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Abstract: Recent studies reveal that pyroptosis is associated with the release of inflammatory cy-
tokines which can attract more target cells to be infected. In this paper, a novel age-structured virus
infection model incorporating cytokine-enhanced infection is investigated. The asymptotic smooth-
ness of the semiflow is studied. With the help of characteristic equations and Lyapunov functionals,
we have proved that both the local and global stabilities of the equilibria are completely determined by
the threshold R,. The result shows that cytokine-enhanced viral infection also contributes to the basic
reproduction number Ry, implying that it may not be enough to eliminate the infection by decreasing
the basic reproduction number of the model without considering the cytokine-enhanced viral infection
mode. Numerical simulations are carried out to illustrate the theoretical results.
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1. Introduction

In recent years, much attention have been paid on the mathematical modeling for HIV infection
[1-10]. However, most of the above mentioned models assumed that the death rate and virus production
rate of infected cells are constants. In reality, the results in [11, 12] shown that the death rate of infected
cells should depend on the infection age of infected cells, i.e., the time since the infection of the cell.
When taking the effect of infection age into a model, Nelson et al. [13] proposed and studied the
following age-structured viral infection model

T'(t) = A - dT (1) - BT(OV (1),
G4 &= —5(a)i(t, a), (1.1)
V@) = [ p@it, a) - eV (@),

with boundary condition i(z,0) = STV. Here, T and V denote the concentration of uninfected target
cells and free virions, respectively. i(f,a) denotes the density of infected cells of infection age a at
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time ¢. 6(a) is the age-dependent death rate of infected cells, p(a) is the viral production rate of an
infected cell with age a. The global dynamics of model (1.1) has been investigated by constructing
Lyapunov functions in [14]. Then, many age-structured viral infection models have been studied by
researchers [15-26] and references cited in.

Virus-to-cell infection has been regarded as the main infection mode for HIV infection for a long
time. However, literature reveals that cell-to-cell infection is a more potent and efficient way of virus
propagation rather than virus-to-cell infection [27-31]. Motivated by this fact that many models have
been proposed to study the virus dynamics for a model with cell-to-cell infection [32—45], and ref-
erences cited in. For example, Xu et al. [45] studied a viral infection model by taking cell-to-cell
infection into consideration in model (1.1) and the global dynamics have been investigated.

As in the above just mentioned references, most of the existing work just considering the death of
CD4" T cells caused by apoptosis. However, it is reported recently that CD4" T cells death caused
by pyroptosis has a larger percentage than apoptosis [46—49]. Pyroptosis is a kind of programmed cell
death triggered during the procedure of infection, in which the cytoplasmic content of infected cells
and pro-inflammatory cytokines are released. When virus enters the CD4*T cells that are unlicensed
to viral infection, then the caspase-1 pathway will be activated to induce pyroptosis, which can se-
crete inflammatory cytokines, and then these inflammatory cytokines establish a chronic inflammation
state and can attract more CD4" T cells to the inflammatory state resulting in more infection and cell
death [46—49]. In recent years, though some researchers have paid attention on the cytokine-enhanced
infection [49-52]. However, to the best of our knowledge the above mentioned work have not taken
the infection age into consideration. Therefore, motivated by [13,49-52], we propose a novel age-
structured viral infection model incorporating virus-to-cell, cell-to-cell and cytokine-enhanced viral
infection modes. Namely, we consider

T'(t) = A= diT() = BTOV() = BTOM® = T [ Bs(@itt, a)da,

HD  TD - (o) + dataic, ),
t da .

i(1,0) = BTOV®) +BTOM@) + T [ Bs(@)it, a)da,

M (1) = [ ax(@)i(t,a)da — dsM(2),

V(O = [ p@it, a)da — dyV (@),

(1.2)

with initial condition

T(0) =Ty >0, i(0,a) = iy(a) =: ¢(a) € L. (0, +c0),
V() =V, >0, MO)=M,>0,

where M(t) denotes the concentration of inflammatory cytokines. Here, 8TV and $,T M are the free-
virus infection and cytokine-enhanced viral infection, respectively. A is the uninfected target cell
production rate. d;, d; and d, are the natural death rates of uninfected cells, inflammatory cytokines
and virus, respectively. B;(a) is the infection-age specific transmission rate of productively infected
cells. d»(a) is the natural death rate of infected cells with age a. a(a) is the death rate of infected cells
which are caused by pyroptotis with age a. @,(a) and p(a) are the production rates of inflammatory
cytokines released from infected cells and virus production rate with age a. All parameters in system
(1.2) are positive, and a;(a), B3(a), d>(a), az(a) and p(a) are all Lipschitz continuous and belong to
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LZ(0, 00). Assume i(z, a) is expected to be small for large a which reflecting the fact that it is essentially
zero for large age. Actually, it can be shown that /(7) is bounded. Thus, assume that there exists a
maximum age 0 < a; < +oo such that i(t,a) = 0 for all @ > a; implying that no cells can live forever. It
1s worth mentioning that model (1.2) includes the existing models in [13,36,45]. The aim of this paper
is to investigate the global dynamics of model (1.2).

The organization of this paper is as follows. Some preliminaries results of the system (1.2) are
presented in Section 2. The existence and stability of steady states are analyzed in Section 3. Some
numerical simulations are carried out for evaluating the results in Section 4. A brief discussion is
presented at the end of the paper.

2. Preliminaries

Denote 6 = ess sup d(a) and 0 =ess irl}%f o(a) > 0, where 6 € {a;(a),B3(a),d (a), as(a), p(a)}. Let
acR,

acRy
X=RxLR,RIXRXR, Xy =Rx{0}x L'R,,R)xRxR, X, = R, x L'R,,R) xR, xR,,
Xo. = X, N Xy with the norm [[y1, o(-), Y2, Ysllx = Wil + [ le(@)lda + | + [s3]. Define a linear
operator B : Dom(8) c X — X with the form

Y —dy
V.
Bl \ ¢ = —¢' —(a1(a) + da(@)¢ | |,
1z —d3,
Y3 —dy3

with Dom(8B) = R x {0} x W11(0, 00) x R X R, where W!!(0, o) is a Sobolev space. The nonlinear
operator ¥ : Dom(8B) c X — X is given by

Ui A = Bindrs = B — [ wiBs(@)e(a)da
( 0 ) ( Bis + Bayiv + [ v Bs(@p(a)da )
Fl\le = 0 ,
12 | ax(@p(@)da
Y3 fooo pla)p(a)da

and ¥ is Lipschitz continuous on bounded sets. Let

T
u(t) = (T(t),( ),M(t), V(t)) :

i(t,a)

where T represents transposition of a vector. Then, we can reformulate model (1.2) as the following
abstract Cauchy problem:

du(r)
dt

= Bu(t) + F(u(t)), fort>0, with u(0)=uye Xo;. 2.1
Denote p(8) as the resolvent set of 8. We will show B is a Hille-Yosida operator.
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Definition 2.1. ( [53]) A linear operator B : Dom(B) Cc X — X on a Banach space (X, || - ||) is called
Hille-Yosida operator if there exist real constants M; > 1 and w € R such that (w, +o0) C p(B) and

1AL - B) — neN, 1> w.

N ——
(1 - w)
Lemma 2.1. The operator B is a Hille-Yosida operator.

Proof. It follows from the definition of B that

¥ /8
(st ) || (2)
w-s" \e@ ) [=]| ¢
W} /)
U3 U3
Then, we have
_ o _ P _ s
v _/l+al1’w2 B /l+d3’w3 CA+dy

o(a) =@goe” Jy @+ (s)+da(s)ds " f @(1)e” [ Q+ai(s)+da(s)ds dr.
0

T
Let & = (&1,( @("2(; ),&z,tﬁg) . Then, we have

(AT = B)~'éllx =l| + 10] + If p(a)dal + | + ¢
0
| foo 2 A
= d
/l+d1+ 0 90(a)a+/l+d3+/l+d4
< Wil o Wl @l Mol Wl
A+dy A+a,+d, A+a +d, A+dy A+d,

< [1€11x ’
A+ po

where uy = min{d,, @, + d,,ds, ds}. Hence, it follows from the Definition 2.1 that 8 is a Hille-Yosida
operator. O

T
Let yo = (To, ( i(z ) , M, Vo) € Xo+. Then it follows from [53] that the following result holds.

Theorem 2.1. There exists a uniquely determined semi-flow {U(t)},»0 on Xy, such that for each y,
there exists a unique continuous map U € C([0, o), X,) which is an integrated solution of Cauchy
problem (2.1), that is

!
f U(s)xods € Dom(B),Vt > 0,
0

U(Hxo = xo + Bf U(s)xods + f F(U(s)xo)ds, ¥t > 0.
0 0
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Let D = {(T(), i(t, a), M(1), V(D) € Ko T(1) < £, T() + [ i(t, a)da < &, M(1) < 32, V() < 25,
where dy = min{d,, a + @}. Then, it can be shown that D is a positively invariant set under semi-flow

{UD}i0.
Integrating the second equation of model (1.2) along the characteristic line yields

[ it -a,00(a),t>a>0,
Ht.a) = i@ -, 0<1<a,

where ['(a) = e~ h @@*&™Xr_ Consequently, we have I(1) = [ i(t — a0l (@)da + [ io(a — )i da.

It follows from model (1.2) that % < A - d,T, which implies lim sup T(¢) < (’1\—1. From the first two

t—00

equations of model (1.2), then we have

d(T (1) + I(1))

7 =A-d,T - fm(ozl(a) + dr(a)i(t,a)da < A —do(T(t) + 1(1)),
0

which yields

« A
lim sup(T + f i(t,a)da) < —,
t—00 0 dO
where dy = mln{dl,al + dz} Therefore, U(t)yo € D for yo € D, which implies D is a positively
invariant set. Moreover, the semi-flow U (t),s0 1s point dissipative and D attracts all positive solutions
of model (1.2) in Xj,. Thus, we have the following result.

Theorem 2.2. D is positively invariant set under the semi-flow {U(t)};»o. Moreover, the semi-flow
{U(1)},>0 is point dissipative and attracts all positive solutions of model (1.2).

Furthermore, we can show that the semi-flow {U(?)},»0 is asymptotically smooth. In order to give
the proof, we rewrite U = ® + ¥ where

D(t)xo = (0, w1(2,-),0,0), ¥(@)o = (T(0), wa(z,-), M(2), V(2)),

with

(t.) = 0, t>a>0, (t.) = i(t,a), t>a>0,
WILI =V ita), azt=0, "7 T 0,azt>0.

Theorem 2.3. U(t)y, : t = 0 has compact closure in X for Yy, € D if the following two conditions

hold: (i) There exists a function A : R, X R, — R, such that lim A(t,r) = 0,Yr > 0, and if xyo € D
t—00

with ||yollx < r, then ||O(t)xollx < A(t,r) fort > 0; (ii) For t > 0, Y(t)yo maps any bounded sets of D

into sets with compact closure in X.

Proof. (i) Let A(t,r) = re™@*®)" then we have lim A(t,r) = 0. For y, € D satisfying |[xollx < r, we

1—00

have
1D(D)xollx =IO] +f lwi(t, a)lda + 0] + |0
0
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I'(s+1)
I'(s)

io(s)

:ft“’

ge‘(‘““’z)ff lio(s)lds < e U yollx < A(t, ), 1 = 0.
0

r oo
ipla—1) F(a(ci)t)'da = f(;

‘ds

This completes the proof of (i).
(i1) In order to show (i1) is true. We just need to show that the following conditions hold [54].
(a) The supremum of fooc wi(t, a)da with respect to yo € D is finite;

(b) lim [} wa(t, @)da = 0 uniformly with respect to yo € D;
(©) hlir51+ fooo(wz(t, a+ h) —wy(t,a))da = 0 uniformly with respect to y, € D;

(d) hlilg fhoo ws(t, a)da = 0 uniformly with respect to yo € D.
It follows from the definition of D that (a), (b) and (d) hold. Thus, we only to show the condition
(¢) holds. For convenience, denote K(¢) = fooo B3(a)i(t, a)da. For sufficiently small & € (0, ¢), we have

foo |W2(ta a+ h) - W2(t’ a)|da
0
t—h
Zf ‘[ﬂlT(t—a—h)V(t—a -h)+BTt—a-hMit—-—a—-h)+K({t—-—a—-hT({t—-a—-h)]l'(a+h)
0
- BTt —a)V(t—a) + B, T(t —a)M(t —a) + K(t — a)T(t — a)|['(a)|da

+ f 0—-[68:T(t—a)V(t—a)+ BTt —a)M(t—a)+ Kt —a)T(t—a)lll' (a)da

—h
< fot_h (B1V(t—a—h)+BM(t—a—h)T(t—a—-h)+K(t —a—h)T(t —a—h)|[(a+h) - T(a)da
+ fo - BIT(t—a—hV(t—a—h)—BiT{—a)V(t - a)l(a)da
+ fo a BT(t —a—hM(t —a — h) — B,T(t — a)M(t — a)|[(a)da
+ fo - K(t—a—mT(t—a-h)-K(t—-a)T(t - a)l(a)da

N (,311_7/\ N Brar A N 5_3/\) Ah

d0d4 d()d3 dO dl
< BipA +,32072A +'8_3A A
d()d4 d()d3 dO dl

BipA  Brar A B3A £h+®

t—h
I'(a+ h) —T'(a)lda + + + ,
\fOV d0d4 d0d3 do dl

2.2)
where

t—h
Q= f B\ T(t—a—-h)V(Et—a—-h)-pT—-a)V(t-a)ll(a)da
0
t—h
+ f B2 T(t—a—h)M(t—a—h)—B,T(t—a)M(t —a)|l'(a)da
0

t—h
+ f K(t—a—-hT(t—-—a—-—h)— K@t—-a)T(t—a)l'(a)da.
0

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8666—-8684.



8672

We note that I'(a) is a decreasing function and satisfies 0 < I'(a) < 1. Thus,

—h 1—h
f I'(a + h) —T'(a)|lda = f T'(a) —T'(a+ h))da
0 0
h t
=f I'(a)da — f I'(a)da < h.
0 t—h

pA WA B3A\ A
BipA Bt BANAL o
dody dod; dy | dy

It follows from [38,55] that TV, TM and KT are Lipschitz on R,. Assume Ly, L7y and Lgr be
the Lipschitz coefficients of TV, TM and KT, respectively. Similar techniques as [56], then we have

(BiLry + BoLlry + Lgr)h
@ +dy '

(2.3)

Then, it follows from (2.2) and (2.3) that

f [wa(t,a + h) — wy(t,a)lda < 2(
0

t—h
0 < (ﬁlLTV +ﬁ2LTM + LKT)hf F(a)da <
0

Thus,

h+ (BiLry + BoLry + Lgr)h
d] ﬂ + @

B

*° PA @A BiA\ A
t,a+h) — t,a)lda <2 + + —
fo lwa(t,a + h) — wy(t,a)lda (,81 dods B ads T do

which converges to 0 as 4 — 0". Therefore, condition (iii) holds. This completes the proof. O
3. Stability of steady states

Define the basic reproduction number of model (1.2) as follows:

AT A [ A e
= dids fo P(a)l"(a)da+’Slz—d3 fo (7zz(a)l“(a)a’a+d—l fo By(@T(a)da.

Clearly, model (1.2) always has an infection-free steady state Ey = (7°,0,0,0) with 7° = :1\—1 IfRy # 1,
then there exists a unique infection steady state E,. = (T*,i*(a), V*, M*), which satisfies

Ro

T* = r i*(0) = Al - i) i"(a) = AT(a)(1 - i)
= . - RO ’ - R() ’

Ro 3.1)
RN (ON A A (ON A
M = a(@)(a)da, V* = f p(@T(a)da.
dy Jo ds Jo

Theorem 3.1. If Ry < 1, then the infection-free steady state E° is locally stable.
Proof. Denote T(¢) = T(t) — T, i(t, a) = i(t,a), M(t) = M(t) and V() = V(?). Linearizing model (1.2)

at E°, then we have

4L = —diT - BTV = BT°M - T° [ Ba(a)it, a)da,
Ty & = (@) + dy(a))it, a),

i(1,0) = BTV + BoT°M + T° [ Bs(a)i(t, a)da,

ddi? = fooo @ (a)i(t, a)da — ds M,

= [ p(ait, a)da — du V.
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In order to analyze the stability of E,, we look for solutions of the form T = Ty, i(t,a) = ip(a)e,
M = Mye' and V = Ve, Substituting the solutions into the above linearized model yields

(u+d)To = =BiTVy - BT'My - T° [~ Bs(a)i(a)da,

B = —(u+ ay(a) + dy(@))i(a),

(,J +d3)My = [ ax(a)ig(a)da, (3.2)
(+d)Vo = [ pl@io(a)da,

i0(0) = BTV + BoT'My + T° [ Bs(a)io(a)da.

Then we have y(a) = (O (@e ™, My = - ;" ax(@io(@)da, Vo = = [ p(@)io(a)da, substituting
io(a), My and V,, into the last equation of (3.2), we have

B.T°

BT fm _
= al(a)e  da +
@@ e

Cp+dy

f @ () (a)e ™ da + T° f Bs(@)(a)e ™ da £ G(u).
0 0
(3.3)
Obviously, lim G(u) = 0, G(0) = Ry, and a simple computation shows that G(u) is a decreasing
l,l—)OO

function with respect to u. Therefore, if Ry < 1, then any real root of (3.3) is negative. Thus, Ej is
unstable for Ry > 1. Moreover, we claim that (3.3) has no complex roots with nonnegative real part if
Ro < 1. In fact, if there exists a root u = & + ni with & > 0. Then,

T | TO | (™
G (u)|_|/3 o f p@T(@)e ™ dal + |52+ — fo (@ (@)e*da
+7° f Bi(a)(a)e da
0
— ﬁlTO - —(é+ni)a T(a)d ﬁ f —(é+ni)a T(a)d
NCETAET le p@T(a)da + m le (@I (a)da
+7° f ) Bi(@)(a) |e_(§+'7i)“ da
0
0 ] 0 00 o
sé% fo e ““p(a)(a)da + fiT 3 fo e ““ay(@)(a)da + T fo Ba(@)T(a)e *da

=G(¢) <G0) =Ry < 1.

Thus, the above arguments imply that every root of (3.3) must have a negative real part, which implies
that E is locally stable for Ry < 1. O

Theorem 3.2. If Ry > 1, then E. is locally stable.

Proof. With the same technique of Theorem 3.1. Let x(¢) = T—-T", y(t,a) = i(t,a)—i"(a), z = M(t)-M*
and v(r) = V(¢t) — V*. Linearizing model (1.2) at E, and looking for solutions of the form x = Xe/,
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(t,a) = y(a)et, z = Ze" and v = e leads to
y y

px = —(dy +BiV* + o M* + [ Ba(@i(a)da)s — BiT*V = BTz = T* [ Bs(a)y(t, a)da,
DD = —(u + ar(a) + dy(@))3,

pz = [ am(@)f(a)da - dsz,

v = |7 p@)i(@da - dyb,

0) = BV +BoM’ + [ B(@)i*(@da)k + BT + BT 2+ T* [ Ba(@)y(t, a)da.

A simple calculation leads to y(a) = §(0)e ™ I'(a), X = _30 s - SO fooo az(a)e ™I '(a)da, and ¥ =

i v j+ds
;ffz fo p(a)e T (a)da. Then we have

ptdi+ BV B M+ [T B(@)i'(a)da

urd (3.4)

A f ) p(@T(a)e ™ da + pol” f ) (@) (a)e ™ da + T* f ) By(@T(a)e ™™ da.
0 u+ds Jy 0

e

Obviously, for Reu > 0 then

p+di+ BV + oM + [T By(a)i*(a)da N

v d 1, (3.5)
and
AT f " p@T@e*da+ 22T f (@@ da+ T° f  p@T@eda
/,l+d4 0 ,Lt+d3 0 0
itk f pla)T(@e*da| + 221 f (@) (a)e ™ da| + T f By@I(a)e™da
lu+dil 1o lu + ds| | Jo 0 (3.6)
AL f p@T(@)da + 22 f (@ (a)da+T* f Bs@T(@)da
d4 0 d3 0 0
T*
:ERO = 1

It follows from (3.4)—(3.6) that there are no characteristic roots with non-negative real part. Thus, E,
is locally stable. m|

Before we discuss the global stability of model (1.2) by constructing Lyapunov functionals. We
present the following result by a procedure similar to [22,23], so we omit the proof.

Theorem 3.3. If Ry > 1, then for each y, € X there exists a constant p > 0 such that
lim 7'(¢) > p, lim ||i(¢, a)l|r = p, lim M(¢) > p, lim V(¢) > p.
—00 —00 t—00 t—o00

Now, we are in position to investigate the global stability of steady states.

Theorem 3.4. If Ry < 1, then the infection-free steady state E is globally asymptotically stable.
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Proof. Define

,BZTOM N BiT°

V.
ds dy

T (o]
H@O=T-T"-T"n =5+ f ®(a)i(t, a)da +
0

where

00 TO TO .
0@ = [ (BT p0+ o s ) Fosionee,
a 4 3

It is easy to show that ®(0) = R, and

0 ¢
f CI)(a)i(t, (l)da :f (D(a)i(t —-a, O)e—fo (al(r)+d2(7-))d.,da
0 0
+ f D(a)ig(a — t)e” i a1@rda(dr g,
t

' - (3.7)
= f (I)(t — r)i(r’ O)e_fo (QI(T)‘Fdz(T))der

0
+ f Ot + r)ig(r)e @@+,
0
Furthermore, we can obtain

(foo D(a)i(t, a)da)’ = ©(0)i(t,0) + fm(dy(a) — (a1(a) + dy(a)D(a))i(t, a)da. (3.8)
0 0

Thus, by using (3.7) and (3.8) and noting that 7° = %, we have

T lose)
H'(f) = (1 _ ﬁ) (A —d,T — i(t.0)) + fo (@' (a) — (1 (a) + dy(@)D())i(t, a)da

0 00
+ ®(0)i(z, 0) + P ZT ( f ay(a)i(t, a)da — d3M)
0

3

0 00
WA Z ( f p@)i(t,a)da — d4V)
0

T 70\
—d,T (1—ﬁ) 1= |+t 0(Ro = 1) < 0, for R < 1.

Therefore, if Ry < 1, we have H'(f) < 0 and H'(f) = 0 implies that T = T°, i(t,a) = 0, M(t) = 0
and V() = 0. Hence, the largest invariant subset of {H’() = 0} is a singleton {E(}, which means E|
is global asymptotically stable for Ry < 1 by Lyapunov-LaSalle theorem [57]. This completes the
proof. O

Theorem 3.5. If Ry > 1, then the infection steady state E. is globally asymptotically stable.
Proof. Define

H,(t)=T -T"-T"In T + foo D(a) (i(t, a) - i*(a) — i"(a) In i.(l, a))da
" J i“(a)
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T T
e (M o Mln—) P (V—V*—V*lnl),
} )t a4 Ve

where

d(a) = foo (ﬁlT;p(T) +,31T;CU2(T) B, (T)T*) iy ————
a 4 3

and satisfies

' (a) = — (ﬁ ITZ @ B IT;C?(“) + ,83(a)T*) +(a1(a) + do(@)D(a), DO) = 1. (3.9)

Differentiating and using the steady state identities (3.1) and (3.9), then we have

T T t,0
H(t) =di T (1 _ T—)(l - 7) iy (0)( In ' (0))) BT'V* + BT M*
Bi T*p(a)l (a) i(t,a) BT (7 _ Vv
f _— ( +In —— @) )d - & f(; p(a)i(t, a)Vda
ﬁzT*az(a)l (a) i(t,a) BT (7 LM
f ( +In @) )da - " j(: a(a)i(t, a) 7 da

f ﬁg(a)T*l*(a)(l +1n ((—)))d
_ Ty, T" ﬁ1 T it,a)V" i(t, a)i*(0)
it (1 )(1 ) " s = (a)[ T~ v M e 0)] da

T T
,82 T* l(t, a)M* i(t,a)i*(0)
@:(@)i'(@) [2 T rem M e, 0)]

. i(t, a)i* (0)
fﬁ3<a>Tz<a)[1—7 +1n e 0)]da

) LTy, T ,81 Vilt, a)

=d,T* (1 = )(1 T)+ ) p(a)l (a)[¢( ) ¢( Vir@) )

TVi*(0) POV ~ B, T*

+¢(T*V*i(t,0))+ (7, 00TV _1)]da+fo ds
Mei(t, a) T Mi*(0) (O TM

+ ¢( M@ ) v 0)) i (z’(r, 0T M~ 1) ]d“

o T i(t,@)i*(0)T i(t,a)i*(0)T
+f0 B3(@)T"i"(a) _¢ (7) + ¢(i*(a)i(t, O)T*) + (i*(a)i(t, O " 1)] da.

az(a)i*(a)[‘f’(%)

Since,

BT (O)TV 8T ()T M
f p(@)i ()(@ oo - ) a+fo : —l)da

oo e
. i(t,a)i*(0)T
f&(a)T ()( o )da
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=i"(0) — i(z,0) ((O))

ok ‘ T [ l l7a

Hy(0) =d, T (1—— (1——) f T
TVi*(0) S ﬁzT* ) T Mi(t. a)
: ‘f’(m)]d ), B <“>[¢(T*) : ¢( i@ )
TMi*(0) S » T i(t. a)i*(0)T
(T*M*i(t, 0)) da+ fo AT i) [¢ (?) +9 (i*(a)i(t, O)T*)] da
<0,

where ¢(x) = 1 + Inx — x satisfies ¢(x) < 0 for x > 0 and ¢(x) = 0 if and only if x = 1. Thus, H) < 0.
Furthermore, it can be shown that the largest compact invariant set of H) = 0 is the singleton {E.},
which implies E, is globally asymptotically stable. O

4. Numerical simulations

In this part, we carry out some numerical simulations to illustrate the above obtained theoretical
results. Most of the parameters are from [13], and the functions p(a), a;(a), d>(a) are given with the
following forms:

— 0’a<a1’ _ O’a<a1’
p(a) = pmax(l _ e—yl(a—al)) ,a>a, aZ(a) - @0 (l _ e—yz(a—m)) ,a>a,
0o, a < an,
dy(a) = { So + 6m(1 _ 6—7(0—“1))’ a > a.

For simulation, we assume a(a) = 0.1 and B3(a) = 0.0000075, A = 100, g; = 0.0000046, B, =
0.0000065, d; = 0.1,d3 = 6.6,dy =24,a, =0.2,a, = 0.5, apee = 15,1 = 10, v, =5, 6o = 0.05,
Om = 0.35, apo = 1000, y = 1, ppax = 850, computation yields Ry = 0.4557 < 1, which implies that
the infection-free steady state is globally asymptotically stable as shown in Figure 1. When A = 10,
B1 = 0.0000046, B, = 0.0000065, d; = 001, d; = 6.6,ds, = 2.4, a;, = 0.2, a, = 0.5, apux = 15,
vi = 10, o = 5, 6o = 0.05, 6,, = 0.35, axo = 1000, v = 1, pna. = 1880, computation yields
Ro = 14.7759 > 1, which implies that the infection steady state is globally asymptotically stable as
shown in Figure 2. Moreover, it follows from Figure 3 that the existence of cytokine-enhanced effect
can lead to a higher peak of viral load. Also, the formula of the basic reproduction number implies that
it may be under-evaluated without considering cytokine-enhanced viral infection.
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Figure 1. R, = 0.4347 < 1, the infection-free steady state E, is globally asymptotically
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Figure 2. Ry, = 14.7494 > 1, the infection steady state E, is globally asymptotically stable.
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Figure 3. The dynamics of model (1.2) with (8, > 0) or without (8, = 0) cytokine-enhanced
viral infection.

5. Summary and discussion

In this paper, an age-structured virus infection model in which the cytokine-enhanced viral infection
have been taken into consideration. By constructing Lyapunov functionals, we show that the global
properties of the model are completely determined by the basic reproduction numbers Ry: if Ry < 1,
then the infection-free equilibrium is globally asymptotically stable and the infection dies out; if R, >
1, there exists a unique infection steady state which is globally asymptotically stable. Recall that

Ro = PiA f p(@I'(a)da + — ag(a)F(a)da + — f Bi(a)'(a)da.
dyds d1 3

The first term of Ry is induced by viral infection, the second term is induced by cytokine-enhanced
viral infection, and the third term corresponds to the cell-to-cell infection mode. Thus, the basic
reproduction number will be under-evaluated without considering cytokine-enhanced viral infection,
and it may not be enough to eliminate the infection by decreasing the basic reproduction number just
for virus-to-cell or cell-to-cell infection.

In most virus infection process, cytotoxic T lymphocytes (CTLs) play a critical role in antiviral
defense by attacking virus-infected cells. Thus, it would be very interesting to improve the current
work by considering both CTL responses and antibody response in an age-structured viral infection
model. Besides, the motion of the virus should also be taken into consideration. This will result in a
reaction-diffusion model with age-structure. Whether the improved models can preserve these global
results is an interesting problem and we leave this as a future work.
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