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Abstract: Most challenging task in medical image analysis is the detection of brain tumours, which
can be accomplished by methodologies such as MRI, CT and PET. MRI and CT images are chosen
and fused after preprocessing and SWT-based decomposition stage to increase efficiency. The fused
image is obtained through ISWT. Further, its features are extracted through the GLCM-Tamura
method and fed to the BPN classifier. Will employ supervised learning with a non-knowledge-based
classifier for picture classification. The classifier utilized Trained databases of the tumour as benign or
malignant from which the tumour region is segmented via k-means clustering. After the software needs
to be implemented, the health status of the patients is notified through GSM. Our method integrates
image fusion, feature extraction, and classification to distinguish and further segment the tumour-
affected area and to acknowledge the affected person. The experimental analysis has been carried out
regarding accuracy, precision, recall, F-1 score, RMSE and MAP.
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1. Introduction

A tumour develops when aberrant cells divide uncontrollably, generating a mass that can obstruct
the tissue's or organ’s normal function. Tumours are classified based on their origin as well as cell
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types. Early stages of tumours present mostly in the cerebrum, whereas secondary tumours spread to
the brain from other body areas [1]. Tumours can be carcinogenic or benign. A malignant brain tumour
grows much faster than a benign brain tumour and is more likely to infect nearby tissues. As a result,
a primary malignant brain tumour has a dismal prognosis and significantly lowers cognitive function
and quality of life [2]. Brain and nervous system cancers are the tenth largest cause of death and the
third most common malignancy among teenagers and adults. Male and female patients with malignant
brains have a five-year survival rate of 34% and 36%. Gliomas, the most common cerebral tumour in
adults, account for about 80% of malignant cases. According to research, patients with low-grade
gliomas (LGG) have a ten-year survival rate of roughly 57%.

Environmental factors such as excessive use of artificial chemicals or genetic factors can both
contribute to the development of a brain tumour. Radiotherapy, chemotherapy, and surgery are all
choices for treatment. The earlier a brain tumour is found, the better the prognosis and the more
therapeutic choices available. MRI, BIOPSY and SPECT (single photon emission computed
tomography) scans are technologies used to diagnose a brain tumour. Magnetic resonance imaging
(MRI) is the most common method, a non-invasive imaging tool that gives distinct tissue contrast.
However, there are restrictions due to the unpredictable, random, and uneven size, shape, and location
of brain tumours. Furthermore, given the amount of data to be processed, non-autonomous tumour
partitioning takes a long time and is a labour-intensive, difficult, and mostly subjective task, lowering
accuracy [3].

Image fusion enhances data content by integrating two or more photos using a specific method.
This research effort might benefit from a case study on the impact of image fusion algorithms on
classification accuracy for remote sensing applications. For the analysis, they used a Landsat 7 ETM+
image. AIF, MMT, PCA, HSV and the proven fusion technique were all investigated. Maximum
likelihood classifier, object-based classification, and SVM classifier [4] all used fusion findings. BT
was devised to visually increase the contrast between the low and high ends of the image histogram.
If original scene radiometry must be retained, BT produces spectral deterioration, which should not be
used. When applying pixel-based classifiers, the bravery transform produced a final image with a low
dynamic range and substantial misclassification. The discrete classes from the training dataset were
not assigned via HSV fusion. Because it can distinguish a picture’s high- and low-frequency
components, another technique called PCA performed better. The MMT fusion method resulted in
“Speckle” noise in classification and poor edge recognition. To depict abrupt peaks and discontinuities,
wavelet transforms are used. Shift sensitivity and directional selectivity are two shortcomings of the
wavelet transform [5].

Using computer algorithms to execute picture processing on digital images is known as digital
image processing. It approves many methods to be applied to input methods and avoids noise and
background distortion throughout the process. Medical image processing is an automatic system used
to detect the problems of the inner organs in the human body. Medical imaging produces seen pix of
inside structures of the physique for scientific and medicinal learning about and remedies as properly
as a considered view of the feature of indoor tissues. It contains many methods and steps to detect and
give the result without any time consumption, which involves pre-processing and enhancement of
image, segmentation, feature extraction, and classification using SVM [6].

The contribution of this research is as follows:

1)To increase efficiency, MRI and CT images are chosen and fused after undergoing
preprocessing and SWT-based decomposition stage;
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2) To extract the features of a fused image using the GLCM-Tamura method, which is fed to the
BPN classifier;

3) The experimental analysis has been carried out regarding accuracy, precision, recall, F-1 score,
RMSE, and MAP.

2. Related works

The guided image filter is proposed for integrating MRI and CT images in the literature [7]. The
quiet data from images were recovered (GF), and the guided filter provided the best edge-preserving
information. [8] proposed image fusion using a guided filter, in which GF functions as a boundary
smoothing as well as preserving operator comparable to a well-known bilateral filter. It has improved
borders’ performance. It is thought to be related to the Laplacian matrix. It is a non-estimated linear
time approach with a density that is independent of mask size. [9] also introduced the multi-resolution
singular value decomposition (MSVD) fusion technique. WT and MSVD looked similar. Signals are
split into low-pass and high-pass finite impulse filters in this method. The filter output was reduced
and decomposed into the next level at each decomposition level, and this process was repeated to
achieve the next succeeding levels. Furthermore, [10] compares MSVD, WT, and Laplacian pyramid
approaches. According to experimental results, MSVD outperforms WT regarding RMSE, which is
low, and PSNR, which is high. [11] also introduced a pixel-level IF approach based on PCA and WT.
PCA is a statistical approach for converting a series of observations of a possibly correlated variable
into the main and a dimension reduction technique based on orthogonal transformation. PCA's primary
disadvantage is spectrum degradation and colour distortion. A survey of several multi-spectral image
fusion algorithms was published in [12]. In contrast, the author of [13] compared various medical IF
approaches. Work [14] presented a novel medical image fusion paradigm for improving spatial
resolution by merging high-resolution anatomic images with functional images. Algorithms used to
segment brain tumours can be classified as classic or non-autonomous procedures and deep-learning
techniques. Regularized non-negative matrix factorization (NMF) and CAD methods that use
computing techniques like K-means clustering, PCA and SVM are examples of the former [15].
Work [16] used fuzzy clustering with region-growing to achieve a 73% segmentation accuracy using
instances scanned by T1 and T2-weighted sequences. The author of [17] tested various clustering
methods for brain tumour segmentation and found that k-means, fuzzy k-mean. Work in [18] rated
brain tumours using SVM as a foundation, incorporating 38 first-order or second-order statistical
measures. DL methods have recently gained popularity among researchers because they automate the
extraction of a complicated set of features from data. Tumour segmentation was accomplished using
the LinkNet network in the study [19]. Initially, a single LinkNet network segmented all seven training
datasets. Later, a CNN method was created for the autonomous extraction of the most common tumour
types without the need for preprocessing. A single network received a die score of 0.73, whereas many
systems received a score of 0.79. By feeding the 3D MRI image voxels into a two-dimensional CNN
method, the study [20] uses several CNN for brain tumour segmentation. The result is a segmentation
of brain tumours rather than a categorization. Work [21] combines SVMs with artificial neural
networks to grade brain cancers (ANNs). The learning process inaccuracy was minimized by ANNSs,
resulting in a 97.44% accuracy. However, because the number of photos used in the training process
in this method is very low, acceptability questions for datasets with a large number of images arise.
The author in [22] studied the ImageNet dataset. They developed a high-performance object detector
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based on CNN ideas that demonstrated a 70% improvement in accuracy over previous studies on the
ImageNet dataset. Several academics have worked in the domain of picture fusion of multimodal
images using various methodologies in recent years, but some challenges, such as edge visibility and
blurring edges, still need to be solved. As a result, a new multimodal image fusion method must be
created to overcome the existing state-of-the-art systems’ shortcomings.

3. Materials and methods

This section discusses the novel technique for increasing the efficiency of image fusion using
GLCM-Tamura method-based feature extraction with a BPN classifier. The proposed architecture is
represented in Figure 1. For analysis, images such as MRI and CT scans are acquired from
http://kaggle.com. Before performing the image fusion method, the input images were registered. The
discrete cosine transform was utilized to produce picture fusion, and fused images were obtained.
Thirty characteristics were retrieved from fused images and sent into three classifiers as input. A
classifier's accuracy, precision, recall, specificity, and F1 score are used to evaluate its performance.
When characteristics derived from individual input photos were provided to classifiers, these results
were compared to classifier findings. High-performance indicators imply that classifiers are
performing well.
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Figure 1. Overall proposed architecture.

In medical imaging, enhancement refers to the employment of algorithms to improve image
clarity and ensure the best possible display of all digital computer processing. It proves to be beneficial
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as well as crucial in medical diagnosis. This may aid human or computer interpretation. The goal of
enhancement is to improve the quality of an image. It reduces noise, increases contrast, emphasizes
edges, and changes shapes. Researchers are interested in multiscale approaches for picture contrast
enhancement, particularly wavelet transform. This technique enhances the edges of the segmented
region of interest. The second algorithm improves the segmentation process by adjusting the contrast
of the source image. The second morphological contrast enhancement approach is discussed here. [10]
provides a thorough theory of mathematical morphology. We discovered that arranging the element as
a disc with a radius of 30 produces the optimum morphological algorithm performance. We convolve
obtained image using a 3 X 3 Gaussian low-pass filter specified in Eq (1) [10] to increase the contrast
enhancement:

LPGF = (0.0071 0.0835 0.0071 0.0835 0.9859 0.0835 0.0071 0.0835 0.0071 )
3.1.  SWT-based decomposition stage

A wavelet is a transitory signal that contains finite-energy frequencies. A wavelet transform is a
technique for filtering signal characteristics across frequencies and time. The DWT is a wavelet
transform that has been sampled. The DWT is applied to an image’s rows first, then to its columns. At
each level of the transform, the filters are updated by adding zeros between their coefficients, a process
known as decimation. The discrete wavelets operate as high and low-pass frequency filters thanks to a
decimated algorithm. Figure 2 shows the DWT processing.

The 2D SWT, unlike the DWT, is based on the idea of no decimation, which means it is
undecimated [15]. SWT process is depicted in Figure 3. The SWT uses the DWT but eliminates both
down and up-sampling in forward and inverse transforms. It uses the SWT at each level of the image,
maintaining precise coefficients and utilizing low-frequency information. Image fusion with SWT can
be achieved by registering two source images and then applying the SWT to both input images.

After that, a fusion decision map is created. The map is created using pre-set fusion rules. The
Inverse Stationary WT is applied to the merged image to recreate it (ISWT).
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Figure 2. Discrete wavelet transform.
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Fusion algorithm: The algorithm for image fusion is defined as follows:

1) Decompose two source images into three detail subbands and one approximation subband using
SWT at one level (HL, LH, HH and LL bands).

2) Then take an average of the photos’ approximate sections.

3) Take absolute values of the image's horizontal details and subtract the second component from
the first.

4)D = (abs (H1L2) —abs (H2L2)) >=0

5) For the fused horizontal section, multiply D and the horizontal detail of the first image element
by element.

6) Determine D for the vertical as well as diagonal regions of the image as well as get fused
vertical as well as details.

7) Fusion at the first level follows the same procedure.

8) The inverse stationary WT is employed to create a fused image.
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Figure 3. Stationary wavelet transform.
3.2. GLCM-Tamura method-based feature extraction

GLCM is used to extract second-order statistics. The GLCM method determines how certain grey
levels interact with one another. The matrix calculates the relative frequency of grey-level
combinations co-occurring inside pairs of pixels in a specified spatial connection. Evaluate how often
a grey level 1 I occurs in place provided by relationship operator, g. M (i, ) is a measure of joint
probability in which a pair of points must meet g with values 1 I 1 (j) (j). An angle 6 and a distance d
represent a relationship operator. The co-occurrence matrix has dimension Nm, and the mean of x and
y is described in Eq (1):
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w,= Y (), =20 my () (1)

Moreover, o, and oy, are standard deviations of m, and m,,, respectively and defined in Eq (2):

N, s 1/2 7. 2\1/2
Oy = (Zl:i mx(l)(l - .ux)z) / » Oy = ( i=1 my(]) (] - /Jy) ) (2)

From M(i,j), u,, 1, ox and oy, 14 texture statistical measures of texture features are extracted

such as contrast, correlation, data measure of correlation, inverse difference, correlation data measure,
sum variance, difference variance, moment, sum average, entropy, difference, and sum entropy local
variations, the joint likelihood of occurrence of specified pixel pairings, the sum of squared pixel
elements, and proximity of distribution of elements are all attributes that can be measured. GLCM
similarity has been calculated by Eq (3),

no n*{EL i PGALI-jl=n (3)
Correlation:
- 1 G=wd(—u))PGS)
Xl ars - )
Energy:
Zo it {PG@HY )
Homogeneity:
y6-1 -1 P@.j) (6)
l l 1+[i—j]
Entropy:
—XiZ0  Xjmo  P@.j) xlog(P(i.))) (7
3.3.  Tamura features

Coarseness, contrast, directionality, line-likeness, regularity, and roughness are six texture
qualities relevant to the human visual perception that Tamura extracted.

Coarseness: A distance of spatial variations of grey levels measures the texture scale. The
procedure to evaluate the coarseness is as follows: At every pixel (x,y), six averages for windows of
size 2" x 2",n = 0,1, ...,5, around pixel are computed. The average is given as Eq (8):

gx—4 +2%=4-1 F1(i1,jI)
A(x, y) = Z;C;_:x:zx—l Zi-,:y2+1 22—‘1 (8)
where f1(11,jl) is gray level value at pixel (x,y). Absolute differences E,, (x,y) between pairs of

non-overlapping averages in horizontal as well as vertical directions are computed for each pixel which
is given as Egs (9) and (10):
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Erx(x,y) = [As(x + 2770 y) — Ay (x — 2771, y)| ©)
Eou(x,y) = 1A5(x,y + 2771 — Ap(x,y — 2779)| (10)

The optimal size is determined as 2™ given by eqn at every pixel by finding the value of n that
increases the difference E,, (x, y)in either direction as in Eq (11)

Slieet (x,y) = 2r (1T)

The Coarseness feature is evaluated by averaging Sl (x,y) over the entire image as shown in
Eq (12):

Coarseness = m1><n . Te1 Slpee (i j1) (12)
Contrast: Contrast measures how grey levels g; g = 0,1, ..., uos vary in the image and how

much their variation is influenced by black or white. Variance, 0% and kurtosis, t,/04, define the
contrast. The value nl = 0.25 is suggested as best for discriminating the textures by Eq (13):

Contrast =

(%)al (13)
4

Where:

o = The standard deviation

t, = The fourth moment about mean

o, = Variance squared

Directionality: Directionality is invariant to orientation [12]. Firstly, each sub-image was
convolved with an edge filter to evaluate horizontal and vertical differences, d; and d, . The
convolution of image X (n,,n,) is done with following 3 X 3 operators given by Eq (14):

-101111-101000-101-1-1-1 (14)

And then for every position (ny,n;) as given in Eq (15):

-1 d (nOﬂnl)

6 ==+ tan~! SXm0TL 15

2 di(ng,nq) (15)

The directionality is evaluated as the sum of second moments around every peak from valley to
valley after these values have been histogramming in a sixteen-bin histogram.

3.3.1. Feature extraction using SWT-GLCM and Tamura

In decomposing a discrete wavelet, the output is the original image’s coefficients (approximation,
horizontal, vertical and diagonal). The approximation carries little energy, so is skipped from the
analysis. The GLCM descriptors like contrast, correlation, energy, homogeneity and entropy for four
offsets are calculated for horizontal, vertical and diagonal coefficients.

Similarly, Tamura features like coarseness, contrast and directionality are calculated for
horizontal, vertical and diagonal coefficients, thus giving a total of 69 features listed as. DWT-GLCM-
TAMURA = {contrast 1, correlation 1, energy 1, homogeneity 1, entropy 1, contrast 2, correlation 2,
energy 2, homogeneity 2, entropy 2, contrast 3, correlation 3, energy 3, homogeneity 3, entropy 3,
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contrast 4, correlation 4, energy 4, homogeneity 4, entropy 4, contrast 5, correlation 5, energy 5,
homogeneity 5, entropy 5, contrast 6, correlation 6, energy 6, homogeneity 6, entropy 6, contrast 7,
correlation 7, energy 7, homogeneity 7, entropy 7, contrast 8, correlation 8, energy 8, homogeneity 8§,
entropy 8, contrast 9, correlation 9, energy 9, homogeneity 9, entropy 9, contrast 10, correlation 10,
energy 10, homogeneity 10, entropy 10, contrast 11, correlation 11, energy 11, homogeneity 11,
entropy 11, contrast 12, correlation 12, energy 12, homogeneity 12, entropy 12, coarseness 1, contrast
1, directionality 1, coarseness 2, contrast 2, directionality 2, coarseness 3, contrast 3, directionality 3}.

The latter is based on the difference between the grey level value of pixel qc and the radius R of
its circular neighbourhood centred at qc. As a result, the LBP codes are calculated as Eq (16).

LBPpr(q.) = Yp=5(x)2P (16)

Within the circular neighbourhood of radius R and P nearby pixels, x = qp qcis the difference
between the intensity levels of the neighbouring pixels (qp) and the centre pixel (qc). In addition, s(x)
is given by Eq (17).

s(x) ={1x =00 otherwise (17)

The value of the three attributes, “coarseness-contrast-directionality” (CND) for each pixel, is
used to create a Tamura image. This image was created for a combined RGB distribution.

3.4.  BPN classifier

Finally, the fused extracted characteristics of MRI and CT are classified as normal, malignant, or
benign tumours using the back-propagation method. Because it may vary its weight, it is an adaptable
network. There are three levels in a NN: input layers, hidden layers, and output layers. In order to find
an ideal number of hidden nodes in a simulation, the number of nodes in hidden layers is adjusted.

The back-propagation learning rule is utilized to alter network weights as well as biases to reduce
the network’s MSE or cost function. The binary sigmoidal function, or tan-sigmoid, is used to activate
each node in the network. This is a widely used function in BPN. This function restricts the output of
all network nodes to a range of 0 to 1. MSE for each training iteration for neural networks is taught
until it stops decreasing.

Computing the gradient about the parameters can assist us in doing so, as the gradient is defined
as a vector of partial derivatives of (wl, w2,..., wh, bl,..., bi). As previously stated, derivatives measure
the change in the output of a function about its input. The cost function’s gradient indicates which
direction (w1, w2,..., wh, bl,..., bi) drops the fastest. Gradient Descent is a common term for this. The
machine converges towards the local minimum with each epoch. Automatic differentiation combines
the chain rule with massive processing capacity to calculate the gradient from a potentially enormous,
complex model. Backpropagation is the name given to this algorithm in reverse. Backpropagation is
performed recursively across each layer of the NN. Let us start with the most basic example of a neural
network: a network with only one node per layer to see how Backpropagation works. In order to
understand Backpropagation, we will consider a neural network with only 2 layers and a single node
in each.

The cost function for a single training example is given by Eq (18):
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J =5 -y)? (18)

We must find the 0] /dwi; and 3] /b to implement gradient descent in Egs (19) and (20). To
find that, we will use the chain rule.

aj,]%l _ (;—a]%) (aa_aj) (632%1) _ (a(%(zi;ﬂﬂ) (a(i(zz))) (a(a%avzfli:bl)) = ((&2 - ) (g(z)(l _

g(Z))) (a1) = (9@ - y) g1~ g(2) - ai (19)

The derivative of the sigmoid function g(z) can be demonstrated using calculus (z). (1 - g(z)).
J's partial derivative in terms of bias b':

2= (25) (52) (32) = (52 () (o) (e - ) (901 - 9) =

Y@ -y)-9@A-g() (20)

Here g(z) is simply sigmoid( ). The RHS of Eqgs (19) and (20) are known using forward
propagation. Thus, the above equations give us the gradients to tweak the parameters while applying
gradient descent. This was a simple case of 2 layers with a node in each. We get a network if we
increase it to 3 layers with a node in each. Now, in this network, Eqs (19) and (20) can be re-written
as:

e = () 6 ) = (V) () () e
= (& =) (9@ (1 - 9(z»)) (@) = (g(z?) = y) - g(z)(1 - g(z2)) - @} 5 =

(2) () (2) - (A1) (2oL (et (qag - ) (96001 - 962) =

9z —y) - gz (1~ g(z%) (22)
= ) G (G2 G (o) =
(a(%(‘;i}y)z)> (22 (et (25 (lebut ) @3)
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= (@3 =) (9@ (1 - 9z%)) Wi) (9z)(1 - 9(z1)) (a}) oz =
22\ (9a2\ (921 Hai-y)’ (22))\ (0(a2w?, +b? 29\ (9(alwi; +b?
(2) (52 (2) (20) () = (P2 (Mo ettt (oo ettont

(@ =) (9D (1 - 9@»)) W) (9D (1 - g(21)) (V) (24)

Again the RHS of Eqs (21)—(24) is known. So we can calculate the required gradients. This
describes how Backpropagation works mathematically. Now that we’ve grasped the aforementioned
mathematical concepts, we can use this method to backpropagate a simple linear NN. The method
stays the same for more complicated NN, with numerous nodes in each layer, and the only variation is
that the subscripts and superscripts of w, z, a, and b are changed. Backpropagation becomes
complicated, and we must use matrix forms of derivatives, i.e., gradient vectors. The core concept,
though, stays the same. Backpropagation is just calculating the change in the cost function J as the
network’s parameters change utilizing the chain rule of derivatives. For data classification tasks, this
computes the gradient, which is utilized to change parameters utilizing gradient back propagation
neural networks. It supervises the learning process. The problem of error convergence is a significant
challenge in supervised learning. The difference between desired and computed values should be as
small as possible. The goal is to determine a set of weights that reduces mistakes. BPN classifier had
good accuracy, a short learning period, and was resistant to weight changes.

The input brain MRI pictures were classified using a back propagation NN. Features retrieved
utilizing PCA, such as mean, median, Variance, correlation, Eigen values and Eigen vectors, are input
variables for training the neural network. The backpropagation approach was used to train these
networks, an effective tool for data classification applications. For training purposes, a set of database
photos is employed.

4. Results and discussion

This study makes use of Python version 2021 software. Preprocessing, image fusion, feature
extraction, and picture classification are all steps in the proposed work. BPN classifier Python script
has been written for preprocessing, SWT-based image fusion approach, and GLCM feature extraction,
and the result has been achieved. The Python inbuilt classification learner application is utilized for
testing and analysis with different classifiers. The extracted feature data is saved in an excel file, which
is then directly fed into the classification learner programme to examine the effect of picture fusion
between proposed and existing classifiers.

4.1.  Dataset description

MRI dataset: The MSD challenge’s brain tumour dataset is a subset of data utilized in the 2016
and 2017 BraTS competitions [8—10]. 750 multiparametric MRI scans from patients with glioblastoma
or lower-grade glioma were included in the study. Native (T1) and post-Gadolinium (Gd) contrast T1-
Gd, native T2, and T2-FLAIR volumes were included in each patient’s multi-parametric MRI
sequences. These MRI scans are collected during ordinary clinical practice at 19 institutions, using
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diverse equipment and acquisition techniques, and then aggregated to establish a publicly available
benchmark dataset for segmenting brain tumour sub-regions. The scanners used to acquire these scans
ranged from 1T to 3 T. Expert board-certified neuroradiologists validated gold standard annotations
for all tumour subregions in all scans. The following institutions contributed data to the BraTS dataset:
1) CBICA, University of Pennsylvania, PA, USA; 2) University of Debrecen, Hungary; 6) Henry Ford
Hospital, MI, USA; 3) University of Alabama at Birmingham, AL, USA, 4) University Hospital of
Bern, Switzerland, 5) Heidelberg University, Germany, 7) University of California, CA, USA, 8)
Emory University, GA, USA, 9) MD Anderson Cancer Center, TX, USA, 10) Mayo Clinic, MN, USA,
11) University of North Carolina, NC, USA, 12) Case Western Reserve University, OH, USA, 14)
Duke University School of Medicine, NC, USA, 16) Fondazione IRCCS Istituto Neurologico Carlo
Besta, Italy, 17) Thomas Jefferson University, PA, USA. Data from institutions 6—16 describe data
from TCIA (http://www.cancerimagingarchive.net/)

CT dataset: Multiple slice head CT scan of different subjects is taken for segmentation of BM.
Both diseased and normal scans are included in the database. A total of 28 patient datasets with more
than 700 slices are considered for this work. The number of slices varies from 23 to 34 for different
subjects. The program is designed for complete automation; users must select only the folder
containing CT slices. Extracted BM are named after their original name and saved automatically in a
new folder in the same path as the source folder. The term “dataset” is used in this research to describe
all of a patien’s scanned CT slices in one sitting. The number of slices can vary depending on the
machine, the practitioner's discretion, and the machine's competence. Moreover, “database” refers to
the full data set used in this project.

The accuracy, precision, recall, specificity, F1 score, confusion matrix, and ROC curve are used
to evaluate classifier performance. True positive (TP), false positive (FP), true negative (TN), and false
negative (FN) are the four possible outcomes in a confusion matrix (FN). This section describes how
classifier performance is measured.

Accuracy. The ratio of the number of right guesses to the number of predictions determines the
classifier's accuracy. Eq (25), as illustrated below, defines accuracy.

TP+TN

Accuracy = ————
TP+TN+FN+FP

(25)
Precision. The correct prediction ratio to the actual prediction of brain tumour instances depicted
is the classifier’s precision by Eq (26).

TP
TP+FP

Precision = (26)

Recall. The ratio of accurately predicted brain tumour cases to total brain tumour cases, including
non-brain tumour instances, is known as the classifier’s recall by Eq (27).

TP
TP+FN

Recall = (27)

Specificity. The ratio of correctly detected nonbrain tumour cases to negative brain tumour
instances, which is expressed as in, represents the classifier's specificity by Eq (28).
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o TN
Specificity = pasp— (28)
F1 Score. It is average of classifiers' precision and recall, as described in Eq (29)
F1 Score = Prec'is.ionxrecall (29)
Precision+Recall

Confusion Matrix. The confusion matrix of the prediction method determines the classifier's
performance in matrix form. As illustrated in Figure 4, it contains correctly identified brain tumour
cases, misclassified brain tumour findings, correctly identified nontumor cases, and misclassified
nonbrain tumour instances.

Mormalized confusion matrix

o PXd 021 002 011 0.00 0.00 0.00 0.00
1- 0.00 0.03 0.00 0.00 0.00 0.00 08
2 {0.03 0.04 0.00 0.08 0.01 0.05
£ 3 {002 020 0.00 0.01 0.01 0.01 v
E 4 {0.00 0.03 0.06 0.01 (X3] 0.04 0.13 0.08 04
5 {0.03 0.09 0.05 0.13 0.02
6 {0.03 0.05 0.02 0.08 0.00 0.03 [l 0.2
7 {0.05 0.04 0.05 0.06 0.00 0.04 0.05
T L Loo

] 5 T B 5 k) d
Pradicted label

Figure 4. Confusion matrix of proposed tumour detection.

Table 1. Brain image analysis.

Datasets Input Brain Preprocessed Decomposed Fused Extracted  Classified
image Brain image  Brain Image Brain Brain Brain
image image image
MRI /
Dataset '

CT 2=
Dataset . .
/| -
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Table 2. Comparative analysis of proposed and existing methods.

Datasets  Techniques Accuracy  Precision Recall  Specificity F-Measure
MRI MSVD 82 79 65 74 52
Dataset PCNN 85 83 69 82 55
GLCM_Tamura BPN 96 92 83 85 75
CT MSVD 84 81 68 78 61
Dataset PCNN 90 85 75 86 65
GLCM Tamura BPN 98 94 89 89 81
o | MSVD /,,. MSVD g
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Figure 5. Comparison of proposed and existing methods of MRI Dataset of (a) Accuracy,
(b) Precision, (¢) Recall, (d) Specificity, (e) F1_Score.
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Figure 6. Comparison of various parameters of existing and proposed methods of CT
dataset of (a) accuracy, (b) precision, (c) Recall, (d) Specificity, (¢) F1_Score.

Tables 1-2 show that the GLCM Tamura BPN classifier outperforms the MSVD and PCNN
classifier in accuracy, precision, recall, specificity, and F1 score parameters. The average time is
obtained from ten independent trials performed on a PC with an Intel Core 3 processor and a Celeron
3.06G/1G processor. According to tabulated results, the proposed SVM classifier takes longer to
execute the results when features from fused images are given as input, almost 420 s, whereas the
proposed GLCM Tamura BPN, MSVD, and PCNN classifiers take 128, 160 and 180 s, respectively,
when features from MRI/CT fused image alone are given as input. The proposed method takes longer
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to execute the results compared to existing methodologies due to the added step. When fused pictures
are evaluated for feature extractions and classification, the suggested GLCM Tamura BPN classifier
delivers an accuracy of 96%, precision of 92%, recall of 83%, specificity of 85%, and F1 score of 75%,
as shown in Figure 5-6. When MRI/CT fused image alone is examined for feature extraction and
classification, these 5 parameters have high values and perform better than MSVD and PCNN using
proposed GLCM Tamura BPN classifiers.

4.2.  Discussion

In magnetic resonance imaging (MRI), a few pictures can be gotten utilizing different imaging
settings (for example T1, T2, DWI, and energy). However, these pictures have comparative physical
designs with various differences, giving an abundance of data to find. In any case, the pictures under
unambiguous imaging settings may not be accessible because of the constraint of examining time or
debasement brought about by commotions. It is appealing to determine missing pictures for certain
settings from the accessible MR pictures. In the proposed model, the multiscale data is additionally
taken on in the antagonistic learning (not simply in the generator or discriminator), so we can create
excellent combined pictures. Enlarged convolutions with various widening proportions were utilized
to expand the open fields. Furthermore, we integrated the distance guide and shaped data into the
division technique to section contacting cores, which is troublesome using conventional division
strategies.

5. Conclusions

This research proposes a novel technique to attain increased efficiency. MRI and CT images are
chosen and fused after undergoing preprocessing and SWT-based decomposition stage. The fused
image is obtained through ISWT. Further features are extracted through the GLCM-Tamura method,
fed to the BPN classifier. For picture classification, supervised learning with a non-knowledge-based
classifier will be employed. The classifier utilizes trained databases to segregate the tumour as benign
or malignant, from which the tumour region is segmented via k-means clustering. After the software
implementation, the health status of the patients is notified through GSM. Our method integrates image
fusion, feature extraction, and classification to distinguish and further segment the tumor-affected area
and to acknowledge the affected person. The experimental analysis has been carried out in terms of
accuracy of 96%, the precision of 92%, recall of 83%, specificity of 85%, and F1 score of 75%.
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