% 6.71 

kroA100 

DSSA-PMX 21282 21334.5 0.25% 14.77  

DSSA-OX 21343 21714 2.03% 14.31  

DSSA-PBX 21378 21512.55 1.08% 16.31  

DSSA-OBX 21282 21581.35 1.41% 16.90  

DSSA-SEC 21282 21287.8 0.03% 16.08 

kroB100 

DSSA-PMX 22141 22252.2 0.50% 14.83  

DSSA-OX 22283 22629.25 2.21% 14.41  

DSSA-PBX 22141 22507.3 1.65% 16.17  

DSSA-OBX 22258 22543.7 1.82% 16.82  

DSSA-SEC 22141 22159 0.08% 15.91 

kroC100 

DSSA-PMX 20749 20835.95 0.42% 14.71  

DSSA-OX 20853 21179.15 2.07% 14.43  

DSSA-PBX 20749 20972.65 1.08% 16.89  

DSSA-OBX 20749 21084.1 1.62% 16.85  

DSSA-SEC 20749 20758 0.04% 15.76 

kroD100 

DSSA-PMX 21294 21378.1 0.39% 15.19  

DSSA-OX 21294 21742.25 2.11% 14.44  

DSSA-PBX 21309 21744.3 2.11% 16.12  

DSSA-OBX 21343 21684.8 1.84% 17.13  

DSSA-SEC 21294 21323.45 0.14% 15.45 

kroE100 

DSSA-PMX 22068 22192.5 0.56% 15.04  

DSSA-OX 22111 22438 1.68% 14.42  

DSSA-PBX 22117 22423.75 1.61% 16.09  

DSSA-OBX 22068 22452.7 1.74% 17.08  

DSSA-SEC 22068 22100.35 0.15% 15.97 

eil101 

DSSA-PMX 633 643.65 2.33% 15.55  

DSSA-OX 635 653.55 3.90% 14.89  

DSSA-PBX 645 654.95 4.13% 17.11  

DSSA-OBX 647 655.7 4.24% 17.47  

DSSA-SEC 629 633.95 0.79% 16.87 

lin105 

DSSA-PMX 14379 14430.4 0.36% 17.08  

DSSA-OX 14379 14539.95 1.12% 16.85  

DSSA-PBX 14379 14461.35 0.57% 19.24  

DSSA-OBX 14379 14531.85 1.06% 19.95  

DSSA-SEC 14379 14381.2 0.02% 17.90 

Continued on next page 
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Instance Algorithm Best Avg Re Time 

pr124 

DSSA-PMX 59030 59080.4 0.09% 28.45  

DSSA-OX 59030 59563.4 0.90% 29.50  

DSSA-PBX 59030 59399.75 0.63% 33.46  

DSSA-OBX 59030 59362.8 0.56% 34.25  

DSSA-SEC 59030 59042.15 0.02% 30.52 

pr136 

DSSA-PMX 96956 97529.15 0.78% 40.27  

DSSA-OX 97609 99776.55 3.10% 39.50  

DSSA-PBX 97270 98644.85 1.94% 44.66  

DSSA-OBX 97889 99695.8 3.02% 46.27  

DSSA-SEC 96772 97048.7 0.29% 44.97 

kroB150 

DSSA-PMX 26141 26285.75 0.60% 54.36  

DSSA-OX 26324 26905.75 2.97% 54.69  

DSSA-PBX 26246 26679.6 2.10% 60.04  

DSSA-OBX 26411 26732.1 2.30% 63.88  

DSSA-SEC 26130 26176.45 0.18% 59.66 

pr152 

DSSA-PMX 73682 73866.4 0.25% 54.95  

DSSA-OX 74373 74739.95 1.44% 57.20  

DSSA-PBX 73818 74193.55 0.69% 63.69  

DSSA-OBX 73888 74405 0.98% 64.94  

DSSA-SEC 73682 73763.6 0.11% 60.20 

u159 

DSSA-PMX 42080 42339.7 0.62% 62.77  

DSSA-OX 42535 43654.4 3.74% 66.44  

DSSA-PBX 42080 42998.9 2.18% 73.35  

DSSA-OBX 42080 43154.8 2.55% 75.62  

DSSA-SEC 42080 42132.8 0.13% 65.58 

Table 4. Friedman test of DSSA with different crossover operators. 

Rank & p DSSA-PMX DSSA-OX DSSA-PBX DSSA-OBX DSSA-SEC 

rank (Best） 
2.39 3.63 3.34 3.47 2.16 

p 5.999E-05 

rank (Avg） 
2.11 4.37 3.21 4.32 1.00 

p 3.774E-13 

5.2.Experiment 2: Comparisons with DSSA, ESA, GA, IBA and IDGA 

In this experiment, DSSA was compared with several classical or advanced algorithms (DGWO, 

DFA, DICA, ESA, GA, IBA, IDGA), which have been taken from recently published work [6,31]. 

Table 5 shows the performance of eight algorithms on 23 benchmark instances, with the best results in 

bold. Where “\” indicates that the algorithm has not been tested on related problems in the original 

literature. As can be seen from Table 5, DSSA achieved the best results in all indicators. On the one 
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hand, from the Best index, DSSA can get the theoretical optimal value in 23 instances, which shows 

that DSSA has satisfactory performance in solving TSP problems. According to the analysis, this may 

be due to the SEC operator and d-opt operator which gradually reduces the search range, which to 

some extent improves the accuracy of the optimal solution. On the other hand, from the Avg index, 

DSSA can win in all 23 instances, which shows that DSSA has satisfactory robustness in solving TSP 

problems. This shows that the combination of the TPALS operator and the SPL mechanism provides a 

certain degree of randomness to the algorithm and effectively avoids the algorithm falling into the 

local optimal solution. In addition, DSSA is superior to DGWO and slightly inferior to the other six 

algorithms in the Time index, this indicates that DSSA takes a little longer to solve the TSP problem, 

which may be due to the fact that both d-opt operator and TPALS operator contain the behavior of 

searching for the optimal solution of the neighborhood. But as a whole, the Re of these six algorithms 

is much larger than DSSA. If more than 1% of the instance of Re were considered as failures, 53.8% 

(7/13) of DGWO, 82.4% (14/17) of DFA, 88.2% (15/17) of DICA, 76.5% (13/17) of ESA, and 88.2% 

(15/17) of GA failed, 64.7% (11/17) of IBA and 88.2% (15/17) of IDGA failed. In all DSSA cases, the 

Re is less than 1%.  

Table 5. Comparisons with DSSA, DGWO, DFA, DICA, ESA, GA, IBA and IDGA. 

Fun Alg Avg Best 
Re 

(%) 
Time Fun Alg Avg Best 

Re 

(%) 
Time 

oliver 

30 

DSSA 420 420 0.00 0.5  

eil 

101 

DSSA 633.95 629 0.79 16.87  

DGWO  \ \ \ \ DGWO \ \ \ \ 

DFA 420 420 0.00 0.4 DFA 659 643 4.77 13.3 

DICA 420 420 0.00 0.5 DICA 663.8 644 5.53 12 

ESA 420 420 0.00 0.7 ESA 658.4 650 4.67 16.3 

GA 422.8 420 0.67 0.2 GA 673.8 655 7.12 10.6 

IBA 420 420 0.00 0.4 IBA 646.4 634 2.77 13.1 

IDGA 421.5 420 0.36 0.2 IDGA 660.7 650 5.04 11.7 

att 

48 

DSSA 33564.7 33522 0.13 1.8  

lin 

105 

DSSA 14381.2 14379 0.02 17.90  

DGWO  33600 33523 0.23 3.0 DGWO  14520 14382 0.98 34.3 

DFA \ \ \ \ DFA \ \ \ \ 

DICA \ \ \ \ DICA \ \ \ \ 

ESA \ \ \ \ ESA \ \ \ \ 

GA \ \ \ \ GA \ \ \ \ 

IBA \ \ \ \ IBA \ \ \ \ 

IDGA \ \ \ \ IDGA \ \ \ \ 

eil 

51 

DSSA 427.55 426 0.36 2.04  

pr 

124 

DSSA 59042.15 59030 0.02 30.52  

DGWO  \ \ \ \ DGWO  59390.9 59030 0.61 44.4 

DFA 430.8 426 1.13 1.6 DFA 59404.3 59030 0.63 18.8 

DICA 432.3 426 1.48 1.8 DICA 59436.9 59030 0.69 19 

ESA 431.6 426 1.31 2.1 ESA 59593.6 59030 0.95 23.1 

GA 440.8 427 3.47 1.7 GA 59901 59030 1.48 17.3 

IBA 428.1 426 0.49 1.7 IBA 59412.1 59030 0.65 18.5 

IDGA 434.4 426 1.97 1.2 IDGA 59912.8 59072 1.50 17.8 

Continued on next page 



8869 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 8856–8874. 

Fun Alg Avg Best 
Re 

(%) 
Time Fun Alg Avg Best 

Re 

(%) 
Time 

berlin 

52 

DSSA 7542 7542 0.00 2.1  

pr 

136 

DSSA 97048.7 96772 0.29 44.97  

DGWO  \ \ \ \ DGWO  99310.5 97826 2.62 74.3 

DFA 7542 7542 0.00 2.2 DFA 99683.7 97716 3.01 24.1 

DICA 7542 7542 0.00 2.5 DICA 99583.7 97736 2.91 24 

ESA 7542 7542 0.00 2.3 ESA 99858.3 98499 3.19 29.5 

GA 7542 7542 0.00 2.3 GA 100472.4 98432 3.82 23.8 

IBA 7542 7542 0.00 2.1 IBA 99351.2 97547 2.67 23.4 

IDGA 7542 7542 0.00 2.4 IDGA 99932.7 98532 3.27 23.7 

st 

70 

DSSA 675.05 675 0.01 5.3  

krob 

150 

DSSA 26176.45 26130 0.18 59.66  

DGWO  \ \ \ \ DGWO  26756.2 26320 2.39 125.2 

DFA 685.3 675 1.53 4.3 DFA \ \ \ \ 

DICA 684.7 675 1.44 4.1 DICA \ \ \ \ 

ESA 682.1 675 1.05 4.5 ESA \ \ \ \ 

GA 709.8 675 5.16 4.2 GA \ \ \ \ 

IBA 679.1 675 0.61 3.9 IBA \ \ \ \ 

IDGA 690.2 675 2.25 4.1 IDGA \ \ \ \ 

eil 

76 

DSSA 540.5 538 0.46 7.0  

pr 

152 

DSSA 73763.6 73682 0.11 60.20  

DGWO  \ \ \ \ DGWO  74230 73690 0.74 142.8 

DFA 556.8 543 3.49 5.3 DFA 74934.3 74033 1.70 32.1 

DICA 557.6 544 3.64 5.3 DICA 74886.7 74052 1.63 32 

ESA 553.7 546 2.92 5.8 ESA 74969.5 74172 1.75 39.5 

GA 565.4 545 5.09 5.6 GA 75658.3 74520 2.68 33.4 

IBA 548.1 539 1.88 5.1 IBA 74676.9 73921 1.35 31 

IDGA 557.7 545 3.66 5.1 IDGA 75126.7 74249 1.96 32 

pr 

76 

DSSA 108159 108159 0.00 6.7 

u159 

DSSA 42132.8 42080 0.13 65.58  

DGWO  108900 108159 0.68 13.2 DGWO  42563.3 42142 1.14 142.8 

DFA \ \ \ \ DFA \ \ \ \ 

DICA \ \ \ \ DICA \ \ \ \ 

ESA \ \ \ \ ESA \ \ \ \ 

GA \ \ \ \ GA \ \ \ \ 

IBA \ \ \ \ IBA \ \ \ \ 

IDGA \ \ \ \ IDGA \ \ \ \ 

kroA10

0 

DSSA 21287.8 21282 0.03 16.1  

pr 

226 

DSSA 80446.8 80369 0.10 248.4 

DGWO  \ \ \ \ DGWO  81153.7 80648 0.95 648.6 

DFA 21483.6 21282 0.95 10.3 DFA \ \ \ \ 

DICA 21500.3 21282 1.03 10.8 DICA \ \ \ \ 

ESA 21481.7 21282 0.94 14 ESA \ \ \ \ 

GA 21812.4 21350 2.49 9.9 GA \ \ \ \ 

IBA 21445.3 21282 0.77 10.6 IBA \ \ \ \ 

IDGA 21731.8 21345 2.11 10.7 IDGA \ \ \ \ 

Continued on next page 

 



8870 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 8856–8874. 

Fun Alg Avg Best 
Re 

(%) 
Time Fun Alg Avg Best 

Re 

(%) 
Time 

kroB10

0 

DSSA 22159 22141 0.08 15.9  

pr 

264 

DSSA 49166.15 49135 0.06 422.8  

DGWO  22444.6 22159 1.37 34.5 DGWO  \ \ \ \ 

DFA 22604.8 22183 2.10 11.6 DFA 51837 50491 5.50 93 

DICA 22599.7 22180 2.08 11.3 DICA 51943.6 50553 5.72 94.1 

ESA 22602.2 22202 2.09 13.6 ESA 52198.5 51603 6.23 102.5 

GA 22687.4 22176 2.47 10.7 GA 52499.8 51712 6.85 92.1 

IBA 22506.4 22140 1.65 11.1 IBA 50908.3 49756 3.61 92.5 

IDGA 22712.6 22208 2.59 10.7 IDGA 52290 51653 6.42 94.5 

kroC10

0 

DSSA 20758 20749 0.04 15.8  

pr 

299 

DSSA 48286.9 48191 0.20 633.7 

DGWO  21780 20749 1.58 34.4 DGWO  \ \ \ \ 

DFA 21096.3 20756 1.67 12.8 DFA 49839.7 48579 3.42 149.1 

DICA 21103.9 20756 1.71 11.7 DICA 49880.3 48600 3.51 150.3 

ESA 21170.4 20749 2.03 15.4 ESA 50532.3 49242 4.86 158.7 

GA 21510.4 20861 3.67 10.2 GA 50817.1 49659 5.45 147.6 

IBA 21050 20749 1.45 12 IBA 49674.1 48310 3.08 147.2 

IDGA 21298.7 20830 2.65 11.2 IDGA 50513.3 49572 4.82 
149.9

4 

kroD10

0  

DSSA 21323.5 21294 0.14 15.5  

pr 

439 

DSSA 107562.3 107217 0.32 2261 

DGWO  \ \ \ \ DGWO  112850.3 110415 5.25 2811 

DFA 21683.8 21408 1.83 12.4 DFA 115558.2 111967 7.78 202.4 

DICA 21666.8 21399 1.75 12.6 DICA 115763.1 111983 7.97 203.7 

ESA 21726.5 21500 2.03 15.9 ESA 116706.9 113497 8.85 206.4 

GA 22184.6 21492 4.18 9.7 GA 116943.4 113576 9.07 208.4 

IBA 21593.4 21294 1.41 11.7 IBA 115256.4 11153 7.50 201.9 

IDGA 21696.9 21582 1.89 12.1 IDGA 116436.1 113207 8.60 205.7 

kroE10

0 

DSSA 22100.4 22068 0.15 16  

\ 

\ \ \ \ \ 

DGWO  22131 22410 1.54 34.3 \ \ \ \ \ 

DFA 22413 22079 1.56 11.6 \ \ \ \ \ 

DICA 22453.3 22083 1.75 11.7 \ \ \ \ \ 

ESA 22499.7 22099 1.96 15 \ \ \ \ \ 

GA 22741.3 22150 3.05 9.4 \ \ \ \ \ 

IBA 22349.6 22068 1.28 11.4 \ \ \ \ \ 

IDGA 22721.9 22110 2.96 12.6 \ \ \ \ \ 

5.3.Experiment 3: Convergence analysis  

In this experiment, DSSA was compared with several classical or advanced algorithms (IBA, ESA 

and DFA), which have been taken from recently published work [6,31]. In Table 6, the average number 

(in thousands) of objective function evaluations required to reach the final solution for each instance 

is shown, with the best results in bold. From Table 6, on the one hand, the average evaluations number 

of DSSA is much smaller than the other algorithms, which indicates that DSSA shows better 

convergence in all 23 instances, on the other hand, the evaluations number of DSSA does not change 
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significantly by orders of magnitude as the size of the problem rises, suggesting that DSSA has 

advantages in solving TSP on a larger scale. Finally, despite the longest single run time of the DSSA, 

the overall time cost of solving TSP can be reduced by determining the appropriate evaluations number. 

Therefore, the DSSA proposed in the paper is a promising approach to solving TSP.  

Table 6. Convergence of DSSA, DFA, ESA nad IBA, expressed in thousands of objective 

function evaluations. 

 

Instance / Algorithms DSSA DFA ESA IBA 

oliver30 0.89  3.38 23.91 2.17 

eil51 8.51  17.56 85.91 15.37 

berlin52 1.99  23.68 128.26 20.07 

st70 9.82  69.56 216.08 72.67 

eil76 19.93  164.18 262.89 91.53 

kroA100 19.24  812.56 784.84 739.86 

kroB100 20.29  813.68 729.83 461.05 

kroC100 14.81  835.79 726.35 872.51 

KroD100 14.81  875.74 689.49 600.31 

KroE100 20.89  843.72 791.76 602.94 

3il101 32.86  617.83 598.11 512.73 

pr124 16.92  1589.71 1446.91 1602.51 

pr136 47.04  2763.8 2318.2 2866.6 

pr152 23.19  4769.37 3853.91 4853.19 

pr264 47.13  6686.39 6096.45 6375.46 

pr299 113.26 7016.91 6731.23 6597.94 

pr439 278.13  8736.28 8006.91 8346.85 

6.  Conclusion 

As a swarm-based algorithm, SSA was put forward to deal with continuous optimization problems 

of single and multiple objectives. In this paper, we proposed a DSSA for solving TSP. Firstly, we 

improved 2-opt and PALS into d-opt and TPALS respectively, and added them into DSSA as discrete 

operators. Secondly, we made a comparative study of five crossover operators, and confirmed that 

SEC is the best crossover operator of DSSA and introduce it into DSSA. Finally, the proposed 

DSSA was compared with several advanced algorithms on 23 benchmark examples, and the results 

showed DSSA possesses satisfactory properties and robustness in solving TSP. In the process of 

experiment, we found that the SEC operator and d-opt operator which gradually reduced the search 

range could improve the exploitation ability of the algorithm and help to improve the accuracy of the 

optimal solution, and the combination of the TPALS operator and the second leader mechanism 

provided certain randomness to the algorithm, so that the algorithm could avoid falling into the local 

optimal solution. At the same time, DSSA also exposes the disadvantage of long running time. 

According to the analysis, it may be because the d-opt operator and TPALS operator both contain the 

behavior of searching for the optimal solution of the neighborhood. In the future, In the future, we plan 

to make improvements to address the long running time of DSSA, and we intend to put forward 



8872 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 8856–8874. 

excellent and novel discrete operators for DSSA to deal with DNA fragment assembly problems. 
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