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Abstract: In this paper, we analyze the bifurcation of a Holling-Tanner predator-prey model with
strong Allee effect. We confirm that the degenerate equilibrium of system can be a cusp of codimen-
sion 2 or 3. As the values of parameters vary, we show that some bifurcations will appear in system. By
calculating the Lyapunov number, the system undergoes a subcritical Hopf bifurcation, supercritical
Hopf bifurcation or degenerate Hopf bifurcation. We show that there exists bistable phenomena and
two limit cycles. By verifying the transversality condition, we also prove that the system undergoes
a Bogdanov-Takens bifurcation of codimension 2 or 3. The main conclusions of this paper comple-
ment and improve the previous paper [30]. Moreover, numerical simulations are given to verify the
theoretical results.
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1. Introduction

Analyzing the dynamics of predator-prey models is of great importance in mathematical ecology for
studying, interpreting and predicting species evolution, growth and interactions. It is well known that
different types of biological models, exhibit great different dynamic behavior. Many authors discuss
various types of predator-prey systems with hunting cooperation [1], Holling-Tanner [2, 3], stochastic
[4,5], and study their stability [6,7] and bifurcation [8—11]. One of the classical Leslie-Gower predator-
prey model is

¢ = rx(1 - =) - Hy,
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which was proposed by [12] and [13] to describe the relationship between predator and prey, where x
and y represent population densities of prey and predator respectively, r and K are the intrinsic growth
rate and the environmental capacity of the prey respectively, s is intrinsic growth rate of the predator at
time ¢, n is a measure of the quality of the prey as food for the predator, H(x) represents the functional
response which is a key element to describe the number of predator consuming prey per unit time.
The Leslie-Gower predator-prey model with Allee effect [14, 15] and generalist predator [16, 17], or
modified Leslie-Gower predator-prey model [18-20] have been widely adopted in the biological model
domains.

Functional responses play an important role in predator-prey systems and describe the transforma-
tion of organisms from lower to higher trophic levels in the biological chain. The differences in the
dynamical behavior of predator-prey systems are partly attributable to the functional responses chosen.
Three main types of functional responses were proposed in [21]: Holling Type I is a linear increasing
function corresponding to lower animals, Holling Type II is hyperbolic in form corresponding to in-
vertebrate and Holling Type III is sigmoid corresponding to vertebrate. Sdez and Gonzélez-Olivares
in [22] proposed the following Leslie-Gower predator-prey model with Holling Type II functional re-
sponse

_ X qxy
x_rx(l_E)_X'i'e, (12)
_ Y ’
y_ S}’(l - nx)a

where ¢ represents the maximum capture rate per capita and e is half of the saturated response level.
They investigated the stability and bifurcation of system (1.2), and showed that local asymptotic sta-
bility of a positive equilibrium point does not imply global stability.

The Allee effect is an ecological phenomenon that describes population size and fitness [23-25].
In [26], the authors researched deeply a predator-prey system with strong Allee effect and Holling
Type I functional response, and provided insights that system has a weak focus of order at least two.
Furthermore, the authors explained the collapse of the positive equilibria is a cusp of codimension
2. In [27], they proposed a ratio-dependent Leslie-Gower predator-prey model with the Allee effect
and fear effect on prey, and investigated the saddle-node bifurcation, degenerate Hopf bifurcation, and
Bogdanov-Takens bifurcation. Martinez-Jeraldo and Aguirre analyzed multiplicative Allee effect and
Holling Type I functional response, gave a concrete proof of a subcritical Hopf bifurcation or super-
critical Hopf bifurcation, and performed a numerical simulation to prove the existence of a Bogdanov-
Takens bifurcation (see [28]). In [29], they studied the stability and bifurcation of a Leslie-Gower
predation model with Allee effect and an alternative food source.

Inspired by [22], the authors [30] studied a Holling-Tanner predator-prey model with strong Allee
effect (0 < m < K) on prey as follows:

x+e (1.3)
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For simplicity, making some substitutions

rK

x=Ku, y=nKv, 7= ——1,
A==, s==,0="2 y=-"
K rK rkK K

and still denoting 7 by ¢, system (1.3) is topological equivalent to system

i = [+ A1 - w)u— M) - QV],

v=8v(u+A)(u-v), (1.5)

where M, Q, S are positive constants.

The authors [30] proved the boundedness of system (1.5), and discussed the existence and stability
of the equilibrium. They demonstrated the existence of separation lines in the phase plane separating
basins of attraction associated with species extinction and coexistence. The author discussed numerous
potential bifurcations such as saddle-node, Hopf, and Bogdanov-Takens bifurcations. However, they
did not give a detailed proof of Hopf bifurcation and Bogdanov-Takens bifurcation.

Hence, in this paper, we also want to consider system (1.5), where the existence of positive equi-
libria are determined by third order polynomial, which makes the research more difficult. Using the
different method with [30], we want to investigate the existence and stability of the system, and give
the rigorous proof of Hopf bifurcation and Bogdanov-Takens bifurcation. We show that there exists
bistable phenomena and two limit cycles in system (1.5).

The paper is organized as follows. In Section 2, the existence of equilibria are discussed. In Section
3, we focus on the stability and bifurcations of system (1.5), such as Hopf bifurcation and Bogdanov-
Takens bifurcation. In Section 4, we give the proof of the Theorems. In Section 5, we give some
numerical simulations to show the feasibility of main results. We give a brief summary in the last
section.

2. Existence of equilibria

We denote the domain of system (1.5) in phase plane
Q={u,)eR|0<u<1,0<v< 1}

From Theorem 2 [30], the solutions of system (1.5) are ultimately upper bounded and eventually end
up in Q with initial values u(0) > 0 and v(0) > 0.

Apparently, system (1.5) has three boundary equilibria (0, 0), (1,0) and (M,0). From [30], the
origin (0, 0) of system (1.5) is a non-hyperbolic attractor, (1,0) is a hyperbolic saddle and (M, 0) is a
hyperbolic repeller.

The positive equilibria satisfies:

(u+A){A -u)(u—-M)-Qv=0,

Vv = U.

2.1)

Substituting v = u into the first equation of (2.1), we get

f) 2w - M+1-Au> -~ AM+A-Q—-Mu+AM =0,
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and the derivative of f(u) is
fu)=3uw-2M+1-Au—-(AM+A—-Q - M).

Denote

A+M?>*+1+A)(0-M)
Q. = 3 :

When Q < Q., the equation f"(u#) = 0 has two real roots,

M+1-A-+30,-30 o ﬁ_M+1—A+ \30. =30
3 B 3 ’

E:

Clearly, when Q > Q., the equation f(x) = 0 has no positive root, that is system (1.5) has no positive
equilibrium.

Note that M+T1‘A <land /() =1 -M)(1+A)+ Q> 0,thenu < 1if Q < Q.. By computation,
f(1) = Q > 0. Therefore, the positive solution of equation f(«) = 0 is in the interval (0, 1).

Our next discussion is only under Q < Q.. If u <0 oru > 0 and f(u) > 0, it is obvious that system
(1.5) has no positive equilibrium. If # > 0 and f(u) = 0, equation f(x) = 0 has a unique positive real
root u,, that is system (1.5) has a unique equilibrium E, = (u,,u.). If u > 0 and f(u) < 0, equation
f(u) = 0 has two positive distinct real roots u; , (letting u; < u,), which implies that system (1.5) has
two positive equilibria E| , = (u;2, U1 2).

Hence, we obtain the following theorem.

Theorem 2.1. The existence of positive equilibria of system (1.5) is classified as follows.
(1) System (1.5) has a unique equilibrium E, = (u.,u.) if Q < Q., u > 0 and f(u) = 0.
(2) System (1.5) has two positive equilibria E\ = (uy,u,) and E; = (uy,u) if Q < Q., u > 0 and

fw) <0.
(3) System (1.5) has no positive equilibrium if one of the following conditions holds:

(i) Q> Q. (i) Q< Q., ugs0; (iii) Q< Q., u>0and f(u) > 0.

In order to investigate the stability of the positive equilibria, we get the Jacobian matrix of system
(1.5) at any positive equilibria and obtain

I W =32 =2A - M- Du+AM + A — M] —u*Q
E= S(u+Au —Sw+Au |

The determinant and trace of Jg are respectively given by
Det(Jp) = Su*(u+ A) [31% = 2M + 1 = Ayu — (AM + A = Q — M)| = Su’(u + A)f' ()

and
Tr(Jg) = |[-31> = 2(A = M - Du+ AM + A= M| - S(u + Au.

The property of eigenvalues of Jg plays a crucial role in determining the dynamics of each equilibria. In
addition, equilibrium E(u, u) of system (1.5) is an elementary equilibrium (a degenerate equilibrium,
respectively) when Det(Jg) # 0 (= 0, respectively). From the derivative property of f(u), we have
f'w) =0, f(u) < 0and f'(uy) > 0. Hence, the positive equilibria E, is a degenerate equilibrium
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since Det(Jg,) = 0. The positive equilibria E, and E, respectively are a hyperbolic saddle and an
elementary equilibrium on account of Det(Jg,) < 0 and Det(Jg,) > 0.
According to f"(u*) = 0, the Jacobian matrix at E, can be simplified to

Qu; ~Qu;

Jr. = S(u, + A, —S . +Au, |

and the trace of Jg, is
Tr(JE*) = u*[Qu* - S(I/t* + A)]

From Det(Jg,) =0, Tr(Jg,) = 0 and f(u,) = 0, we can express S, A and Q by u, and M as follows:

w*(M —2u, + 1) 0= (u, — 1D (u, — M)?
uz—M Sl u>—M '

*

S =1 -u)(u,—M), A=

(2.2)

Since § > 0, A > 0 and Q > 0, the degenerate equilibrium E, of system (1.5) satisfies the condition

M+ 1
W<u*< 7

Lemma 2.1. [31] The system

x=y+Ax* + Bxy + Cy* + o(|x, y]%),
y= Dx* + Exy + Fy2 + 0(|x,y|2),
is equivalent to the system
xX=y,
y = Dx* + (E + 2A)xy + o(|x, y|*),

by some nonsingular transformations in the neighborhood of (0, 0).

Lemma 2.2. [31] The system

xX=y,
Y= X%+ azx + asx® + y(an x* + a3 x’) + yA(anx + anx®) + o(|x, y*),
is equivalent to the system
xX=y,
y=x*+ Gy +o(lx, yI),

by some nonsingular transformations in the neighborhood of (0,0), where G = az, — azoay;.
3. Main results

3.1. Stability of equilibria
If (2.2) and VM < u. < Y hold, it’s easy to verify that the conditions of Theorem 2.1 (1) hold,
that is E, exists. Then the following theorem shows that the degenerate equilibrium E. is a cusp of

codimension 2 or 3.
Define

M2 10M + 1+ /(M - DX(M? - 14M + 1)
B 6(M + 1) '

Uy
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Theorem 3.1. If (2.2) and VM < u, < @ are satisfied, the degenerate equilibrium E, is
(1) a cusp of codimension 2 if M € (0,7 — 43) and u, # us,, or M € [T —4+3,1);
(2) a cusp of codimension 3 if M € (0,7 — 43) and u, = us,.

Now, we give the stability of the positive equilibria E; and E,.

Theorem 3.2. If condition (2) in Theorem 2.1 holds, system (1.5) has two positive equilibria E, and
E,, where E| is always a hyperbolic saddle, and E; is

(1) unstable if 0 < S < S§*;

(2) stable if S > S*>00rS*<0;

(3) may be a center or fine focus if S =S* >0,
ur [-3u3—2(A-M-Dup+AM+A-M |
u2+A :

where S* =

3.2. Hopf bifurcation

In this subsection, we will investigate the Hopf bifurcation of system (1.5). When condition (2) of
Theorem 2.1 holds, system (1.5) has two different positive equilibria. From Theorem 3.2, E is always
a hyperbolic saddle, and E, is a repeller or an attractor which depends on the sign of Tr(Jg,). Changing
the sign of Tr(Jg,), the stability of E, will change as well. In this section, we consider the condition
Tr(Jg,) = 0, which implies that system (1.5) may exist a Hopf bifurcation around E,. In the process of
calculating of the first-order Lyapunov number, we use the following transformation (see [33] and [34])

_ U _ v -y
U=—,v=—, t=uUl,
175} 175}
A I — M - Q - S (.1
A:—,a:—,M:—,Q:—Z,S:—Z.
175} Uy 175} u2 I/t2
Dropping the bar, system (1.5) has the following form
i =u?[(u+A)a-u)(u— M) - Qv (3.2)

v=Sv(u+A)(u-v),

where A, Q, § are all positive constants and M < 1 < a. Because Ez(l, 1) is an equilibrium of system
(3.2), we have Q = (A + 1)(a — 1)(1 — M). Hence system (3.2) becomes

i=u*[(u+A)a-u)u-M)—(A+1)(a-1)1- M)y,

v=Sv(u+A)(u-v). (3.3)

Define

_(A+2-aM+ (A+2)a-(2A+3)

S.
1+A

The Jacobian matrix of system (3.3) at E,(1,1)is

s o] s@arn —@arnE@-na-m
27 S@A+1) ~S(A+1)
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The determinant and trace of Jz, are respectively
Det(Jz,) =S(1 + A)A +2—a—- M(1l + Aa))

and
T”(JEZ) =A+1)(S.-9).

If M < 424 £ Myand 1 < a < A+ 2, then Dei(Jg,) > 0. Then the stability of E, is determined

Aa+1
by the sign of Tr(Jg). If S, < 0,ie.,0 < M < W 2 M,and 1 < a < %2 we obtain
Tr(Jg) <0.IfS, > 0,ie, Mo <M <Myand1 <a <22 or0 <M < M;and 22 <a<A+2,

then Tr(Jz,) > 0 (= 0, <0, respectively) when S < S. (=S., > S., respectively). To summarize the
above discussion, we have the following theorem.

Theorem 3.3. The stability of the equilibrium E, of system (3.3) is classified as follows.
(1) E, is a stable hyperbolic focus or a node if one of the following conditions holds:

(()0<M<Myand 1 <a< 22,
(i) My <M <M, 1 <a<*Z2 andS >S,;

(iii)0<M <M, 22 <a<A+2andS > S..

(2) E, is an unstable hyperbolic focus or a node if one of the following conditions holds:
()My<M<M,1<a<*2andS <S,;

(i) 0<M< M, 22 <ag<A+2andS <8S..

A+2 —
(3) E, is maybe a fine focus or center if one of the following conditions holds:

()M <M<M,1<a<*2andS =S,;

(i)0<M< M, 22 <a<A+2andS =S..

Remark 3.1. If O <M < My and 1 < a < 2;‘4:23, E, is a stable hyperbolic focus or a node. Using the
transformations (1.4) and (3.1), the coefficients M, A and a of system (3.2) do not include the intrinsic
growth rate of predator s of the original system (1.3). Ecologically, when M and a are sufficiently
small, we take certain initial value that two species can coexist in the form of steady state independent

of the intrinsic growth rate of predator s.

When the case (3) of Theorem 3.3 are satisfied, system (3.3) will go through a Hopf bifurcation.
Let

R, = (Mak — 5Ma + 2)A* + [2k(3Ma — 1) — (Ma + 9)* + 88]A° + [6(Ma — 1)k + 6(1 — 3Ma)]A?
+(M - a)’A* + [3Ma - 3)k—9Ma + 1]A - M —a

with k = M + a — 1. We obtain the following theorem about the Hopf bifurcation.

Theorem 3.4. Assume that the case (3) of Theorem 3.3 are satisfied.

(1) System (3.3) undergoes a subcritical Hopf bifurcation and an unstable limit cycle appears
around E, when R, < 0.

(2) System (3.3) undergoes a supercritical Hopf bifurcation and a stable limit cycle appears around
E, when R, > 0.

(3) System (3.3) undergoes a degenerate Hopf bifurcation and multiple limit cycles may appear
around E, when R, = 0.
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3.3. Bogdanov-Takens Bifurcation

From Theorem 3.1, the degenerate equilibrium E, of system (1.5) is a cusp of codimension 2 or 3.
Hence, system (1.5) presumably exists a Bogdanov-Takens bifurcation of codimension 2 or 3. Then
we will choose appropriate bifurcation parameters to verify the existence of the Bogdanov-Takens
bifurcation.

When the equilibrium E, is a cusp of codimension 2, we select Q and S as bifurcation parameters,
and have the following theorem.

Theorem 3.5. Assume that condition (2.2) and NM < u, < ML are satisfied. If M € (0,7 -4 V3) and

U, # U, or M € [T — 43, 1), the degenerate equilibrium E, of system (1.5) undergoes a Bogdanov-
Takens bifurcation of codimension 2.

Now, we give the saddle-node bifurcation curve, Hopf bifurcation curve and homoclinic bifurcation
curve of system (1.5) around E..

Theorem 3.6. Assume that condition (2.2) and VM < u, < ML are satisfied. If M € (0,7 -4 V3) and

U, # Uy, or M e [7-4 V3, 1), system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension
2 around the degenerate equilibrium E. when (1,, ;) in a small neighborhood of (0,0). Moreover,
there are three bifurcation curves.

(1) When M € (0,7 - 4V3) and u. € (u.. 1), or M € [7- 43, 1),

SN™ = {(A1, )4 = 0,2, > 0},
SN = {(4, )| = 0,2, <0}
(u, — 1w, — M)*(u2 = 3u.M + M?* + M) 2
u. (w2 — M)[3(M + Du? — (M? + 10M + Du, + 3M(M + 1)]2 ?
+0( 1), 4, > 0}
HE = {00, )l = _g (u, — 1w, — M)*(u® — 3u.M + M?* + M) iy
w,(u? — M)[3(M + Duz — (M? + 10M + Du, + 3M(M + 1)]
+0(|2*), 22 > O}

H ={(A, )| = -

(2) When M € (0,7 —43) and u, € (M, u»,),

SN* ={(A1, )| = 0,2, <0},
SN™ ={(41, )4 = 0,4, > 0};
(u, — 1w, — M*(u2 = 3u.M + M?* + M) 2
w2 — M)[3(M + D — (M2 + 10M + Du, + 3M(M + D]~
+0(| ), A, < O
HE = {00, )l = _% (. — D*(u, — MY*(u = 3u.M + M?> + M) 2/13
(12 — M[3M + D — (M2 + 10M + Du, + 3M(M + 1]
+0(| %), 1, < 0},

H = {(A;, )| = -

SN, H and HL are respectively a saddle-node bifurcation curve, a Hopf bifurcation curve and a
homoclinic bifurcation curve of system (1.5) around E..
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Now we assume that the equilibrium E., is a cusp of codimension 3, and select M, Q and S as
bifurcation parameters. In the next theorem, we prove system (1.5) undergoes a Bogdanov-Takens
bifurcation of codimension 3 in a small parameter disturbance.

Theorem 3.7. Assume that condition (2.2) and VM < u, < MT“ are satisfied. If M € (0,7 —43) and
U, = Uy, the degenerate equilibrium E, of system (1.5) undergoes a Bogdanov-Takens bifurcation of
codimension 3.

4. Proof of Theorems

2 _ —_1)2 — )2
Proof of Theorem 3.1. When S = (1 —u,)(u, — M), A = S22 ypg @ = esD ) e move
E., to the origin via the transformation x = u — u, and y = v — u,. Then we have a Taylor expansion at

the origin and get a new system

X = ajox + aory + axx* + ayxy + agy* + o(|lx, y[*),

) 4.1
¥ = biox + bory + byox* + by xy + booy* + o(|x, y[*), @D

where the coefficients are given in Appendix A.
Next, we make a substitution x = ag;x; and y = —a;ox; + y1, then system (4.1) becomes

X| = Y1+ Co0X] + crixiyr + cooyt + o(lxy, yil?),

. 4.2
Y1 = dooxt + dixiyr + dooy; + o(lxg, yi?), 42)

where the coefficients are given in Appendix A.
By Lemma 2.1, we get the equivalent system of (4.2) as follows:

X1 =1,

. 4.3
Y1 = exx; + enxiyr + o(|xp, yi?), (4-3)

where
ul(u, — D*u, — MY*(u? = 3Mu, + M?> + M)

(u; = M)*

€ =

and
ut(u, = 1), — M) [3(M + D2 = (M? + 10M + D, + 3M(M + 1))

(uz — My

€11 =

6 _1\¢ _ 4 . .
When VM < u, < 2 % # 0. Hence, the sign of e, is depends on u? —3Mu, +M?*+ M.
Denote )

h(u,) = u?> — 3Mu, + M*> + M,
W) = 3. — VM)(u, + VM).
Clearly, /'(u.) > 0if VM < u. < 2. Note that h( VM) = M(VM - 1)? > 0, then h(u.) # 0, which

implies ey # 0.

40 120 a2
Note that “te—Dtw—M)

M7 #0if VM < u, < MT“ To determining the sign of e;;, we let

g(u) = 3(M + D2 — (M2 + 10M + Du, + 3M(M + 1). (4.4)

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8632—-8665.
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The discriminant of the equation g(u.) = 0 is
AM) = (M - 1)>(M? — 14M + 1).

Since M € (0, 1), a solution of A(M) = 01is givenby M, =7 -4 V3.
If M € (0,7 — 4+/3), then A(M) > 0, which implies that the equation g(«,) = 0 has two different
positive real roots

_ M?+10M + 1 — VA(M)

_ M?+10M + 1 + VA(M)
6(M + 1) Bl '

6(M+1)

and u,,

Uy«

By calculation, we have g( VM) = = VM(VM — 12(M =4 VM + 1) < 0 and g(¥!) = QLDOLE o
Then, only u,, € (\/M, @) When u, # u,., we have g(u,) # 0, i.e., e;; # 0.

If M =7 —4+3, the equation g(u.) = 0 has one positive real root u,, = 2 — V3= VM, ie., e #0.

IfMe(7-4 V3, 1), we have A(M) < 0. Clearly, g(u.) # 0, i.e., e;; # 0.

Hence, by the result in [32], E. is a cusp of codimension 2 if M € (0,7 — 4 \/§) and u, # up,, or
M € [7—-4+/3,1) (see Figures 1(a) and 1(b)).

On the other hand, if M € (0,7 —4+/3) and u, = uy,, we obtain e;; = 0. Then system (4.1) becomes

L - - = =, = =2, = ==, = 3 = 22— — —4 — —4
X = a10X + Ag1y + GxX" + anxy + azx +axy +asgpx +o(x,yl"),

. _ I, = L T, =Tl =T 4.5
Y = bioX + boiy + boX + by XY + bay” + by Xy + binXy, ()

where the coefficients are given in Appendix A.

Employing the transformation

X| = X,
Vi = Q¥ +A0iY + Ao +AFT +Tx¥ + AT + AT+ o([E 1Y),

system (4.5) can be written as

oo (4.6)

= 2 - =2 = =3, = —==2 = —2— = —4 = —3— - -2 - — 4
V| = Co0X] + CooY| + C30X| + Cr2X1Y] + Co1 X1y + CaoX| + C31X7Y; + X1y + o(|x1, y,17),

where the coefficients are given in Appendix A.
Next, introducing a new time variable dt = (1 — cpyx;)d7, and rewriting 7 as ¢, we have
xp =y, (1 = coax1),
= - 2 - =2, = =3, - —=2 = —2— | — —4 - 3= - 2 - —u —
= [020X1 + CopY | + C30X] + C1aX1 Y| + Co1 XY + CaoX| + C31X1y; + X1y + 0([X1, Yy )] (I = coaxy).
“4.7)
Making transformation X, = x; and y, = y,(1 — ¢p,x;) once more, we obtain
%2 = (4.8)
= 5 =2, 3 =3, =2= |G ==2,73 =4, =B= , 5 == - — .
Yy = d20x2 + d30x2 + d21x2y2 + d12x2y2 + a’40x2 + d31x2y2 + d22X2y2 + 0(|.X2,y2|4),

where
_ = _ - _ 5 = _
drg = 29, d30 = C30 — 2C02C20, di12 = C12 — Cozs dy = oy,

b - - =2 - - 3 - -2 5 — -
dap = Ca0 + C20Cy — 2C0C30, dyp =Cp — Co2» ds3; = 31 — CoaCay.
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M+1

Similar to the analysis of ey, when VM < u, < 5, we have

uy, Uz — 1)*(uz = M) (3, = 3Muy, + M* + M) <0

dy = —
20 (u%* — M)

Making the change of variable

_ _ y [ =
X3 = —Xp, Y3 = —2_, T= —dyt,
- \/—dzo

and rewriting 7 as ¢, system (4.8) turns to

}3 = y:;’

I D S o _ _ 4.9)
Y3 = X5 + €30X; + €aoXs + ¥3(@1 T + €316 + Y5(€10%3 + en3) + o(|X3, y51),
where
__330__—__321__340__—__331
€30 = _;l_, e =dp, ey = — €40 = 3—, ey =—dy, ez = — —-
20 V20 20 \/ —dy
By Lemma 2.2, system (4.9) is equivalent to
BTy (4.10)

— —2 . —
Y3 = X3 + G.X3y3 + 0(|X3, y3|4)a
where G = e3; — e3ge,;. After a brief calculation, we have

R,
(e = 12 (2, = M3, = 312, M + M? + M)

G=-

with

Ry = 8uj, — 3(M + Dus, — 48Mu;, + 3TM(M + Vu3, — SM(M?* — SM + Vu3, — 5TM*(M + 1)u5,
+20M*(M + 1)*uy, — M*2M + 1)(M + 2)(M + 1).

Note that :
_ 20,
up (U — 1)2(up = MY*(u3, = 3ur. M + M?> + M)2

when M € (0,7-4+3)and VM < u,, < @ Therefore the sign of G is related to R;. As we observed

in Figure 2, we have R; < 0if M € (0,7 - 4 \/§), that is G # 0. Our results demonstrate that E, is
a cusp of codimension 3 if M € (0,7 — 4 \/3) and u, = uy, (see Figures 1(c) and 1(d)). The proof is
completed.

Proof of Theorem 3.2. The equilibrium E| is a hyperbolic saddle is driven by Det(Jg,) < 0. Notice
that Det(Jg,) > 0 and
Tr(Jg,) = up(uy + A)(S™ - S).
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Figure 1. Phase portraits of system (1.5). (a) When A = 242, Q = 5.0625, S = 0.1125,
and M = 0.3, E.(0.55,0.55) is a cusp of codimension 2. (b) Amplified phase portrait of (a).
() WhenA =2, Q=388 = and M = &%, E.(55, =) is a cusp of codimension 3. (d)
Amplified phase portrait of (c).
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Figure 2. The value of M is in the interval (0,7 — 4 V3). The green curve represents R .
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When §* < 0, it is clear Tr(Jg,) < 0, which implies E, is a hyperbolic stable node. When S* >

0, obviously, E, is unstable (stable, a center or fine focus, respectively) if S < §* (> §*, = §7,
respectively). The proof is completed.

Proof of Theorem 3.4. Obviously,

d
ﬁT’”(JEZ) =—(A+1)#0,
which satisfies the condition for the occurrence of Hopf bifurcation. Next we will calculate the first-
order Lyapunov number which can determine the stability of limit cycle around E,.
First, we make the change to convert E, to the origin by x = u — 1 and’y = v — 1. We have a Taylor
expansion at the origin and system (3.3) becomes

=a,x + 6101)’ + Clzox + a“xy + aozy + a%ox + azlx Y+ alzxy + 6103}’ + (olx, j )

;; g 10X + borY + baoX + b1y Xy + b2y + b3X> + by Xy + by + by’ + (o3P, (1D
where the coefficients are given in Appendix B.

On account of

E = Qyobo; — dorbio = S.(1 + A)A +2 —a — M(1 + Aa)) > 0,
we make a change of variables
G = (- ¥ B )
ay,+E ay,+E

System (4.11) becomes the following system

7 = - @1 + Czoxl + Cnxl)’l + Cozy1 + C30X1 + C21x1y1 + Clleyl + C03y1 + (o[x1, 31P), (4.12)

= VExX, + dzoxl + d11x1y1 + dozy1 + d%oxl + d21X1)’1 + dlleyl + d03y1 + (o[x1, 71P),

where the coefficients are given in Appendix B. B
Subsequently, the first-order Lyapunov number in [32] at E; is

R,
81+ A2A+2—a— M1 +Aa))

I = -

The sign of [; is depends on R, since 8(1 + A)*(A + 2 — a — M(1 + Aa)) > 0. For specific conclusions,
we can refer to Theorem 3.4. The proof is completed.

Proof of Theorem 3.5. Denote (S, Ay, Qy) = ((1 —u)(u,—M), ”3(1‘:;_11‘_42”*), (”*_]:jg’;}_mz). Replacing

Qo and S with Qg + 4; and S + A,, and substituting them into (1.5), we can obtain a new system

i = u?[(u+ Ag)(1 = w)(u — M) = (Qo + A1)v],

i=(So+ L)+ Ay)u—v)v, (4.13)

where (1, A;) is a parameter vector in a small neighborhood of (0, 0).
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The first step, in order to move E, to the origin, we make a transformation x = u —u, andy = v —u,,
and obtain
X = doo + d10X + dory + azox +anxy+ Clozy + P15y, ),

4.14)
3 = boo + b1oX + boiy + baX> + b Xy + by> + Po(X,7, A),

where the coefficients are given in Appendix C and P(x,y, 1), P»(x,y, A) are C* functions at least of
third with respect to (x,y).
The second step, letting

x| =X,
Vi = doo + A10X + Aoy + aaoX” + an Xy + agry” + Pi(x,y, A),

system (4.14) can be written as

e ey _ (4.15)
Y1 = Coo + CoX1 + Cory1 + CaoXy + Cr1X1Y1 + Cooyy + P3(X1,51, ),
where the coefficients are given in Appendix C and P3(x7,y, 4) is a C* function at least of third with
respect to (x, ;).
The third step, taking dt = (1 —"copx,)dt, X3 = X1 and y, = (1 =copx1)y1, system (4.15) is equivalent
to

% =2 (4.16)
Vs = doo + dio%s + dor s + d20x2 +d1 %55 + Pa(E, 72, ),
where
doo = Coo, dio =C10 — ZcooCoz, dor = Cor,
dao = Ca0 + CooCay — 2C02C10, d11 = C11 — CoiCons
and P4(x>,y,, A) is a C* function at least of third with respect to (x>, ).
If VM <u, <M, we have
4 2 20,3 2
—~ u;(u, — M)y-(u, — 1)>(uw; — 3u.M + M-+ M
dzo:—*( ) ( )( )+0(/l)<0,
(u2 — M)?
where A; and A, are sufficiently small.
The fourth step, applying the following transformation
_ - V: [ —
X3 =Xz, Y3 = ZA , T = —dyt
V420
and still regarding 7 as ¢, system (4.16) has the following form
X =5
L — e - 4.17)
V3 = €0 + €10%3 + €013 — X3 + €11 X33 + Ps(X3, 33, A),
where
— do —  dio — dy —~  di
€00 = —=—» €10 = —=, €p] €n =
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and Ps(x3,y3, A) is a C* function at least of third with respect to (>3, y3).
The fifth step, making a transformations x; = x3 — 5' andy,; =73, system (4.17) turns to

BEN SUC _ (4.18)
Vi = foo + fioXa + forya — X5 + fulXaya + Pe(x3, ¥4, A),
where
—~ @y, ~ _ ewen —~
Joo ="epo + ﬂ, Jor =eor + s 11, S ="eu,
4 2
and Pg(X4,ys, A) is a C* function at least of third with respect to (X, y4).
Noting that A, and A, are sufficiently small, we obtain
— 3(M + Du? — (M? + 10M + Du, +3M(M + 1
fip = -2 ) WD ow #o,
(. — M) \Jud = 3u.M + M*+ M
when VM < u, < % and u., # u,,.
The last step, replacing
— —_ — t
X5 = _ﬁlx% Ys = ]?131)74, T=—=
11
and rewriting 7 as ¢, we get the universal unfolding of system (4.13)
RS (4.19)

Vs = {y + (o5 + X5 + Xsys + P7(X5,75, A),
where
My = —foo]/ﬂzl, M2 = = forfi1,

and P;(xs,ys, A) is a C* function at least of third with respect to (Xs,ys).
We express u; and u; in terms of A; and A, as follows:

oAy + 024y + o(|Ay, Aa)),
Y11 + Yady + o(|4y, Aa),

Hi
M2

where the coefficients are given in Appendix C.

Note that
A1, f12) Cw.(u? = M[3(M + D) — (M? + 10M + Du, +3MM + D
A1, ) |a2ap=0 (u, — 1)5(u, — MY5(u = 3u, M + M? + M)* ’

when VM < u, < @, for M € (0,7—4\5) and u, # uy., or M € [7 —4\/5,1).

Refer to [32], system (4.13) goes through a Bogdanov-Takens bifurcation of codimension 2 when
(41, A) in a small neighborhood of (0, 0). Trajectory topological classifications of Bogdanov-Takens
bifurcation of codimension 2 of system (4.13), see Figure 5. The proof is completed.
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Proof of Theorem 3.6. The local bifurcation curve as in [32] is given by the following expression.
(1) The saddle-node bifurcation curve:

SN* ={(A1, ) : (A1, ) =0, wa(dy, ) > 0},

SN™ ={(A41, ) : i1, A2) =0, a4y, ) < 0};

(i1) The Hopf bifurcation curve:

H = {(A1,22) : (41, A2) <0, (A1, A2) = =1 (A1, )}

(i11) The homoclinic bifurcation curve:

5
HL = {(A;, A2) : 1 (A1, 2) <0, pa(Ay, 4) = 7 V—H1(41, )}

Using the implicit function theorem, we can write A; and A, from p; = uy(Ay, Ay, u., M) and p, =
(A, Ao, us, M) in (4.19) as follows:

Ay = sy + Sopn + o(|uy, pal),
(4.20)

/12 = S3 + Saflo + 0(|ﬂl’ﬂ2|),
where

(. — D*u, — M)4(u;f - 3u.M + M? + M)}
(12 — MYB(M + 132 — (M? + 10M + D, + 3M(M + D)]*
sy =0,
1 (- D>, — MY*(u® — 3u.M + M? + M)>Qq
BT T2 UM + i — (M2 + 10M + Do+ 3M(M + D]
(s — 1)1t = M) = 3u.M + M2 + M)
T 3(M+ i — (M2 + 10M + D, + 3M(M + 1)’

S1 =

S4

where Qg can be found in Theorem 3.5.
Now, we consider the case (1) of Theorem 3.6. When M € (0,7 —4+/3) and u, € (u2*, M—“), or

2
Me|T- 43, 1), we obtain s4 > 0.
We consider the saddle-node bifurcation curve I'y £ u;(4;, ;) = 0. By the implicit function theo-
rem, we obtain a unique function 4,(4;) = 0 which satisfies 4;(0) = 0 and I';(4,(4), 4;) = 0 since

OT1|  _ .G = M)[3(M + i = (M + 10M + Du + 3 + D]
O lco (. — D*(u, — M)*(u2 = 3u.M + M? + M)3 ’

In addition, on the curve I'; = 0, it folllows from (4.20) that A, = s4u; + o(Juz]). Then we obtain
Ay >0 (< 0)if wp, > 0 (< 0). Hence, the saddle-node bifurcation curve can be expressed as

SN™ ={(4, )| =0, A, >0},
SN ={(4;, )4, =0, 4, <0}
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The Hopf bifurcation curve is I'; £ (4, ) + ,u%(/l] , A7) = 0. Note that

0Ly _ . = M)[3(M + i = (M + 10M + Du + 3 + D]
il (u, — D*(uy — M)* (3 = 3u,M + M? + M)3 ’

Thus, from the implicit function theorem, we can obtain a unique function

(. — 1w, — M)*(u2 — 3u.M + M?* + M)
A= - 45+ o(|a),
w,(u? — M)[3(M + Duz — (M? + 10M + Du, + 3M(M + 1)]

which satisfies 4;(0) = 0 and I';(4;(4;2),42) = 0. On the curve I'; = 0, by (4.20), we obtain A, =
Sqttr + o(|up]) and A, > O if yp, > 0. Thus, it is easy to obtain a Hopf bifurcation curve
(. — 1>, — M*(u® = 3u.M + M?* + M) 2
u (U2 — MH[3(M + Du? — (M? + 10M + Du, + 3M(M + 1)]2 ?
+0(1A2]), A2 > O}

H = {4, )|A, = -

Denote I'; = %m(/h, )+ /J%(/ll, A>) = 0 as the homoclinic bifurcation curve. Notice that

ol _ 25u(ul = M)[3(M + DuZ — (M? + 10M + Du, + 3M(M + nJ* 40
Oilio 49 (e — D*ue — MY*W = 3u.M + M* + M)? '
Using the implicit function theorem, there exists a unique function
25 (u, — 1>, — M)*(u® — 3u.M + M?* + M)
A= 34 + o(1P)

4942 — MY[BM + Vi — (M2 + 10M + D, + 3M(M + 1)]

satisfying 4,(0) = 0 and I'5(4,(4;), 4;) = 0. Similarity, on the curve I'; = 0, we have A, = s4u; + o(|uz|)
and A, > 0 if y, > 0. The homoclinic bifurcation curve can be expressed as

49 (u, — 1w, — M)*(u = 3u,M + M?* + M) 5
HL = {(A, )| = —— A5
25y, (u2 — M)[3(M + Du2 — (M? + 10M + Du, + 3M(M + 1)]

+0(| %), A2 > 0}.

The proof of Theorem 3.6 (2) is similar to the above proof, so we omit the detail proof here. The
proof is completed.
1, (M+1-212) (g =) (13, = M)?
Proof of Theorem 3.7. Denote (S1, A1, Q1) = ( — (2. — D(up, — M), 252220 (ol o)),
Replacing Ay, Q; and S| with A; + &, Q) + & and S| + &; respectively, andz*substituting ﬁlem into
(1.5), we have the following system

i=u[(u+ A +E)A —uw(u—M)— (0 + &,

v=(S1+&)u+ A+ ED)u— vy, (4.21)

where (£, &, &3) is a parameter vector in a small neighborhood of (0, 0, 0).
Next, inspired by [35] and [36], we intend to discuss the universal unfolding of a Bogdanov-Takens
bifurcation of codimension 3.
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The first step, moving the equilibrium E. of system (1.5) to the origin via the translation X =
u— Uy, Y =v—u,, system (4.21) is equivalent to

X =g + 10X + ap1 Y + a20X2 +ap XY + CL’30X3 + Q’QIXZY + a40X4 + OI(X, Y,é‘:),

Y = B1oX + BorY + X + 11 XY + BoaY? + B X2V + B XY, (4.22)

where the coefficients are given in Appendix D and O(X, Y, €) is a C* function at least of fifth with
respect to (X, Y).
The second step, letting

X=X,
Yi =ap + a1 X +ag Y + CZZ()XZ +a XY + a30X3 + CZ21X2Y + CY4()X4 + 0](X, Y,é‘:),

system (4.22) can be written as

X =Y,
Y1 =y00 + ¥10Xi + Y01 Y1 + 720X + v X Y1 + Y0 X7 + v30X; + ya XY + yXa Y] + yaX]  (4.23)
+y3 X5 Y1 + ynuXiYE + 02(X1, Y1, ),

where the coefficients are given in Appendix D and O,(X, Y, €) is a C* function at least of fifth with
respect to (X, ¥7).

The third step, we let X; = X, + % and Y| = Y, + v X, Y, to remove le from Y;. Then system
(4.23) can be converted to

X, =Y,
Yz =000 + 010X2 + 001 Y2 + 620X§ + 011 XY, + 530X§ + 621X§Y2 + 512X2Y22 + 640)(;l (424)
+631X3Y, + R1(X, Y2, 9),

where the coefficients are given in Appendix D and
Ri(Xa, Y2,€) = Y;O(X2, Ya") + O(X2, YaP) + OE)[O(Y3) + O(1X2, Y2l)] + O(*)0(1 X5, Yal),  (4.25)

which has no effect on the bifurcation phenomenon (see [35] and [36]).
The fourth step, letting X, = X3 + %X; and Y, = Y5 + 22X2Y;, system (4.24) turns into

X; =1,
Y3 = €y + €10X3 + €113 + 620X§ + €1 X373 + 630X§ + 621X§Y3 + 640)(31 + 631X§Y3 (4.26)
+Ry(X3, 13, 8),

where the coefficients are given in Appendix D and R,(Xj3, Y3, &) has the same properties as (4.25).
Here we find that X,Y; disappears from Y3 of system (4.25).
The fifth step, since

u;‘*(uz* - 1)2(1/‘2* - M)z(l/lg* - 3M2*M + 1\/[2 + M)
(13, — M)

+0(¢) # 0,

&0 = —
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when &, &, and &; are sufficiently small, we make the following transformation

152 —16ex€x0
X3 = Xy — £LX7 4 — S0 y3,
80e3, 4
Y; =Y.,
48ex0€e40—25€2 48exe30€40—35€2
dr = (1+ 55X+ —g— X7+ A 2 X3)dt.

Let 7 be represented by . System (4.26) has a new expression

Xy =Y,
Ya = loo + G10Xa + L1 Ya + Lo XE + (i XaYa + GoX; + (n X3 Ya + (a0 Xy + i X Vs
+R3(X4, Ys, 6),

(4.27)

where the coeflicients are given in Appendix D and R3(Xy, Y4, &) has the same properties as (4.25).

The sixth step, since

uy, (e — ) (up — M)*(u3, — 3up. M + M? + M)
(u3, = M

o =— +0E) #0

when &, &, and &; are sufficiently small, we introduce a new transformation as follows

[
Xy=Xs, Yo=VYs+ 2Ly 4 eV dr=(1+ Ly 4 3232 Y2)dt.

Therefore, system (4.27) has the following form (7 is rewritten by 7),

X5 =Ys,
Ys = oo + M10Xs + 01 Ys + 120X5 + 711 XsYs + 1731 X2Ys + Ry(Xs, ¥s,6),

(4.28)

where the coefficients are given in Appendix D and R4(Xs, Y5, &) has the same properties as (4.25).

Compared with (4.27), X3, X; and X;Y disappear from Y.
Clearly,
40(u3, — M)(uz. — 1)* (3, — 3up. M + M?* + M)(up, — M)* > 0,

for VM < u, < ML M“ . Figure 3(a) shows R; < 0, where Rj is listed in Appendix D.
By calculatlng, we have
ué*(MZ* — 1) (up, — M)z(u;* —3upM + M* + M)
&~ My

Mo = — +0©) <0

and
_ Rs +0(&) <0
B 4002, = M)tz — 12z, — MY, — 3us M + M* + M)

for &1, & and & are enough small.
The seventh step, we intend to convert 1759 and 173; to —1 and —1 respectively. We denote

1 _2 4 _3
XS = _775077315)(69 YS = _775077315 Y6’ dr = 7720 7731dt
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Figure 3. The value of M is in the interval (0,7 — 4 \/§) (a) The blue curve represents Rj.
(b) The red curve represents Ry.

System (4.28) is rewritten as the following system

X6 = Y,

\ 4.29
Y6 = 00 + 010X6 + 001 Y6 + 011 X6Ys — Xz — X2Ys5 + Rs(Xe, Yo, &), (4.29)

where the coeflicients are given in Appendix D and R5(Xg, Ys, &) has the same properties as (4.25).

The last step, we want to obtain the universal unfolding of the Bogdanov-Takens bifurcation of
codimension 3. Our purpose is to remove Xy from Y4 by letting Xg = X7 — % and Y = Y. Hence,
system (4.29) is equivalent to the following system

X7 = Y7’

Y7 =w; t+ w2Y7 + LU3X7Y7 - X% — X;Y7 + R6(X7, Y7,§), (430)

where the coeflicients are given in Appendix D and R¢(X7, Y7, £) has the same properties as (4.25).
After tedious calculations, we obtain

AWy, w2, w3) 1 405 Ry (u3, — M)? 0
0108 lacamemo 2400 Ray S [y, — 1Dy, — MYI¥ (3, = 3ue + M2 + MY
Actually,
1 403 Ry(12, — M)} 0
2400 5 *

u; [(uz. — Dtz — M)IF (13, = 3up. + M2 + M)

for VM < u, < @, and Figure 3(b) shows that R4y < 0 whose expression can be found in Appendix
D. Therefore, the results indicates that system (4.13) undergoes a Bogdanov-Takens bifurcation of
codimension 3 ( [37-39]). The proof is completed.

5. Numerical simulations

Now, we give some numerical simulations to show the feasibility of Theorem 3.4.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8632—-8665.



8652

Firstly, letting a = 2,M = 0.1,A = 4,5 = 0.28, we obtain Tr(Jz,) = 0 and /; < 0. Now we
reduce § = 0.28 to § = 0.27 but do not change the other variables. Hence, system (3.3) undergoes a
supercritical Hopf bifurcation and a stable limit cycle around E, (see Figure 4(a)). From Figure 4(a),
assuming that the other positive equilibrium of system (3.3) is E;, which is a saddle, we find the two
stable manifolds of E; can be treated as a separation curve between the basins of attraction of the origin
and stable limit cycle around E,. In the biological sense, if the initial values above the separation curve,
all trajectories converge to the origin. Thus the prey species and the predator species are all expected
to be extinct. Additionally, if the initial values below the separation curve, all trajectories converge to
the stable limit cycle. Hence the prey species and the predator species will oscillate and coexist.

Secondly, letting a =2, M = 0.3,A = 4,5 = 0.44, we have Tr(JEZ) = 0 and /; > 0. Then, keeping
the other variables without changing, we increase S = 0.44 to § = 0.45. Therefore, system (3.3)
undergoes a subcritical Hopf bifurcation and an unstable limit cycle around E, (see Figure 4(b)). As
illustrated in Figure 4(b), we find that all trajectories inside the unstable limit cycle converge to E,, all
trajectories outside the unstable limit cycle converge to the origin. Biologically, the two species will
be extinct if the initial values lie outside the limit cycle, and the two species coexist if the initial values
lie inside the limit cycle.

Thirdly, we give an example to show system (3.3) undergoes a degenerate Hopf bifurcation. When
a=2,M=02A=2845,S = 0.408, then we have Tr(JEQ) = 0 and /; = 0. Keeping a, M without
changing, we perturb A, S such that A = 4,5 = 0.358. Hence, system (3.3) undergoes a degenerate
Hopf bifurcation and two limit cycles (the inner one is stable and the outer one is unstable) around E,
(see Figure 4(c)). Figure 4(c) shows that the outside unstable limit cycle can be treated as a separation
curve between the basins of attraction of the origin and stable limit cycle. Thus the prey and predator
will be extinct if the initial values lie outside the unstable limit cycle. However, the prey and predator
will oscillate and coexist if the initial values lie inside the unstable limit cycle.

Using (3.1), we are able to obtain the coefficients of original system (1.5) corresponding to the
coefficients of system (3.3). For example, according to the coefficients of system (3.3) in Figure 4(a),
ie.a=2,M =0.3,A =4,§ = 0.44, we obtain the coefficients of the original system (1.5) such as
0 =0.875,M =0.15,A = 2,5 = 0.11 and two positive equilibria £,(0.352,0.352) and E,(0.5,0.5),
where E| is a saddle and a stable limit cycle around E,. The phase diagram of the original system (1.5)
is similar to Figure 4(a), so we omit it.

Next, we give some numerical simulations to show the feasibility of Theorems 3.5 and 3.6. When
A =242 0 =15.0625, § =0.1125, and M = 0.3, by Theorems 3.5 and 3.6, we obtain E, is a cusp of
codimension two. and system (4.13) undergoes a Bogdanov-Takens bifurcation of codimension 2 (see
Figure 5).

6. Conclusions

We analyse the bifurcation of a Holling-Tanner predator-prey model with strong Allee effect on pery.
[30] showed that system (1.5) undergoes the Hopf bifurcation and Bogdanov-Takens bifurcation by
numerical simulation. Hence, using the different method with [30], we further investigate the rigorous
proof of stability and bifurcations of system (1.5).

Now, using numerical simulations, we show the influence of Allee effect on the dynamical behavior
of system (1.5). Let A = 0.2, 0 = 0.2, § = 0.02. If M = 0.5, system (1.5) has no positive equilibrium.
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(a) (b)

©)

Figure 4. (a) Selectinga =2, M = 0.1, A =4and S = 0.27, system (3.3) undergoes a
supercritical Hopf bifurcation and a stable limit cycle around E,. (b) Selectinga = 1.8, M =
03, A = 4and § = 0.44, system (3.3) undergoes a subcritical Hopf bifurcation and an
unstable limit cycle around E,. (c) Selectinga =2,M = 0.2,A =4 and S = 0.358, system
(3.3) undergoes a degenerate Hopf bifurcation and two limit cycles (the inner one is stable
and the outer one is unstable) around E,.
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Figure 5. Trajectory topological classifications of Bogdanov-Takens bifurcation of codimen-
sion 2 of system (4.13) with A = 24.2, Q = 5.0625, S = 0.1125,and M = 0.3. (a) E. is a
cusp when there is no perturbation. (b) When (4, 4;) = (0.2, -0.08), system (4.13) has no
positive equilibrium. (c) When (44, 4;) = (-0.2,-0.08), the equilibria E; and E, of system
(4.13) are a saddle and an unstable focus, respectively. (d) When (1, 4;) = (-0.26, -0.08),
system (4.13) admits an unstable hyperbolic limit cycle. () When (1;, 45) = (-0.27, -0.08),
the unique unstable hyperbolic limit cycle will become an unstable homoclinic loop. (f)
When (4, ;) = (-0.3,-0.08), the equilibria E; and E, of system (4.13) are a saddle and a

stable focus, respectively.
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Then the origin is globally asymptotically stable (see Figure 6(a)), which implies that the prey and
predator will be extinct. If M = 0.225, system (1.5) has two positive equilibria E; = (0.5591,0.5591)
and E; = (0.6,0.6), where E, is a saddle and E; is unstable. From Figure 6(b), all solutions of
system (1.5) tend to origin, which implies that the prey and predator is still extinct. If M = 0.2, the
equilibrium E, changes from unstable to stable, and an unstable limit cycle occur. Form Figure 6(c),
the unstable limit cycle becomes a separatrix curve. When the initial values lie outside of the limit
cycle, the solutions will tend to origin. That is the prey and predator is still extinct. However if the
initial values lie inside of the limit cycle, the solutions will tend to E,, which implies that the prey
and predator can coexist. If M = 0.1, system (1.5) has two positive equilibria E; = (0.2466, 0.2466)
and £, = (0.7601,0.7601), where E; is a saddle and E; is stable. From Figure 6(d), the unstable
limit cycle disappears and the two stable manifolds of saddle of E; becomes a separatrix curve. That
is, if the initial values lie right of the stable manifolds of saddle E;, the solutions will tend to Ej,
which implies that the prey and predator will stabilize to the value of E,. If the initial values lie left
of the stable manifolds of saddle E|, the solutions will tend to origin, which implies that the prey and
predator will be extinct. Hence, the small Allee effect leads to bistable phenomena. Finally, it M = 0,
that is we consider the system (1.5) with out Allee effect, system has a unique positive equilibrium
(0.8385,0.8385) which is globally asymptotically stable (see Figure 6(e)). Therefore, Allee effect is
not conducive to the stability of the system (1.5). From Figure 6(e), the prey and predator will coexist
if system (1.5) without the Allee effect. However, if the Allee effect is large, the system will be extinct
(see Figure 6(a)). From Figures 6(b)-6(d), small Allee effect will lead to bistable phenomena. With the
decrease of Allee effect, the region where prey and predator coexist becomes larger. Hence, compared
to the larger Allee effect, the smaller Allee effect is beneficial to the survival of the prey and predator.

It follows from Theorem 2.1 that system (1.5) has no positive equilibria, a unique equilibrium E.,
or two positive equilibria £, and E, under some corresponding conditions. We confirm that the degen-
erate equilibrium E, of system can be a cusp of codimension 2 or 3. Further, Under some parameter
perturbations, we also prove that system undergoes a Bogdanov-Takens bifurcation of codimension 2
or 3, and give the expressions of the saddle-node bifurcation curve, homoclinic bifurcation curve and
the Hopf bifurcation curve. By translating E; to E»(1,1) (see [33] and [34]), we prove that system
(1.5) undergoes a supercritical and subcritical Hopf bifurcation. Specially, system (1.5) undergoes a
degenerate Hopf bifurcation and two limit cycles (the inner one is stable and the outer one is unstable)
appear around E, (see Figure 4(c)). There exists bistable phenomena, that is the stable manifold of the
saddle or unstable limit cycle can be treated as a separation curve between the basins of attraction of the
origin and stable limit cycle or E,. Hence, the main results of this paper complement and improve the
previous paper [30]. In summary, the analysis about bifurcation enriches the dynamical behaviors of
a Holling-Tanner predator-prey model with strong Allee effect. For the Holling-Tanner predator-prey
model with strong Allee effect and Beddington-DeAngelis functional response, the dynamic properties
of the system are worth further study by the method presented in this paper.
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(a) M=05 (b)y M =0.225

(c) M =02 (d M=0.1

05

) M=0

Figure 6. Phase portraits of system (1.5) with A = 0.2, 0 = 0.2, § = 0.02.
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Appendix A. Coefficients in the proof of Theorem 3.1
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Cy = , C11=-—
? (w2 - My ! w—M
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Appendix B. Coefficients in the proof of Theorem 3.4
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Appendix C. Coefficients in the proof of Theorem 3.5
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o = u?(—Ag = 3u, + 1 + M) + 2u.[(Ag + w)(1 — u,) + (=Ag — 2u, + D(u. — M)| — Lyu., ap =0,
@i = ~2u.(Qo + A1), boo =0, brg = 1.(So + A2)(Ag + 1), bor = —u.(So + L)(Ag + u.),

by = (S0 +d2), bii = (So + A2)Ao, boo = ~(So + 2)(Ao + ),

@by —

Coo = —=< — boy,
apy
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- o~~~ — — - -
__ bo(Zawaoiai —agan) .~ _~  _~ .~ (@ +2by)
€10 = = —agob11 +aoibio —aibor, cor =ai + by - ————,

a a1
o1
__ bo(=2agaaan +dyay, + 2ady,dx +dgdi,)  _ —~ o~ o~  __ —
€20 = = +do1bao — aiob11 + anbio — axbor,
oy
. apar (@ + 2bgy) —agiaio(an — 2boy) G T Ty = Gt bo>
Ci1 = = + 2a + b1y, C2 = ——=—>
oy aoi

w.(i? = MY[3(M + D — (M* + 10M + Du, + 3M(M + 1)]*
- (. — ¥t — M)*(® — 3u.M + M2 + M)
1@ = M)[3(M + D — (M? + 10M + Du, +3M(M + 1)]Qy
T2 (s — 13w, — MY = 3u.M + M? + M)? ’
_3(M + Duz — (M? + 10M + Du, +3M(M + 1)
(= D - M3 =3u M+ M+ M)
Qo = 4u® — 13(M + D + [9(M? + 1) + 34M 1 — [2(M° + 1) + 18M(M + 1)]u?
+ M[3(M? + 1) + 2Mu, + M*(M + 1).

, 0 =0,

(O8]

¥

2

Appendix D. Coefficients in the proof of Theorem 3.7

@00 = —(2 — Dz, — M3, & — 13,63, oy = —13,(Q1 + &),

@10 = 13, [ (2. + AN = u2) + (1 = 2uz, = At = M)] = [4103, = 3(M + 1)ii3, + 2Muy. )&, — 243,65,
ay = =93, +5(1 + M — A3, +2(A; + A\M — M)uy, + [ — 613, + 3(M + Dy, — M]E1 — up,&,,
ay = 2u.(01 + &), az = —10u§* +4M+1-ADur. + A1 +AM —M+ (1 + M - 4uy.)é,

@ = —(Q1+ &), ago=1+M—A; —Suy. — &1, Pro = (81 + &)Uz + Ay + §D)uas,

Bor = —(S1 + &Nz + Ay + EDuge, Bao = (S1+ Euas, P11 = (81 +E)AL + &),

Boz = —(S1+ &)U + A1+ 61), Bor = S1+ &, Bra=—(S1+ &),

B0
Yoo = — aoofBot,
o1
@oo| @oo(@01B12 — a11B02)] + 201210802 ook
Yio = 2 — @B + @o1Bio — @10Bo1, Yor = — + @10 + Por,
Qo Qo1
agoat Bz @o[aoo(@niBiz + @21B0) + 210011 802]  2@00(@i0B12 + Borao) + a7 yBoz
Y20 = 3 - ) + +anfio
@y @y, Qo1
— a10B11 + @o1820 — @20B01 — AooPa1,
apoiiky  2apks + a0k a1 + Boz
Y = > - +2a0 + B, Yo = ——,
@y @1 Qo1
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_agoaflﬁoz 4 oo 11 [@oo11B12 + 2Boa (o2 + o] B Boz[2ao(aipaa; + ayjay) + Cﬁoall]

Y30 = 2 3 2
@y @y Qo
aooBia(@oaar + 2a10a11)  2Boa(@oo@so + @10@20) + BiaQaany + aty)
- + — aofi2 + a11B0

a’%] Qo1
— a2B11 + @21810 — @30P01,

2
_aaiiki  awQaiik + aaiky) + anaioki  2ai0ks + aaoks

Y21 = — + 5 - + 330 + Bois
@y, Qg Qo1
at, +anfn  ay +k
Yi2 =~ ) + )
g, Qo1
, ago! Bz et [@oo(@iBiz + 3a21B0) + 2a1011B02) N a7, [2a00a10B12 + Bor e + )]
40 = S - y) 3
@y @y Qo
. @21 @00[@00(2a11812 + @21802) + 41011802 ] B 2ap0[@a1(@10B12 + @20B12) + a11(@20B12 + @30B02)]
3 2
@y @y
N ajolaioan Bz + Bor(aioaz + 2a11a20)] N 2a00(a30B12 + @40Bo2) + 2a10(a20B12 + @30802)
“(2)1 Qo1
2
+a 0602
2
— - @20B21 + @2120 — @30B11 — @40Bor,
01
= gl ki @k Qagoea + aroan) + 2agat ks N 2ka(apoaar + ajoany) + (@021 + ap1ax)k
31 — 4 - 3 2
Ao @y Qo
2&’2()]{2 + 0/30/(1
- ————— +4ay,
o1
2
_ag(an +Bu)  anBay +Bi) + anfo
@y @y

ki = ai +2Bn, ky = ax + B,
Y10Y02

800 = Y00» 10 = Y10 — Y00Y02> 01 = Yo1> 620 = Y20 + YooY — > O11 = Vi1,
2
Yo2Y10 Y11Yo2
830 = Y30 — Yoo Yoo + 022 , O =7y + 5y 812 = Y12 + 2955
Y02 (Y30 — Yo Y10) Y207}
040 = Yao + 732700 + 2 % + 1 02, 031 = Y31 + Y0221,
500612 610612
€0 = 000, €10 = 010, €01 = Op1, €0 = 020 — 5 e = 011, €30 = 030 — 3
620012 60007, 011012
€1 = 091, €10 = O4g — + , 61 = 03] + ,
21 = 021, €40 = 040 z ) 31 = 031 6
€00€30 3 degen + Sennen 9 €€y
doo = €0, 10 = €10 — » Lo =€1, &0 =60 55 — 230,
2620 20 €20 16 €9
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€01€30 7 €060 4 €€ 3 degren + Seen 9 €€,
i =61 - s o= g5~ ¢ s 1 =61 5 ——
2620 8 620 5 €0 20 €20 16 620
g _ 1 640(36600640 + 2561063()) _ 3 E:%0(24'600640 +25€IO€30) _ 11 €00€§0
* 7 100 = 320 = 256 €,
lde €9 + 561650 7 61163?0
{31 =61 — 3 P
€20 8 620
Lo0d21
noo = 00> M0 = 10> Mo1 = o1 — o 20 = {20,
20
_ $10821 3 01830
nmi =<4 — oo m1 =431 — oo
4 7 2 6 13 12
Boo = 400851450 > B10 = 10851850 5 Oo1 = E0185,4y0 > Ot = —Ends Gy
I fio . 4nud 343
w1:§00+f,w22501—%+ > ,w3=§11—Tlo,

Ry = giuy) + gauty, + g3y, + gty + 8sliy, + Golis, + g7, + GsUS, + Goli3, + iolly, + gn1lh3, + G1oll3,
+ 813U + Q14

Ry = hlu%fz + h2l/t§2 + h3ué§ + h4uéZ + h5u;§ + héuﬁ + hméi + hguéi + hguﬁ + hmuéi + h“uég + hlzug*
+ hysud, + hygul, + hysuS, + iy, + hiuy, + higis, + hious, + hogttz, + hyy,

g1 = —320, g = 311ks, g3 = —173ks + 2558M, g4 = k3(56ks — 3349M),

gs = —8(—ks298 Mk, + 486M?), go = —2Mk3(605ks — 3409M), g7 = 2M(187ks — 1415Mky + 3428 M?),

gs = —2Mk3(26ks — 623 Mk, + 6315M?), go = —4M*(118ks — 1115Mk, — 346 M?),

g10 = M?ks(111ks — 486 Mk + 9913M?), g1 = —M*(9%ke + 120Mks + 6116 Mk, + 11346M°),

g12 = MPk3(19ks + 1470Mky + 2309M?), g13 = —12M*k5(11ky + OM), gis = —12M°K3,

hy = 11520ks, h, = 3(60883k, + 15018 M), hy = —6k3(25129%, + 167002M),

hy = 182649%ks + 1736028 Mk, + 3321606M?, hs = —2ks(53164ks + 245921 Mk, — 1612974 M?),

he = 29268k — 1050541 Mks — 15072068 Mk, — 32265990M°,

hy = —2k3(1532ke — 654501 Mks — 8849259 Mk, — 16958428 M°),

hg = —609623 Mke — 9723065M?ks — 20756221 M3k, — 10504310M*,

ho = 2Mk3(66036ke + 50527 Mks — 16280665 Mk, — 45185232M?),

hio = —11156Mk; + 1924279M?%ke + 46178665M°ks + 207988363 M ks + 314062810M°,

hii = —6M?k3(141651ke + 3796436 Mks + 19095742M%ks + 29359122M°),

hia = 152079M%k; + 4622238 Mke + 19710519M*ks + 12868326 Mk, + 10044732M°,

hiz = —2M?*k3(5048k; — 230821 Mke — 12324784 M?ks — 84339640M°ky — 151455250M%),

his = =367715Mk; — 16480950M*ke — 170511559M° ks — 622946226 M ks — 958625532M

his = 2M°k3(30339%k; + 2210707 Mke + 33411415M%ks + 162933602M°ky + 292106446 M%),
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hig = —3369M°ks — 596029M*k; — 16375136 Mk — 140312707 M®ks — 484562419M "k,
— 723045944 M°,

hi7 = 2M*k3(15881k; + 982239 Mke + 13527481 M?ks + 62415498 M ky + 102449718 M%),

hig = —101269M°k; — 3242277 MSke — 27666533 M ks — 87108930M83k, — 125166810M°,

hig = 12M°k3(12631ks + 185808 Mky + 467593M?), hyy = —108M'k3(97 7k, + 4393 M),

hyy = 19008 M°K3,

ks=M+1, ky=M>+1, ks=M*+1, ke =M+ 1, ky = M® + 1, ks = M'° + 1.

- ©2023 the Author(s), licensee AIMS Press. This
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