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Abstract: The rapid accumulation of electronic health records (EHRs) and the advancements in data
analysis technology have laid the foundation for research and clinical decision-making in the health-
care community. Graph neural networks (GNNs), a deep learning model family for graph embedding
representations, have been widely used in the field of smart healthcare. However, traditional GNNs
rely on the basic assumption that the graph structure extracted from the complex interactions among
the EHRs must be a real topology. Noisy connections or false topology in the graph structure leads to
inefficient disease prediction. We devise a new model named PM-GSL to improve diabetes clinical as-
sistant diagnosis based on patient multi-relational graph structure learning. Specifically, we first build a
patient multi-relational graph based on patient demographics, diagnostic information, laboratory tests,
and complex interactions between medicines in EHRs. Second, to fully consider the heterogeneity of
the patient multi-relational graph, we consider the node characteristics and the higher-order semantics
of nodes. Thus, three candidate graphs are generated in the PM-GSL model: original subgraph, overall
feature graph, and higher-order semantic graph. Finally, we fuse the three candidate graphs into a new
heterogeneous graph and jointly optimize the graph structure with GNNs in the disease prediction task.
The experimental results indicate that PM-GSL outperforms other state-of-the-art models in diabetes
clinical assistant diagnosis tasks.

Keywords: patient multi-relational graph; graph neural networks; graph structure learning; diabetes
assistant diagnosis

1. Introduction

Electronic health records (EHRs) are generated by hospitals to maintain real-time digital records of
patients, including clinical events, diagnosis, and treatment information of patients during the outpa-
tient and inpatient periods. EHRs are composed of different structured [1] and unstructured data, in-
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cluding demographic information, diagnosis information, laboratory results, medication prescriptions,
medical imaging, and text descriptions, for example, as free clinical notes. Clinical assistant diagnosis
is a fundamental task in smart healthcare, aiming to automatically extract valuable information from
EHRs and make correct and intelligent diagnostic decisions, which improves the diagnostic efficiency
of clinicians and reduces misdiagnosis. It is important in personalized medicine, disease prediction,
and other tasks.

Although EHRs have been widely studied and have greatly improved clinical decision support [2],
there are still some challenges for clinical assistant diagnosis based on EHRs. On the one hand, EHRs
contain multiple types of data such as population information and laboratory tests, which make EHRs
highly dimensional and heterogeneous, and it is challenging to create large-scale computational models
from EHRs. On the other hand, an EHR is incomplete and noisy, because some hospitals are still further
standardizing the unified writing standard of EHRs and patient follow-up records [3].

Recently, GNNs have been used extensively for clinical assistant diagnosis with significant research
findings [1–4]. However, there are still three obstacles. First, most of the GNNs based on homogenous
graph models focus on the co-occurrence of various medical concepts. Furthermore, although there are
a few heterogeneous graph models based on EHRs, each relation in these models can represent only the
local information of the heterogeneous graph. Combining different relationships forms a large amount
of higher-order semantic information. Treating these heterogeneous relations uniformly is impossible,
which limits the learning ability of GNNs. Finally, GNNs are highly sensitive to the original topology
of information transmission in smart healthcare applications. An artificially designed heterogeneous
graph model is usually extracted from structured and unstructured medical text data, which inevitably
contain redundant, erroneous, and missing information. Consequently, it is difficult to deal with the
challenges of structure learning and optimization in a heterogeneous graph model based on EHRs.

We propose a new model, PM-GSL, which introduces graph structure learning into diabetes clinical
assistant diagnosis, and abstractly describes the semantic relations between entities in EHRs through
patient multi-relational graph. PM-GSL can not only learn the structure of heterograph, but also learn
the parameters of GNNs to overcome the weak structure problem of patient multi-relational graph. The
contributions of this study are summarized as follows:

1) We apply graph structure learning to diabetes clinical assistant diagnosis and use EHRs to con-
struct a patient multi-relational graph, which abstractly describes the relation between entities in EHRs
from two perspectives: node attributes and meta-paths.

2) We propose a novel diabetes clinical assistant diagnosis model, PM-GSL. In this model, we
design three candidate graphs, original subgraph, overall feature graph, and higher-order semantic
graph, and fuse the three candidate graphs to generate a higher quality heterogeneous graph to obtain
the complex interactive higher-order semantic information of the patient multi-relational graph.

3) We also conduct multiple experiments to compare the results with the existing state-of-the-art
approach on two standard EHRs datasets: the large international public dataset MIMIC-IV and the
Chinese hospital dataset P-EHRs. Our proposed PM-GSL model achieved a 9.62% improvement in
Macro-F1, 9.17% improvement in Micro-F1 and 10.33% in AUC compared to the state-of-the-art
models for diabetes clinical assistant diagnosis tasks.

The remainder of this paper is organized as follows. Section 2 describes related work, where we
discuss deep learning models, such as GNNs, disease assistant diagnosis, and graph structure learning,
which motivate this work. Section 3 describes the problem setting of diabetes clinical assistant diagno-
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sis and presents the related definitions. Section 4 details the PM-GSL model. Section 5 demonstrates
the results of our empirical evaluation of the PM-GSL on the MIMIC-IV and P-EHRs datasets. Finally,
Section 6 provides concluding remarks and research directions.

2. Related work

2.1. Graph neural networks

GNNs were first proposed by Scarselli et al. [5] to further extend deep learning to graph-structured
data, which mainly contains two types: spectral domain [6,7] and spatial domain [8,9]. The method
based on the spectral domain adopts the spectral representation of the graph [10]. The spatial domain-
based methods define convolution directly on the graph and aggregate feature information for each
node from the spatial neighborhood, such as GraphSAGE [11] and GAT [12]. However, the above
graph neural network can only be used to process a homogeneous graph. Some recent studies have
attempted to extend GNNs to heterogeneous graphs, such as metapath2vec [13], which transforms
heterogeneous graphs into homogeneous graph studies using random wandering based on meta-paths
to learn graph representations.

The HAN [14] model utilizes the graph attention network method for the modeling and analysis of a
heterogeneous graph, aggregating attribute information from meta-path-based neighbor nodes. Based
on the HAN, the MAGNN [15] model combines the internal aggregation of meta-paths and aggregation
between meta-paths. GNNs have powerful capabilities in learning node embedding representations
and have achieved significant performance in numerous specific tasks [16]. However, almost all GNNs
regard observed data containing noise or hypothetical data that are convenient for modeling as real
information, which significantly depends on the quality of the original graph structure, greatly limiting
their ability to handle the uncertainty in the graph structure.

2.2. Graph structure learning

Graph structure learning (GSL) can be traced back to several research achievements devoted to
graph structure learning in network science [17,18]. The GSL handles the noise and incompleteness
problems in the original graph data. Some existing methods learn graph structure from measurements
of graph dynamical systems, such as coupled oscillators [19], and there are also studies [10] that set up
attribute completion strategies for attribute missing problems. Nevertheless, the goal of these findings
is different from graph representation learning. Recent studies have attempted to combine GSL with
GNNs to improve the performance of downstream tasks. Franceschi et al. proposed a new method,
LDS [20], to jointly learn and optimize the original graph and GNN parameters by approximating the
solution.

The Pro-GNN [21] aims to extract the graph properties of sparsity, low rank and feature smoothness
to design more robust GNNs that learn clean and efficient graph structures. The GTN [22] model can
generate a new graph structure by identifying valuable edges that may exist as unconnected nodes
on the original graph and can learn the effective embedded representation of nodes on the new graph
from end to end. However, most GSL models are designed for homogeneous and smaller graphs.
They modify the graph structure by removing noisy data from the graph topology and graph attribute
similarity. Such models tend to optimize the entire graph [23], and it is difficult to analyze large-scale
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graph data with complex structures and rich semantics in the medical field.

2.3. Disease assistant diagnosis

Graph-based methods have been widely used in auxiliary disease diagnosis tasks because of the
powerful expression ability of graphs in relation modeling. In [3], a comprehensive disease self-
diagnosis system based on the HealGCN model was proposed, which uses the predefined meta-paths
inductive graph convolution operation to generate the embedded representation of new patients and
solve the cold start problem by mining the complex interactions in EHRs data. The MVS-GCN [24]
model, based on a graph neural network, learns the effective representation of the brain network in an
end-to-end manner and combines graph structure learning and multitask graph embedding representa-
tion learning, thus improving the classification performance of brain disease diagnosis.

MM-STGNN [25] is a multimodal spatiotemporal graph neural network that uses graphs to repre-
sent the topological relationship between inpatients and predicts 30-day readmission according to pa-
tients’ longitudinal imaging and EHRs data. In [26], the authors proposed an end-to-end multi-modal
graph learning framework (MMGL) for disease prediction with multi-modality. And it aggregates the
features of each modality by leveraging the correlation and complementarity between the modalities.
Although GNN models have shown excellent predictive performance in numerous healthcare tasks,
they are highly sensitive to the quality of graph structures. If a manually constructed graph is directly
used in the GNNs and separated from the prediction module, it will lead to cumbersome tuning and
poor generalization [27]. Simultaneously, these models failed to further explore the complementary
information between multiple relations in the graph and the message propagation mechanism in the
multi-relational subgraph.

3. Preliminaries

3.1. Clinical assistant diagnosis problem definition

Diabetes, glaucoma and central nervous system diseases (such as stroke) are common in middle-
aged and elderly people. Their early symptoms are extremely similar and are difficult to distinguish
clinically [28]. For example, in a diabetes patient with a wide range of blood glucose fluctuations,
the osmotic pressure inside and outside the lens changes, causing a change in the curvature of the
lens and affecting the patient’s ability to focus the eye, thus producing blurred vision symptoms. Al-
though blurred vision symptoms may be due to diabetes, glaucoma can also cause eye diopter changes
in patients, resulting in lower intraocular pressure and causing blurred vision. In addition, stroke pa-
tients often show symptoms, such as blurred vision, sudden pins and needle sensations, and fatigue,
which are similar to those of diabetic patients. This differs from many previous studies that modeled
disease diagnosis as a link-prediction task. We use patient demographics, laboratory tests, physiolog-
ical records, and medications in EHRs as nodes in the multi-relational graph to transform the disease
prediction task into a classification task with fine-grained analysis.

3.2. Patient multi-relational graph

The patient multi-relational graph is defined as G =

(
V, E, X,

{
ξγ

}R

r=1

)
, where V is the node set

{v1, v2, ...vN}. We let N denote the number of nodes, and the corresponding node type is M. E is the set
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of edges, all edges form a primitive adjacency matrix X ∈ RN×N , where Xi j indicates whether there is
an edge between nodes vi and v j, edge relation type is ξγ, r ∈ {1, 2...,R}, and the multi-relational graph
satisfies the inequality |M| + |R| > 2. The eigenvector of each node is fi ∈ R

d, and all the node feature
matrices are represented as X = { f1, f2... fN} ∈ R

N×d.

3.3. Meta-path

In the patient multi-relational graph, two nodes can be connected by different semantic patterns.
The meta-path φ is formalized as v1

r1
−→ v2

r2
−→ ...

rl−1
−−→ vl, which is used to describe the composite

relation r1 ◦ r2 ◦ ... ◦ rl−1 between nodes v1 and vl, where ◦ is a relational synthesis operation.

3.4. Patient multi-relational subgraph

The patient multi-relational subgraph Gr contains all node-pair triples with relation r, which is
formalized as

(
vi, r, v j

)
. The adjacency matrix of a multi-relational subgraph is expressed as Ar, and if(

vi, r, v j

)
∈ Gr, then Ar

i j
= 1; otherwise, Ar

i j
= 0. A = {Ar, r ∈ R} represents the set of all patient multi-

relational subgraphs. For example, we define the type mapping functions $h (r) and $e (r) of the node
to the triplet header and tail node in a patient medical record network. If r = “pt” is interpreted as
$h (r) = “patient,” $e (r) = “test.” The adjacency matrix of the patient multi-relational subgraph is
expressed as Ar ∈ R

|$h(r)|×|$e(r)|.

4. Patient multi-relational graph structure learning model

4.1. Constructing the patient multi-relational graph

In this study, the EHRs are modeled as a patient multi-relational graph, where each patient is con-
sidered a node, and their EHRs data are associated with multiple medical concepts. For example,
the following information is extracted from a record in the EHRs: if a patient’s fasting blood glucose
exceeded 7.0 mmol/L or postprandial blood glucose exceeded 11.1 mmol/L in the glucose tolerance
test, the doctor identified abnormal blood glucose in the diagnosis conclusion, of which “fasting blood
glucose” and “postprandial blood glucose” are medical concepts. We reduce the values corresponding
to similar or identical medical concepts to smaller categories and set the nodes “normal” and “abnor-
mal” for the patient’s laboratory tests. Based on [28], patients’ ages were grouped according to three
thresholds of 15, 30 and 64, set as four nodes of representation. Over 100 medications are extracted
from EHRs, which are divided into 20 types according to different abbreviations, formulations and
their effects, with each type of medication considered as a node. The comorbidity diagnoses of the
patients matched the appropriate ICD-10 codes.

In the diabetes diagnosis task, gender is not the most informative patient attribute, which is not
conducive to the prediction task and may cause the problem of “over smoothing.” According to the
conclusion of [4], the PM-GSL model disregards gender attributes. We construct the multi-relational
graph using different relations between five types of nodes, “Patient,” “Age,” “Medication,” “Diag-
noses” and “ Laboratory Tests,” and determine semantically meaningful meta-paths. For example, two
patients with blurred vision, “patient1→ metformin ← patient2,” indicate that two patients had the
same medication, and two patients were likely to have the same diagnosis. The meta-paths in Table 1
guide the random walk of the patient multi-relational graph.
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Table 1. Meta-paths in the patient multi-relational graph.

Node types Semantic Meta-paths
Patient (P)

Two patients cite the
same medical concept.

Patient→ Age← Patient (PAP)
Age (A) Patient→Medicine← Patient (PMP)
Medication (M) Patient→ Diagnosis← Patient (PDP)
Diagnosis (D) Patient→ Test← Patient (PTP)
Laboratory Test (T)

We propose the PM-GSL, a diabetes clinical assistant diagnosis model for patient multi-relational
graph structure learning, as shown in Figure 1. First, we analyze the graph connectivity based on the
PM-GSL to jointly train and optimize the patient multi-relational graph structure and GNNs param-
eters. Second, a semantic embedding matrix is constructed based on the node embedding method of
meta-paths. Considering rn as an example, we use the PM-GSL model to obtain a new overall feature
graph ΓF

rn
and a higher-order semantic graph ΓS

rn
and fuse these two graphs with the original subgraph

Arn
to obtain a new subgraph A∗rn

. Finally, the learned subgraphs are input into the GNN and regularizer
to output the diagnosis and prediction of diabetes.
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Figure 1. PM-GSL framework.

From the graph representation learning perspective, GNNs aim to learn node embedding by ag-
gregating the information of neighboring nodes [29]. This iterative mechanism relies on the inherent
information in the graph structure and attributes. However, artificially designed and constructed graphs
have inevitable redundant noise and misinformation, which limits the predictive performance and in-
terpretability of most GNNs, especially in smart healthcare, which requires higher graph quality. To
optimize the patient multi-relational graph, the PM-GSL aims to fully use node features to enhance the
original graph structure, which is mainly reflected in two aspects. First, we generate a feature similarity
graph based on the similarity between node features. Then, node features are propagated to specific
domains in the multi-relational graph to generate a message propagation graph, as shown in Figure 2.
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4.2. Feature similarity graph

The pairwise connection of nodes is one of the most direct ways to represent information in the
patient multi-relational graph. To preserve the pairwise proximity attribute between nodes in the patient
multi-relational graph, the PM-GSL model determines the possibility of edges between two nodes with
relation type rn ∈ R based on node features.

Specifically, for a node vi with node type ϕ (vi) and node eigenvector fi ∈ R
1∗d, the node features are

projected into the d∗-dimensional common space using a type-specific mapping matrix Wϕ(vi), which is
denoted as fi

∗
∈ R1×d∗:

fi
∗ = σ

(
Wϕ(vi) · fi + bϕ(vi)

)
(4.1)

σ (·) denotes the non-linear activation function, W ∈ Rd×d∗ denotes the mapping matrix, and b ∈ R1×d∗

denotes the bias vector. In the patient multi-relational graph, for relation rn, we use weighted cosine
similarity as the measurement function to measure node similarity and obtain a feature similarity graph
ΓFS

rn
∈ R

|$h(rn)|×|$e(rn)|
. The similarity between nodes vi and v j is expressed as follows:

δFS
rn

(
fvi
∗, fv j

∗
)

=
1
K

K∑
k

cos
(
QFS

k,rn
� fvi

∗,QFS
k,rn
� fv j

∗
)

(4.2)

where fvi
∗ and fv j

∗ are the node features after projection, and QFS
rn

is the learnable parameter matrix.
After the calculation, the node feature similarity matrix ΓFS

rn
is generated, and is symmetric, and the

element range of the matrix is [-1,1]. Therefore, we must extract a non-negative and sparse matrix from
ΓFS

rn
. Specifically, we defined a non-negative threshold λFS for automatic learning and set the elements

that are smaller than λFS to 0. If λFS is larger, then ΓFS
rn

will be sparser, defined as follows:

ΓFS
rn

(
vi, v j

)
=

δFS
rn

(
fvi
∗, fv j

∗
)

δFS
rn

(
fvi
∗, fv j

∗
)
> λFS

0 otherwise
(4.3)

4.3. Message propagation graph

The message propagation graph captures the interaction between the node features and topology,
and it can find new effective edges more accurately. The key idea of the message propagation graph
includes two aspects: First, many nodes of the same class have similar features and may be far apart
in the feature space in the patient multi-relational graph structure data. Second, two nodes with sim-
ilar node features are more likely to have similar neighbor nodes, and the feature similarity graph is
propagated through the topology to generate new edges.
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Figure 2. Message propagation graph.

The node types corresponding to the two nodes that satisfy the relation rn in the patient multi-
relational graph are $h (rn) and $e (rn), and the topology between them is Arn ∈ R

|$h(rn)|×|$e(rn)|. For two
nodes vt, vs ∈ $h (rn), we calculate the feature similarity:

δFH
rn

(
fvt , fvs

)
= cos

(
QFH

rn
� fvt ,Q

FH
rn
� fvs

)
(4.4)

Similar to Eq (4.3), a threshold λFH is set to control the sparsity of the feature similarity graph ΓFH
rn

, as
shown in Eq (4.5). After obtaining the similarity of vt, vs ∈ $h (rn), a potential message propagation
graph ΓCH

rn
∈ R|$h(rn)|×|$e(rn)| is generated based on the feature similarity graph ΓFH

rn
and original subgraph

Arn , as shown in Eq (4.6):

ΓFH
rn

(vt, vs) =

δFH
rn

(
fvt , fvs

)
δFH

rn

(
fvt , fvs

)
> λFH

0 otherwise
(4.5)

ΓCH
rn

= ΓFH
rn
· Arn (4.6)

Similarly, for the same type of vp, vq ∈ $e (rn), we calculate Eqs (4.4) and (4.5) to obtain another
corresponding feature similarity graph ΓFT

rn
and the message propagation graph ΓCT

rn
∈ R|$h(rn)|×|$e(rn)|:

ΓCT
rn

= Arn · Γ
FT
rn

(4.7)

In summary, we fuse the generated feature similarity graph ΓFS
rn

and the message propagation
graphs ΓCH

rn
and ΓCT

rn
through the channel attention layer [21] to obtain the overall feature graph

ΓF
rn
∈ R|$h(rn)|×|$e(rn)| of relation rn:

ΓF
rn

= ΨF
rn

([
ΓFS

rn
,ΓCH

rn
,ΓCT

rn

])
(4.8)

where
[
ΓFS

rn
,ΓCH

rn
,ΓCT

rn

]
∈ R

|$h(rn)|×|$e(rn)|×3
denotes the stacking matrix of the candidate graphs that generate

the overall feature graph. ΨF
rn

represents the channel attention layer, and the corresponding parameter is
QF

rn
∈ R1×1×3. The channel attention layer uses the function so f t max

(
QF

rn

)
to perform 1×1 convolution

operations on the input. In this way, the PM-GSL model learns the different weights of the three
candidate graphs of the overall feature graph respectively to measure the importance of each candidate
graph to relation rn.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8428–8445.



8436

4.4. Higher-order semantic graph

The semantic graph relies on the higher-order topology of the heterogeneous information network,
which aims to describe the multi-hop structural interaction between two nodes determined by meta-
paths. In the patient multi-relational graph, the overall feature graph describes the nodes from a micro-
scopic perspective, whereas the higher-order semantic graph describes the nodes from a macroscopic
perspective. The higher-order relations reflected by different meta-paths contain different semantic in-
formation. We obtain the higher-order semantic graph structure of the patient multi-relational graph
from multiple meta-paths, as shown in Figure 3. Given a sequence r1, r2, ..., rn of the meta-path φ , a
common method to generate a higher-order semantic graph is to multiply multiple adjacency matrices,
such as the adjacency matrix Aφ = Arn ...Ar2 Ar1 . However, this method of obtaining high-order semantic
graph by multiplying multiple adjacency matrices requires a considerable amount of time and space,
and it discards the information of intermediate semantic nodes in the meta-paths.

   

Figure 3. Higher-order semantic graph.

In the patient multi-relational graph, a set of meta-paths {φ1, φ2, ..., φm} exists. Based on meta-
path2vec [12], we obtained the meta-paths based node semantic embedding representation, Z ={
Zφ1 ,Zφ2 , ...,Zφm

}
, to learn the potential higher-order semantic graph structure of the patient multi-

relational graph. The entire training process adopts the meta-paths guidance random walk strategy and
heterogeneous skip-gram model learning node embedding representation, which significantly retains
the information of intermediate semantic nodes [30]. In addition, the training process of the metap-
ath2vec model does not involve adjacency matrix multiplication, which reduces the time and space
complexity.

After obtaining the node semantic embedding representation Z, for each meta-path φm in the patient
multi-relational graph, we generate the adjacency matrix ΓMS ∗

rn,φm
∈ R|$h(rn)|×|$e(rn)| , for the semantic

subgraph, and the calculation method for each edge is

ΓMS ∗
rn,φm

(i, j) =

δMS ∗
rn,φm

(
zm

i , z
m
j

)
= cos

(
QMS ∗

rn
� zm

i ,Q
MS ∗
rn
� zm

j

)
δMS ∗

rn,φm

(
zm

i , z
m
j

)
> λMS ∗

0 otherwise
(4.9)
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where zm
i denotes the i-th row of Zφm . δMS ∗

rn,φm
is a metric function with parameter QMS ∗

rn
. We extend this

calculation method to all meta-paths to generate m semantic subgraphs and aggregate them to obtain a
higher-order semantic graph ΓS

rn
:

ΓS
rn

= ΨMS ∗
rn

([
ΓMS ∗

rn,φ1
,ΓMS ∗

rn,φ2
, ...,ΓMS ∗

rn,φm

])
(4.10)

where
[
ΓMS ∗

rn,φ1
,ΓMS ∗

rn,φ2
, ...,ΓMS ∗

rn,φm

]
is the stacking matrix of the corresponding m semantic subgraphs. ΨMS ∗

rn

represents the channel attention layer, and the corresponding weight matrix QMS ∗
rn
∈ R1×1×m denotes the

importance of semantic subgraphs based on different meta-paths of relation rn. After obtaining ΓS
rn

, we
need to aggregate the learned overall feature graph ΓF

rn
and higher-order semantic graph ΓS

rn
, with the

original patient subgraph Arn
to generate a new relational subgraph A∗rn

of relation rn:

A∗rn
= Ψrn

([
ΓF

rn
,ΓS

rn
, Arn

])
(4.11)

Similarly,
[
ΓF

rn
,ΓS

rn
, Arn

]
is the stacking matrix of the generated new relational adjacency matrix.

Weight Qrn ∈ R
1×1×3 of candidate graphs is learned from the channel attention layer Ψrn , to evaluate the

importance of the three candidate graphs in generating the relational subgraph A∗rn
. Finally, we obtain

a new patient multi-relational graph A∗ =
{
A∗rn
, rn ∈ R

}
in the PM-GSL model.

4.5. Optimization

In the PM-GSL model, we combine the GNN parameters to optimize the new graph structure A∗.
Considering that the adjacency matrix of the original heterogeneous graph may provide misleading
information for the aggregation process, we aggregate the feature representation of neighbor nodes
through the obtained patient multi-relational graph structure and apply it to diabetes clinical assistant
diagnosis. For the patient multi-relational graph structure A∗ , the forward model of the two-layer GCN
can be expressed as follows:

Y = f
(
X, F′

)
= so f tmax

(
ÂReLU

(
ÂXW0

)
W1

)
(4.12)

where X ∈ RN×d is the original feature matrix of the node and the input to the first GCN layer. F′ is an
adjacency matrix constructed using A∗. Â = D̃−

1
2 ÃD̃−

1
2 ,D̃ii = 1 +

∑
jFi j

′, Ã = F′ + IN , and IN are unit
matrices. The classification loss on the graph is expressed as follows:

LGNN =
∑
vi∈V

l
(
Yvi , yvi

)
(4.13)

where Yvi is the prediction label, and l (·, ·) indicates the cross-entropy loss function, which measures
the error between the prediction label Yvi and the real label yvi .

The patient multi-relational graph constructed from multiple pieces of information in real-world
EHRs is noisy and has task-independent edges. We propose the PM-GSL model, which makes the
original patient multi-relational graph more adaptable to the prediction task but more prone to overfit-
ting problems. Therefore, we impose sparsity constraints on the adjacency matrix F′ of the graph A∗

and apply the regularization term to the learned graph as follows:

LREG = β||F′||1 (4.14)
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The total loss of the PM-GSL model is described by Eq (4.15). Minimizing L can enable the joint
optimization of the graph structure and GNN parameters to improve the prediction task performance.

L = LGNN + LREG (4.15)

5. Experiment

We use two real EHRs datasets to evaluate the PM-GSL model: one from American hospitals and
another from Chinese hospitals. Then, we compare the PM-GSL model with state-of-the-art methods.
Specifically, we aim to answer the following four questions:

RQ1: Does the PM-GSL model improve the accuracy of a diabetes diagnosis?

RQ2: How important are the three types of candidate graphs in the PM-GSL model for generating
new graph structures?

RQ3: Does PM-GSL adaptively assign greater channel attention values to important information?

RQ4: Is graph structure learning effective in improving the quality of the patient multi-relational
graph?

5.1. Dataset

Our work is tested and analyzed by using two datasets. MIMIC-IV is a large international public
EHRs dataset that collected clinical data of over 380,000 patients from 2008 to 2019. This dataset was
collected at the Beth Israel Deaconess Medical Center in Boston, Massachusetts, USA, and included
patient centered clinical records, such as demographics, vital sign measurements, nursing notes, and
laboratory tests.

Furthermore, we also use the EHRs of a tertiary care hospital located in a major metropolitan center
in northwestern China called P-EHRs. Although the amount and completeness of the data are relatively
small, the information included in this study is sufficient to support our work. More specifically, there
was 1) demographic information, such as age and sex. 2) Diagnosis: The combination group is defined
according to the coding information of ICD-9 and ICD-10, mainly including 14 diseases, such as
myocardial infarction, congestive heart failure, hyperlipidemia, hypertension, diabetes, and chronic
lung disease. 3) Laboratory tests: We extracted the laboratory test indicators obtained for the first time
and the minimum, mean, and maximum values of laboratory tests during hospitalization. 4) Vital signs:
We selected the minimum, mean, and maximum values of the patient’s vital signs during the first day
of admission, which included heart rate, systolic blood pressure, diastolic blood pressure, mean arterial
pressure, respiratory rate, and percutaneous oxygen saturation. 5) Medications: We collected data on
drugs that were used more than 300 times in total during the patients’ hospitalization and classified
them into 20 categories according to the functions of these drugs. Over all, we briefly summarize in
Tables 2 and 3.
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Table 2. Node statistics of the patient multi-relational graph.

Dataset MIMIC-IV P-EHRs
Quantity/Types Nodes Quantity/Types Nodes

Patient 6000/3 6000 2000/3 2000
Age 4 4 4 4
Diagnosis 14 14 6 6
Medication 101 20 65 13
Laboratory test 38 76 26 52
Vital sign 6 12 6 12

Table 3. Statistics of the datasets.

Datasets Nodes Edges Edge types Features Training Validation Test
MIMIC-IV 6122 118,717 4 107 2700 1200 2100
P-EHRs 2083 29,572 4 76 1700 400 900

5.2. Experimental settings and baselines

The experiment is based on Python 3.6.8 and TensorFlow 2.3.0. The calculation of a single model
runs on NVIDIA RTX 6000 GPU. According to [30], in all the methods involved in this study, the
node embedding dimension d and the common space dimension d∗ were set to 64 and 16, respectively.
Equation (4.2) in Section 4 represents a 2-head cosine similarity measure function, that is, K = 2. The
learning rate and weight decay are set to 0.01 and 0.0005, respectively. The other hyperparameters are
adjusted by using the grid search method, which is reflected in λFS ,λFH, λMS ∗ and β for Eqs (4.3), (4.5),
(4.9), and (4.14).

We compare the PM-GSL with six state-of-the-art baseline graph neural network models in recent
years. They include two homogeneous graphs (GCN [7] and GAT [12]), two heterogeneous graphs
(metapath2vec [13] and HAN [14]), and two graph structure learning methods (LDS [20] and Pro-
GNN [21]). We conduct six ablation experiments to verify the effectiveness of the three candidate
graphs in the PM-GSL for diabetes diagnosis.

5.3. Experimentation

5.3.1. RQ1: Overall comparison

In this section, we compare the overall performance of the PM-GSL and six baseline models, as
shown in Figure 4. The classification process was repeated ten times to obtain the average value and
ensure more stable and reliable prediction results. We use the evaluation metrics Macro-F1, Micro-F1,
and AUC, which are commonly used in classification tasks.

The experimental findings are as follows:
(i) The PM-GSL model consistently outperforms the three types of baselines in predicting both

EHRs datasets, which not only indicates that noisy data in the original EHRs prevent the GNN from
aggregating effective feature information but also proves that PM-GSL can obtain a higher-quality
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heterogeneous graph structure.
(ii) Compared with GCN and GAT, the performance of PM-GSL on the two EHRs datasets was

significantly improved by 13.36–17.59%, which confirms that the fine-grained division of the patient
multi-relational graph is extremely conducive to the diabetes diagnosis.

(iii) Although the metapath2vec and HAN models can be used to analyze heterogeneous relations,
the prediction performance of these two models is 9.49–14.39% lower than that of the PM-GSL model
proposed in this study. This is because the density of neighbor nodes in each relation in the patient
multi relation graph is high. In particular, the HAN model directly uses the original graph structure
as the input and cannot effectively filter out neighbor nodes with interference factors, which causes
difficulties in diabetes diagnosis.

(iv) Compared with the LDS model and Pro-GNN model, the PM-GSL model proposed in this
study can improve the prediction performance by 7.26–9.00%. In particular, the PM-GSL model can
calculate node similarity and message propagation path and can make full use of multiple patient
relations, which is helpful for learning better graph structure and more robust GNN parameters; thus,
the new patient multi-relational graph has a stronger ability to adapt to prediction tasks.

Figure 4. Performance evaluation of diabetes diagnosis.

5.3.2. RQ2: Ablation study

To further verify the impact of the three core candidate graphs in the PM-GSL model, we designed
three variants of the PM-GSL model by deleting any type of candidate graphs, which are respectively
represented as PM-GSLFS , PM-GSLHT and PM-GSLS ∗. Table 4 shows the results of these variants in
terms of the Macro-F1, Micro-F1 and AUC, and we can observe the following:

(i) The PM-GSL model outperforms the three ablation studies on diabetes diagnostic task, indicating
the necessity of all candidate graphs in generating new graph structures.

(ii) Compared with the other two ablation studies, PM-GSLS ∗ significantly decreased in the three
evaluation indicators, because the semantic information between different relations is more important
in the patient multi-relational graph.

(iii) To verify the effectiveness of the candidate graph weights learned by the PM-GSL, we replace
the channel attention layer in Eq (4.11) with an average aggregation layer that treats each type of
candidate graph equally. The effect of the channel attention layer is better than that of the PM- GSLavg.
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If on average, three core candidate graphs are fused in the PM-GSL model, the influence of higher-
order semantic information in the patient multi-relational graph will be weakened, and the prediction
performance will be reduced.

Table 4. PM-GSL ablation experiment.

Dataset MIMIC-IV P-EHRs
Macro-F1 Micro-F1 AUC Macro-F1 Micro-F1 AUC

PM-GSLFS 0.7714 0.7917 0.8538 0.7167 0.7045 0.7489
L-PM-GSLHT 0.8041 0.7933 0.8678 0.7383 0.7248 0.7744
R-PM-GSLHT 0.7920 0.7867 0.8346 0.7817 0.7823 0.8351
PM-GSLHT 0.7667 0.7333 0.7955 0.7367 0.7443 0.8195
PM-GSLS ∗ 0.6963 0.7133 0.7679 0.6433 0.6729 0.7351
PM- GSLavg 0.8537 0.8469 0.8907 0.8117 0.8373 0.8796
PM-GSL 0.8783 0.8954 0.9337 0.8579 0.8800 0.9164

5.3.3. RQ3: Weight analysis of candidate graphs

We analyze the distribution of the channel attention weight, further studied the ability of the PM-
GSL model to distinguish the importance of three core candidate graphs and fuse the three core can-
didate graphs to generate a new patient multi-relational subgraph. We trained the PM-GSL model 50
times and set all thresholds to 0.2. The distribution of channel attention values is shown in Figure 5.

Specifically, the original subgraph is an important structure for diabetes prediction. However, for
P-T, the PM-GSL model assigns a large channel attention value to the learned higher-order semantic
graph, indicating that the information in the higher-order semantic graph is more important. The above
phenomenon is consistent with the conclusion (iii) from the ablation experiment, which further proves
that the PM-GSL model can adaptively provide more channel attention to important information.

Figure 5. Performance evaluation of diabetes diagnosis.
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5.3.4. RQ4: Parameter sensitivity analysis

The similarity thresholds defined in Eqs (4.3), (4.5) and (4.9) can be used to control the sparsity
of generated graphs. To better compare the experimental results, we set up λFS = λFH and conduct
experiments on different λFS and λMS ∗ . Figure 6 shows the Macro-F1 and AUC values in the com-
parison experiment. On the two datasets, when both λFS = λFH and λMS ∗ are set to 1, the prediction
performance of the PM-GSL model is significantly reduced. This is because the PM-GSL model uses
only the original graph structure of the patient multi-relational graph, which is similar to the general
GNN model. This finding also proves the effectiveness of graph structure learning in improving the
quality of the patient’s multi-relational graph.
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Figure 6. Parameter sensitivity.

6. Conclusions

In this study, we attempt to incorporate heterogeneous graph structure learning into the task of
diabetes clinical assistant diagnosis and propose a model, PM-GSL, which jointly learns patient multi-
relational graph structures and GNN parameters for diabetes prediction. In particular, we use the
effective information in EHRs to build a patient multi-relational graph to simulate the complex inter-
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actions between multiple medical entities in EHRs. The patient multi-relational graphs propagate the
node characteristics through the topology to generate the underlying graph structure and describe the
nodes from micro and macro perspectives, respectively. We designed three fine candidate graphs and
fused them to generate clean and effective heterogeneous graphs to solve the weak structure problem
of the EHRs.

Numerous experiments have proven the effectiveness of the PM-GSL model, which well proves
that graph structure learning is helpful to improve the quality of patient multi-relational graph and the
accuracy of disease prediction tasks. Our proposed PM-GSL model achieved a 9.62% improvement
in Macro-F1, 9.17% improvement in Micro-F1 and 10.33% in AUC compared to the baselines. In the
future, we aim to extend PM-GSL to the multi-view model and explicitly integrate the label information
into graph structure learning to improve the performance of disease clinical assistant diagnosis and
enhance the clinical interpretability of the model.
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