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Abstract: In this paper, we presented a 3D human eyes aqueous humor (AH) dynamics model, and 
additionally, designed and optimized it using GPU technology. First, the feasibility of the model is 
demonstrated through validation. Then, the effect of different factors on AH flow was investigated 
using the validated model. The experimental results showed that AH flow more rapidly when standing 
than supine; the intraocular temperature has the greatest effect on AH flow compared to other factors; 
the AH secretion rate and trabecular meshwork (TM) permeability had a greater effect on intraocular 
pressure (IOP). Corneal indentation and ovoid anterior chamber (AC) can also affect AH flow. Finally, 
the PartSparse algorithm based GPU can save more than 50% of the memory consumption and 
achieves a performance of 1491.29 MLUPS and a Speedup of 837.61 times. 
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1. Introduction  

Ophthalmic diseases are diverse and have complex causes, and studies have shown a strong 
association between AH dynamics and ophthalmic diseases [1−3]. Therefore, it is very necessary to 
study the laws of AH dynamics in human eyes, which can improve the understanding of the 
pathogenesis and development of ophthalmic diseases, as well as the effectiveness of drug therapy. 

In recent years, many scholars have conducted numerous studies on AH dynamics using 
numerical methods. Canning et al. [1] proposed a simple model of AH thermal convection based on 
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the Boussinesq approximation. He found that natural convection occurs in the AC, even at very small 
temperature differences, and concluded that temperature difference is the most important factor 
driving AH flow, but Canning did not consider the secretion-discharge mechanism of AH. Heys and 
Barocas [2] constructed a three-dimensional (3D) model of AH flow in the human eyes by 
Boussinesq approximation and studied the flow of AH during standing at different intraocular 
temperature differences. He also found that the secretion-discharge of AH had little effect on the AH 
flow, but did not consider the AH flow in the supine position. Fitt and Gonzalez [3] investigated the 
different factors causing AH flow and further analyzed the effects of buoyancy forces (temperature 
difference assumed to be 0.1°C) and rapid eye movements, as well as lens tremor on AH flow during 
sleep, in addition to both natural convection and secretory-discharge flow. Crowder and Ervin [4] 
explored the effect of different AH secretion rates on AH flow and showed that the pressure 
difference between the AC and the TM was greater with higher secretion rates, but only the supine 
position was considered. Kumar et al. [5] developed a physical model from rabbit eye anatomical 
data and incorporated a TM with porous media properties and applied Darcy’s law to calculate the 
AH velocity at the TM. He used FLUENT to solve the problem, and found that the buoyancy force 
was the main driving force for AH flow after comparing the effect of buoyancy force and AH 
secretion-discharge. Ferreira et al. [6] studied the effects of drugs on the ciliary body (CB) and TM, 
and first determined that higher AH secretion rates or smaller TM permeability were more likely to 
result in high IOP, which could be significantly reduced by drug treatment. 

In summary, researchers have conducted a large number of studies on the AH dynamics of the 
human eyes and have obtained many results, that have laid a solid foundation for an in-depth study 
of AH dynamics. However, much is still unknown about AH dynamics, such as: the flow of AH at 
different eye orientations and the effect of asymmetric AC on AH flow. Moreover, most of the 
current research uses traditional numerical methods such as finite element or finite difference, 
which have shortcomings, such as not easy to deal with complex boundaries and difficult to 
compute in parallel. 

The Lattice Boltzmann Method (LBM) is a mesoscopic numerical method between 
macroscopic and microscopic, which originated from lattice gas automata. LBM treats fluid as a 
lattice distributed on a regular grid, following correlation laws for collision and migration (flow), 
and then uses statistical averaging to calculate the macroscopic physical quantities (e.g., density, 
velocity, pressure, temperature, etc.). The original lattice Boltzmann (LB) model was proposed by 
Mcnamara and Zanetti [7], who introduced a local particle distribution function to represent the 
number of particles per lattice. Then, Chen et al. [8] and Qian et al. [9] proposed a simplified LB 
model by replacing the equilibrium state distribution function with the local particle distribution 
function and linearizing the collision operator, and the two’s method is known as the lattice BGK 
(LBGK) model. Further, with the extensive development of LBM, many models have been derived, 
such as the thermal lattice model [10] and the double distribution function model [11,12]. Due to the 
advantages of easy multi-physical coupling, simple boundary processing, and easy parallelism, LBM 
has been successfully applied in complex fluid fields, such as heat transfer [11], and porous media 
flow [12]. In the field of AH flow, Qin et al. [13] established the LB model of AH dynamics with 
two-dimensional flow field, which is based on the incompressible fluid model and better simulates 
the AH flow phenomenon. Additionally, he investigates factors, such as IOP and AH secretion rate. 
Due to the limitation of the model, the three-dimensional flow field cannot be simulated. 

In LBM, lattice points need to collide and flow with neighboring lattice points frequently during 
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evolution, especially in the 3D flow field, which involves a large amount of computation, and, thus, 
there is an urgent need to improve the computational efficiency. The GPU with “Single Instruction 
Multiple Thread” (SIMT) [14] parallel mode is well suited for LBM with natural parallelism features, 
which can significantly improve the performance of LBM algorithms [15−22]. 

The study of 3D human eyes AH dynamics involves the complex anatomical structure of the 
human eyes, difficult boundary processing, and huge computation. Therefore, it is a promising new 
way to study the AH dynamics of the human eyes by using the LBM, which has the advantages of easy 
multi-physical coupling, simple boundary processing, and easy parallelism. Thr parallel design and 
optimization of 3D human eyes AH dynamics model by GPU technology can effectively improve the 
computational performance of the model and shorten the research cycle. The flow laws of AH in human 
eyes in three dimension can be obtained through this study, which is expected to provide some 
theoretical references for clinical diagnosis and treatment.  

This paper is structured as follows: Section 2 describes the modeling process of the coupled AH 
dynamics LB model, including the geometric model of the anterior segment, the macroscopic 
equations of AH flow and the corresponding LB model with double distribution function. Section 3 
uses GPU technology for parallel design and optimization of the 3D human eyes AH dynamics model. 
In Section 4, the 3D AH dynamics model is first validated, and then the effects of intraocular 
temperature difference, AH secretion rate, TM permeability, corneal indentation and asymmetric 
anterior chamber cavity on AH flow are investigated. Finally, we compare the impact of GPU parallel 
algorithms on program performance. 

2. LB model of AH dynamics in the human eyes 

AH dynamics occurs primarily in the anterior segment. AH is secreted by the CB located in the 
posterior chamber (PC) at a rate of 1.5~3.0 μl/min, flows through the narrow PC, then across the pupil 
into the AC, where it forms a circulating convection driven by temperature difference, and is finally 
discharged through the TM [23]. The flow of AH is very complex and characterized by multi-scale and 
multi-physical coupling, making it suitable for study using LBM. 

2.1. Geometry 

We developed an idealized 3D geometric model of the anterior segment through the anatomical 
structure of the human eyes. The anatomical structure of the anterior segment is shown in Figure 1(a) 
and (b), and its main ocular tissues are: Cornea, Iris, Lens, Pupil, CB, TM and Suspensory ligament. 
The area between the cornea, iris and pupil is called the AC, and the area enclosed by the iris, lens and 
suspensory ligament is called the PC. The AC is filled with an aqueous fluid called AH, which is 98% 
water and has physical properties very similar to water, and its main role is to transport nutrients and 
remove metabolic wastes for the tissues of the eye.  

The geometric model of the three-dimensional anterior segment is shown in (a) and (b) of 
Figure 1, and the corresponding sizes of each tissue are shown in Table 1. The geometry is 12.8 mm 
× 12.8 mm × 4.0 mm, and the computational grid is 384 × 384 × 120 by dimensional conversion. 
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Figure 1. Anterior segment geometric model: (a) Coronal plane, (b) Three-dimensional. 

Table 1. Geometric parameters of the tissues. 

Geometric parameter Value Source 
Length of the AC 12.8 mm Abouali et al. [24] 
Depth of the AC 3.0 mm Ferreira et al. [6] 
Radius of the cornea 8.3 mm Heys and Barocas [2] 
Thickness of the iris 0.4 mm Heys et al. [23] 
Angle of the iris 6.45º Lin and Yuan [25] 
Diameter of the pupil 3.0 mm Abouali et al. [24] 
Radius of the lens 10.0 mm Heussner et al. [26] 
Surface area of the TM 18.0 mm2 Heys et al. [23] 
Height of the PC 0.5 mm Heys et al. [23] 

Distance between iris and lens 0.15 mm Between Heys et al. [23] and Crowder 
and Ervin [4]

2.2. Governing equations 

AH is considered as a Newtonian fluid and flows at a very small velocity with negligible 
compressibility and inertia. Therefore, the incompressible Navier-Stokes (N-S) equation can be used 
to describe the flow process of AH within the anterior segment: 

∇ ⋅ =u 0            (1a) 

3( )u p
t

ν∂ + ∇ ⋅ × × = −∇ + ∇ −
∂

u u u u F ,       (1b) 

where, u  is the velocity of the AH, p  is the pressure of the AH, ν  is the kinematic viscosity of the 

AH, and F  is the external force. 
Because of the temperature difference between the corneal surface of the eye and the intraocular 

tissues, heat convection diffusion within the anterior segment of the eye must be considered. It is well 
known that if the pressure work and viscous heat dissipation are neglected, the temperature field is 
subject only to passive advection of the fluid and obeys a simple passive scalar equation: 
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2( )T T T
t

α∂ + ∇ ⋅ = ∇
∂

u ,         (2) 

where T is the temperature and α  is the thermal diffusion coefficient. AH is discharged through the 
TM, a tissue with porous media properties and specific thickness. According to the theory of porous 
media, the seepage flow of AH at the TM obeys Darcy’s law: 

K p
Lμ
Δ= −u ,          (3) 

where u  is the seepage flow velocity of AH at the TM, K  is the permeability, pΔ  is the pressure 
difference, μ  is the AH viscosity and L is the thickness of the TM. 

In AH dynamics, the coexistence of incompressible N-S flow, thermal convective diffusion and 
Darcy seepage flow constitutes the complex AH flow in the AC. Since the flow of AH in the AC and 
PC is natural convection, the Boussinesq approximation can be used to couple the incompressible N-
S flow with thermal convection diffusion. The Boussinesq approximation assumes that the density, 
viscosity and thermal diffusivity of the fluid are constant except for buoyancy, which satisfies: 

( )0 01 T Tρ ρ β= − −   ,         (4) 

where 
0T   is the reference temperature, 0ρ   is the reference density and β   is the coefficient of 

thermal expansion. Under the Boussinesq approximation, gravity can be expressed as: 

( )0 0 0T Tρ ρ β= − −G g g ,        (5) 

where g  is the gravitational acceleration vector. The constant part of the first term is absorbed into 

the pressure term to obtain the external force term: 

( )0T Tβ= − −F g .         (6) 

In summary, the set of equations for the flow of AH based on the Boussinesq approximation is: 

0∇⋅ =u           (7a) 

2
0( ) ( )u p T T

t
ν β∂ + ∇ ⋅ × = −∇ + ∇ − −

∂
u u u g       (7b) 

2( )T T T
t

α∂ + ∇ ⋅ = ∇
∂

u .        (7c) 

Coupling incompressible N-S flow and Darcy flow, the IOP can be calculated by Eq (7b) first, 
then the pressure difference between AH and vein is found, and the seepage flow velocity is obtained 
by Darcy equation, and, finally, the seepage flow velocity is used for the velocity boundary, and the 
coupling of Eqs (7) and (3) is realized by repeating iterations. 
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2.3. Using LBM to solve macroscopic equations 

In the LBM, the discrete velocity distribution of fluid particles in space and time is described by 
a density distribution function ),( tfi x . The LBGK model with a single-relaxation-time approximation 
can be expressed as follows: 

1( , ) ( , ) ( ( , ) ( , ))eq
i i i t i i i t i

f

f t f t f t f t Fδ δ δ
τ

+ + − = − − +x e x x x ,    (8) 

where x   is the spatial position of the particle, t   is time, ie   is the discrete velocity, fτ   is the 
relaxation time, ),( tfi x   is the particle distribution function, ),( tf eq

i x   is the corresponding 
equilibrium distribution function xδ  and tδ  is the spatial and temporal increments, respectively, and 

iF  is the external force. 
In the lattice Boltzmann of AH dynamics, both velocity and temperature fields exist, therefore, 

the double distribution function LB model based on Boussinesq approximation is used for the solution. 
Extending the double distribution function LB model of Guo and Zhao [12] to the three-dimensional 
case, the density equilibrium distribution function is: 

22
( ) i

2 4 2
( )1 ( 0,1,2, ,18)

2 2
eq i

i i
s s s

f i
c c c

ρω
 ⋅⋅= + + − = 
  


ue ue u

,    (9) 

where ρ  is the particle density, iω  is the weight coefficient, u  is the particle velocity, 3ccs =  
and txc δδ=  (value is 1). The external force is: 
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The discrete velocity e  and the weight coefficient ω  of the D3Q19 lattice model are: 
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The evolution equation of the temperature field: 

)6,,2,1,0()),(),((1),(),( =−−=−++ itgtgtgtg eq
ii

g
ittii xxxex

τ
δδ ,   (13) 

where ),( tg i x   is the temperature distribution function of the particle, ),( tgeq
i x   is the 

corresponding equilibrium distribution function and gτ  is the relaxation time of the temperature field. 
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Equilibrium distribution function of temperature: 

)4,3,2,1,0(]1[ 2 =⋅+= i
c

Tg
s

i
i

eq
i

ueη ,      (14) 

where, T  is the particle temperature and iη  is the weight coefficient. The discrete velocity e  and 
the weight coefficient iη  of the D3Q7 lattice model are: 
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The corresponding macroscopic densities, temperatures and velocities are defined as follows: 
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=
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        (19) 

The relaxation time is satisfied: 

tsf c δτν 2)
2
1( −=           (20) 

tsg c δτα 2)
2
1( −=         (21) 

In AH dynamics, the external force is provided by the buoyancy force: 

)( 0TT −−= βgF         (22) 

In the velocity field, a half-way bounce scheme is used at all solid wall boundaries and a non-
equilibrium extrapolation scheme is used at the CB and TM [27], while the temperature field uses a 
non-equilibrium extrapolation scheme at all boundaries. 

3. GPU-based LBM parallel algorithm 

Since NVIDIA introduced the CUDA (Compute Unified Device Architecture) programming 
technology on GPUs, heterogeneous CPU and GPU-based parallel acceleration models have become 
increasingly popular due to their lower cost and ease of use. Moreover, the GPU in parallel 
computing mode is well suited for LBM, and can significantly improve the performance of LBM 
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algorithms [15−22], making it suitable for studying AH dynamics. However, GPU-based LBM 
algorithms require frequent reads from global memory, so the way in which computational data is laid 
out in global memory is particularly important. It has been demonstrated that the SOA model of 
memory layout satisfies merge access and is more suitable for GPU-based LBM algorithms [20,28−30]. 

In our algorithm, the SOA model [20] is used to allocate memory for the particle distribution 
function. Meanwhile, based on the characteristics of CPU and GPU, the steps of initializing variables, 
establishing flow fields and outputting data are implemented on the CPU, while the steps of collision, 
flow (including boundary processing) and calculating macroscopic quantities of the evolutionary 
process are implemented on the GPU. Further, to improve performance and reduce thread access to 
global memory, collision and flow are combined in a single core function [20]. 

The flow field of the D3Q19 lattice model requires three-dimensional array memory, and for ease 
of manipulation, we use a one-dimensional array to represent the three-dimensional flow field. The 
flow field size of the 3D AH dynamics model is DX = 384, DY = 384 and DZ = 120, and the total 
number of flow field lattices is DN = DX × DY × DZ. Allocate memory to lattices in the order of Z, Y, 
X and convert them to the form of a one-dimensional array. After conversion, the lattice index is p = I 
× DY × DZ + j × DZ + k (i, j, k are the coordinates in the X, Y, and Z directions, respectively), while 
the corresponding distribution function is pf = f × DX × DY × DZ + p [31]. 

In the flow field, the fluid and solids are integrated with each other, and the fluid lattices account 
for about 38% of the total lattices in the flow field, so the 3D AH dynamics flow field has geometrically 
sparse characteristics. Currently, there are fewer solutions for complex flow fields, especially those 
with geometrically sparse properties, such as indirect addressing [29] and sparse matrix [32] methods. 
Additionally, this paper proposes a PartSparse scheme based on sparse matrices, which can further 
improve the computational performance while reducing the program memory consumption. 

 

Figure 2. PartSparse scheme. 

The idea of the PartSparse scheme is shown in Figure 2. First, the 3D AH dynamics flow field is 
converted into a one-dimensional array Type with the total number of flow field lattices DN (DN = 
DX × DY × DZ). Then, based on the sparse property of the flow field, the solid lattices not involved 
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in the evolution are removed, and the lattices are sorted in parts by type (fluid lattices at the head, 
entrance and exit boundary lattices at the middle, and solid wall boundary lattices at the tail) to obtain 
the lattice array Point, whose size is DM and the corresponding lattice index is p. Finally, according to 
the rules of the D3Q19 lattice model, collisions and flows are needed 19 times during each iteration, 
using Neighbor to represent an array of neighbors of lattices, whose size is DM × 19, and the index of 
elements is pf = p + f*DM (f denotes 0, 1, 2, ......, 18 directions). Thus, in order to meet the memory 
merge access, Neighbor's memory layout also adopts the SOA model, i.e., it is stored according to the 
flow direction of lattices. The pseudo-code for the Initialization and Evolution of the PartSparse 
scheme is shown in Algorithm 1 and Algorithm 2, where N_Fluid, N_InletOutlet and N_Boundary 
represent the total number of lattices in the flow field at the fluid, entrance/exit boundaries and 
Boundary, respectively. 

Algorithm 1 Initialization of PartSparse 
1: N_Fluid, N_InletOutlet, N_Boundary, Index[], Type[], Point[], Neighbor[] 
2: d_Fluid = d_InletOutlet = d_Boundary = 0 
3: for i = 0 → DX do  for j = 0 → DY do  for k = 0 → DZ do 
4: p = i*DY*DZ + j*DZ + k, Index[p] = -1   
5: if Type[p] == Fluid then 
6:     int n = d_Fluid++, Index[p] = n 
7:  use Point[n] to set Fluid parameters 
8: end if 
9:  else if Type[p] == InletOutlet then
10:  int n = N_Fluid + d_InletOutlet, Index[p] = n, d_InletOutlet++ 
11:  use Point[n] to set InletOutlet parameters  
12: end if 
13: else if Type[p] == Boundary then  
14:  int n = N_Fluid + N_InletOutlet + d_Boundary, Index[p] = n, d_Boundary++ 
15:  use Point[n] to set Boundary parameters 
16: end if 
17:end for  
18:// set neighbor points 
19:for i = 0 → DX do  for j = 0 → DY do  for k = 0 → DZ do 
20: p = i*DY*DZ + j*DZ + k 
21: if Index[p] < 0 continue 
22: end if 
23: for f = 0 → 18 do 
24:  calculate ii, jj and kk using i, j, k and Eq (11) 
25:  int pp = ii*DY*DZ + jj*DZ + kk 
26:  int nf = n + f*DM 
27: end for 
28:end for 
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Algorithm 2 Evolution of PartSparse 
1: N_Fluid, N_InletOutlet, Neighbor[] 
2: p = blockIdx.x*blockDim.x+threadIdx.x 
3: if p >= N_Fluid return 
4: for f = 0 → 18 do 
5:     pf = p + f*DM 
6:  pp = Neighbor[pf] 
7:  ppf = pp + f*DM 

8:   calculate iF  using Eq (10) 
9:  if pp < N_Fluid then 

10:   calculate if  using Eq (8)  
11:   if f < 7 then 

12:    calculate ig  using Eq (13)  
13:   end if 
14:  else if pp >= N_Fluid && pp < (N_Fluid + N_InletOutlet) then 
15:   calculate Inlet and Outlet 
16:  else  
17:   calculate Boundary 
18:  end if 
19: end for 
20: end if 

4. Simulation of AH dynamics 

In this section, we simulate the AH flow using a GPU-accelerated 3D human eyes AH dynamics 
model. First, the velocity and temperature distribution of AH in the AC were compared for different 
eye orientations, and then the effects of different intraocular temperature differences, AH secretion rate 
and TM permeability on AH flow were investigated. Finally, the effects of corneal indentation and 
ovoid AC cavity on AH flow were investigated using the current model. 

Table 2. Physical properties of AH. 

Physical property Value Source 
AH viscosity, μ  6.947 × 10-4 Pa·s (water) 
AH density, ρ  9.93 × 102 kg/m3 (water) 

AH thermal conductivity, α  0.58 W/(m·K) Karampatzakis and 
Samaras [33] 

AH specific heat, Cp 4.178 × 103 J/(kg·K) Zhao et al. [34] 
Volume expansion coefficient, β  3.2 × 104 K-1 (water) 
Gravitational acceleration, g  9.81 m/s2 Zhao et al. [34] 
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The physical properties of the AH are shown in Table 2. AH is secreted by the CB located in the 
PC at a rate of 1.5~3.0 µl/min [23], and in this paper, the AH secretion rate was assumed to be 2.5 
µl/min, and the TM permeability was assumed to be K = 7.0 × 10-15 m2 [6]. The corneal temperature 
was set to Tc = 34℃, the rest of the wall temperature was set to Th = 37℃, and the AH initial 
temperature was set to T0 = (Th + Tc)/2 = 35.5℃. Pr is 5.03, fτ   is 1.0, gτ   can be calculated by 

/Pr ν α=  and Eq (21). 

4.1. Model validation 

In this section, we validated the feasibility of the model. We calculated the temperature and 
velocity distributions of normal AH flow and compared them with the relevant literature. The results 
are shown in Figure 3, where (a) is the result of this paper, (b) and (c) are the results of Heys and 
Barocas [2] and Zhao et al. [34], respectively. As can be seen from the figure, the temperature and 
velocity distribution in this paper are in good agreement with the results in the literature, and the 
maximum AH velocity is 0.743 mm/s, which is close to the calculated results of Heys (0.7 mm/s) and 
Zhao (0.684 mm/s). 

 

Figure 3. Temperature and velocity distribution of AH: (a) Present, (b) Heys and Barocas [2], 
(c) Zhao et al. [34]. 

Then, we simulated the 3D distribution of AH temperature and velocity. Figure 4 gives the 
temperature and velocity distributions for both stand (gravity along the negative direction of the Y-
axis) and supine (gravity along the negative direction of the Z-axis) cases, respectively. As can be seen 
from the figure, the distribution of temperature and velocity varies greatly at different eye orientations. 
First, under standing, the AH near the iris is high in temperature and low in density, and rises under 
gravity. In contrast, the AH near the cornea is low in temperature and high in density, and falls by 
gravity, resulting in an asymmetric temperature distribution and a clockwise vortex flowing from the 
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iris to the cornea in the AC. In supine position, the iris temperature is high while the corneal 
temperature is low, so the AH flows upward from the iris toward the cornea and descends in the 
direction of the corneal arc. Under gravity, the temperature distribution of AH is symmetrically stepped, 
and the velocity distribution is centered on the pupil axis forming two symmetrical, oppositely oriented 
vortices. Finally, the maximum velocity of AH under standing and supine was calculated to be 0.743 
and 0.119 mm/s, respectively. 

 

Figure 4. 3D distribution of AH temperature and velocity: (a) Stand, (b) Supine. 

4.2. Effect of intraocular temperature difference 

Natural convection is the main mode of AH flow, and temperature difference is the key factor 
leading to natural convection, so the effect of intraocular temperature difference on AH flow is 
particularly important. In this section, the effect of temperature difference on the dynamics behavior 
of AH, such as temperature and velocity distribution and flow pattern is investigated by fixing the iris 
and lens temperature at 37°C, and varying the corneal temperature from 33 to 37°C (temperature 
difference 0−4°C). 

3D graphs are inconvenient to compare in detail, so we compare the temperature and velocity 
distributions on the coronal plane. The temperature and velocity distributions of the AH for 
temperature differences of 0, 0.1, 1.0, 2 and 4°C (corresponding to corneal temperatures of 37, 36.9, 
36.0, 35 and 33°C) in standing and supine positions are given in Figures 5 and 6, respectively. As can 
be seen from the figure, as the temperature difference increases, the stronger the temperature diffusion, 
the faster the AH flow velocity, and the larger the corresponding vortex. It is noteworthy that, when 
the temperature difference is 0 and 0.1°C, although the temperature diffusion trend is almost the same, 
the velocity distribution is significantly different. Among them, the temperature difference equal to 0 
indicates that the AH is not driven by the buoyancy force and no vortex will be formed. While the 
temperature difference of 0.1℃, the AH is driven by the buoyancy force, will also form a vortex. 
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Figure 5. Effect of intraocular temperature difference under standing: (a) ∆T = 0℃; (b) 
∆T = 0.1℃; (c) ∆T = 1.0℃; (d) ∆T = 2.0℃; (e) ∆T = 4.0℃. 

 

Figure 6. Effect of intraocular temperature difference under supine: (a) ∆T=0℃; (b) ∆T 
= 0.1℃; (c) ∆T = 1.0℃; (d) ∆T = 2.0℃; (e) ∆T = 4.0℃. 

The effect of temperature difference on the maximum velocity of AH is given in Figure 7. As can 
be seen from the figure, the maximum velocity of AH is almost linearly related to the temperature 
difference when standing. Under supine, the maximum velocity of AH is more affected by the 
temperature difference when it is greater than 3℃. 
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Figure 7. Effect of temperature difference on maximum velocity of AH. 

4.3. Effect of IOP 

IOP is an important indicator of normal AH flow, and abnormal IOP can lead to ocular disease. 
In the AH flow system, AH secretion rate and TM permeability are the main effects on AH inflow and 
discharge, both of which affect the balance of IOP. Therefore, this section simulated the effects of AH 
secretion rate and TM permeability on IOP. First, normal temperature difference and TM permeability 
were maintained to study the effect of different AH secretion rates on IOP. Then, the normal 
temperature difference and AH secretion rate were maintained to study the effect of different TM 
permeability on IOP. 

 

Figure 8. Effect of AH secretion rate and TM permeability on IOP. 

The effects of AH secretion rate and TM permeability on IOP are given in Figure 8. As seen in 
the figure, IOP was significantly affected by AH secretion rate and TM permeability, which were 
positively proportional to AH secretion rate and inversely proportional to TM permeability. This is 
because the greater the AH secretion rate, the more AH builds up in the AC, which results in a high 
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IOP. Additionally, the greater the TM permeability, the more AH flows out, which eventually leads to 
lower IOP. In summary, normal AH secretion rate and TM permeability are essential to maintain IOP 
homeostasis. 

4.4. Effect of corneal indentation 

The cornea can become shaped when it is squeezed by external forces, also known as corneal 
indentation. Corneal indentation will change the structure of the AC, which in turn will affect the flow 
of AH. Therefore, to investigate the effect of corneal indentation on AH flow, we simulated the 
indentation depth in the range of 0.3 mm (too small to reflect the effect of indentation on the flow of 
AH) to 1.0 mm (too large a volume causes too much pressure in the anterior chamber, which results in 
biased data). 

 

Figure 9. Effect of corneal indentation depth under standing. 

 

Figure 10. Effect of corneal indentation depth under supine. 

The effect of corneal indentation depth on AH flow is given in Figures 9 and 10. Figure 10 
gives only the distribution of AH velocity at different corneal indentation depths. As seen in the 
figure, the deeper the corneal indentation, the weaker the temperature diffusion and the smaller the 
vortex formed in the AC by the AH flow. In addition, in supine, AH flow formed a secondary vortex 
in the center of the AC and, as the depth of the corneal indentation increased, the secondary vortex 
gradually increased. Table 3 gives the magnitude of the maximum velocity of AH at different corneal 
indentation depths. As can be seen from the table, the deeper the corneal indentation, the smaller the 
AH velocity. Corneal indentation results in a smaller AC space, weaker convective diffusion of AH, 
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and, thus, slower AH flow. 

Table 3. Effect of corneal indentation on AH maximum velocity. 

Depth of corneal 
indentation (mm) 0 0.3 0.4 0.5 0.8 1.0 

Maximum velocity in 
standing (mm/s) 0.743 0.729 0.707 0.677 0.554 0.463 

Maximum velocity in 
supine (mm/s) 0.119 0.112 0.108 0.104 0.086 0.073 

We fitted the relationship between corneal indentation depth and the maximum velocity of AH to 
obtain the following equation for the relationship. 

74607.001685.03056.0 2 ++−= ddU standmax,      (23) 

11918.001545.003117.0 2 +−−= ddU supinemax, ,      (24) 

where, max,standU  and max,supineU  are the maximum velocity of AH in standing and supine, and d  is 

the depth of the corneal indentation. The fitted functions for the maximum AH velocity are shown in 
Figure 11, both as open downward quadratic functions. 

 

Figure 11. Variation of maximum velocity of AH with corneal indentation depth. 

4.5. Effect of the ovoid AC 

Normal AH flow simulations use a spherical, symmetrical geometric model of the AC; however, 
the real eye structure is not perfectly symmetrical. Therefore, we constructed an asymmetric model of 
the AC to study the effect on AH flow. 
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Figure 12. Effect of the ovoid AC on AH flow. 

We used an ovoid AC model (one end is circular, and one end is non-circular, in which the non-
circular part is constructed in a two-dimensional plane with decreasing slope, and then the two-
dimensional plane is used as the basis for rotation to obtain the three-dimensional flow field), and 
the simulation results are shown in Figure 12. As can be seen from the figure, the ovoid AC has little 
effect on AH flow in standing; however, it has a significant effect in supine. The asymmetry of the 
AC causes an asymmetric distribution of AH temperature in the supine position and a more intense 
diffusion in the AC of the lower hemisphere. Moreover, AH flow forms vortices of varying sizes in 
the AC, with the larger vortices and maximum velocities in the AC of the lower hemisphere. The 
maximum velocity of AH in standing and supine was calculated to be 0.655 and 0.160 mm/s, 
respectively. Thus, it was shown to be 11.84% lower and 34.45% enhanced compared to the maximum 
velocity of AH in normal eyes (0.743 and 0.119 mm/s), respectively. 

5. GPU performance evaluation 

The performance of LBM programs is generally expressed using Millions of Lattice Updates 
Per Second (MLUPS) [22,30], and the larger the MLUPS, the better the performance of the program, 
which is defined as follows: 

N

zyx
L T

KKNK
M 610

= ,        (25) 

where, N  is the number of evolutionary steps, iK  is the number of lattices in the flow field direction 

and NT  is the evolutionary time. 
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Table 4. Lab environment. 

Device Version 

CPU Intel(R) Xeon(R) Gold 5117 2.0GHz  

GPU Tesla P100  

Operating system Windows Server 2012  

Development tool Visual Studio 2015  

CUDA V10.0  

The lab environment is shown in Table 4. Usually, there are three schemes for dimensional 
division of threads: 3D Grid with 3D Block [19], 2D Grid with 1D Block [17,18] and 1D Grid with 
1D Block [22]. We compute and find the best performance of the 1D Grid and 1D Block [22] scheme 
when Grid = (276480, 1, 1) and Block = (64, 1, 1). Meanwhile, the shared memory is the on-chip 
memory of the GPU, which features lower latency and can improve the performance of CUDA 
programs [18]. We compare the performance of various GPU parallel algorithms on the program by 
using CPU (sequential single core CPU version) and GPU to evolve the program for 10,000 steps, 
respectively, and counting the corresponding evolution time, MLUPS and Speedup [19]. 

Table 5. GPU algorithm performance. 

Scheme Memory (GB) NT  (s) MLUPS Speedup 

CPU 7.56 99385.9 1.78 / 

Complete 7.56 175.56 1007.89 566.10 

Indirect 3.04 185.09 955.99 536.95 

Sparse 3.60 145.11 1219.40 684.90 

PartSparse 3.57 118.65 1491.29 837.61 

The experimental results are shown in Table 5 and Figure 13. As can be seen from the results, the 
GPU-based LBM algorithm can significantly improve the performance of the program, and all GPU 
parallel algorithms based on sparse characteristics can save more than 50% of memory. The best 
performance is the PartSparse scheme, which achieves 1491.29 MLUPS and a Speedup of 837.61 
times. The advantages of the PartSparse scheme are obvious, saving a large amount of memory, while 
increasing the parallelism of thread accesses. 
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Figure 13. Performance comparison of GPU parallel algorithms. 

6. Conclusions 

In this paper, we constructed a 3D human eyes anterior segment geometry model, coupled 
incompressible Navier-Stokes flow, thermal convection and diffusion, and Darcy seepage flow using 
LBM, and established a 3D human eyes AH dynamics model, which was designed and optimized in 
parallel by GPU technology. We conclude the following: 

1) The AH velocity and temperature distribution under normal intraocular temperature difference 
were compared with the relevant literature, and the results were in good agreement, which 
demonstrated the feasibility of the 3D human eyes AH dynamics model. 

2) The effects of different factors on AH flow were investigated. The experimental results showed 
that the AH velocity was 0.05−0.743 mm/s in the standing, and 0.01−0.119 mm/s in the supine position. 
Additionally, the maximum AH velocity in standing was 6.24 times higher than that in the supine 
position, indicating that the AH flowed faster in standing; the intraocular temperature difference had 
the greatest effect on AH flow, indicating that the AH flow was mainly driven by the buoyancy force 
dominated by the temperature difference; and the AH secretion rate and TM permeability had a greater 
effect on IOP, where IOP increased with the increase of AH secretion rate, but decreased as the TM 
permeability increased. 

3) The deeper the corneal indentation, the slower the AH flow, and the weaker the convective 
diffusion. The asymmetric nature of the ovoid AC results in an asymmetric distribution of AH 
temperature and flow vortex in the supine position. 

4) The use of GPU parallelism can significantly improve the performance of the LB algorithm. 
Our proposed PartSparse algorithm saved more than 50% of memory consumption, and achieved a 
performance of 1491.29 MLUPS, which can obtain a Speedup of 837.61 times. 
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