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Abstract: Evolutionary multitasking algorithms aim to solve several optimization tasks simultane-
ously, and they can improve the efficiency of various tasks evolution through the knowledge transfer
between different optimization tasks. Evolutionary multitasking algorithms have been applied to var-
ious applications and achieved certain results. However, how to transfer knowledge between tasks is
still a problem worthy of research. Aiming to improve the positive transfer between tasks and reduce
the negative transfer, we propose a single-objective multitask optimization algorithm based on elite
individual transfer, namely MSOET. In this paper, whether to execute knowledge transfer between
tasks depends on a certain probability. Meanwhile, in order to enhance the effectiveness and the global
search ability of the algorithm, the current population and the elite individual in the transfer population
are further utilized as the learning sources to construct a Gaussian distribution model, and the offspring
is generated by the Gaussian distribution model to achieve knowledge transfer between tasks. We com-
pared the proposed MSOET with ten multitask optimization algorithms, and the experimental results
verify the algorithm’s excellent performance and strong robustness.

Keywords: multitask optimization; Gaussian distribution; knowledge transfer; evolutionary
algorithm; evolutionary multitasking algorithms

1. Introduction

Multitask optimization (MTO) solves multiple optimization tasks simultaneously in the evolution-
ary algorithm to improve the performance of solving each task independently via intertask knowledge
transfer [1, 2]. Without loss of generality, an MTO can be expressed as [3, 4]:

{x∗1, · · · , x
∗
K} = arg min

(x1,··· ,xK )
{ f1(x1), · · · , fK(xK)} (1.1)

where fk(xk) is the objective function of kth optimization task, and xk = (x1, x2, ..., xDk) ∈ RDk is
a Dk-dimensional decision variable in space R. In other words, each optimization task is to solve
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the minimum optimization problem of an objective function. Single-objective multitask optimization
problem aims to solve multiple single-objective problems at the same time by sharing common features
that are beneficial to make a faster convergence between related tasks, which greatly improves the
efficiency of the algorithm [5–7]. Moreover, some difficult single-objective problems can also be solved
effectively by employing the correlation between optimization tasks.

Many problems in the real world can be regarded as single-objective multitask optimization prob-
lems [8]. For instance, a multi-population-based evolutionary multitasking optimization algorithm is
presented for dynamic flexible job-shop scheduling in [9]. A task-oriented knowledge-sharing strategy
is presented and achieves good performance by maintaining the quality and diversity of individuals
for corresponding tasks well. A multitasking harmony search algorithm is proposed for detecting
high-order single nucleotide polymorphisms epistatic interactions in [10]. A unified coding strategy
is adopted for multiple tasks. A multifactor genetic programming framework is presented in [11] for
solving symbolic regression problems. A knowledge adoption-based evolutionary multitask algorithm
is presented for the profitable tour problem in [12]. Evolutionary algorithms have been successfully
applied to solve a variety of single- and multi-objective optimization problems [13,14]. Because of the
good application prospects of multitask optimization, researchers have focused on this problem and
developed various efficient multitask optimization algorithms in recent years [15, 16].

Leveraging task correlation to improve search efficiency is a critical problem in evolutionary multi-
tasking algorithms. Meanwhile, many pieces of research have been on enhancing the positive transfer
and reducing the negative transfer of evolutionary multitasking algorithms. Through the above dis-
cussion, these algorithms can be roughly divided into three categories according to the way of task
collaboration: domain adaptation, individual transfer and knowledge transfer-based algorithms [17].

Domain adaptation-based methods [18] map the search spaces of the source task and the target task
into a unified search space to enhance the positive transfer of the evolutionary multitask algorithms. For
instance, the multi-factor evolutionary optimization algorithm (MFEA) [19] is one of the most repre-
sentative algorithms in this category that transfers knowledge between tasks through the unified space
and transfers useful genetic information from one task to another. A novel evolutionary multitasking
algorithm based on subspace alignment is proposed in [20]. Similarly, a mapping matrix obtained by
subspace learning is used to transform the search space of the population and reduce the probability
of negative knowledge transfer between tasks. Lately, Liu et al. [21] proposed a discriminative recon-
struction network model that is used to transfer useful knowledge during the reproduction of offspring.
It can enhance the quality of learned knowledge to promote positive transfer. However, realizing space
alignment and mapping the search spaces of multiple tasks into a unified search space is still a very
challenging problem. Meanwhile, the computing cost of the domain adaptation-based methods should
be noticed.

Knowledge transfer-based algorithms share some parameters of prior distributions of hyperparam-
eters [22–24] to realize knowledge transfer between optimization tasks, which are easy to execute.
What knowledge, namely parameters, is transferable is a key issue for knowledge transfer-based al-
gorithms [25]. Therefore, a new knowledge transfer strategy based on inter-task gene similarity is
proposed in [26]. It can perform more fine-grained and accurate knowledge transfer. An adaptive
scheme combining transfer learning with evolutionary methods is presented for expensive problems
in [27]. It reuses knowledge by sharing a Gaussian process model. However, the above strategies are
pretty time-consuming. Hence, a gradient-free evolutionary multitask algorithm (MTES) [28] is de-
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signed based on a multitasking gradient algorithm (MTGD) to overcome the defect. The evolutionary
single-task strategy (ES) has an approximate gradient decline, and MTGD also has a fast decline rate.
Therefore, MTES has a faster convergence rate. Paper [29] proposed a knowledge transfer strategy
based on local distribution estimation (LEKT). However, these algorithms will likely get stuck in a
local optimal solution when dealing with multimodal problems.

Individual transfer-based algorithms aim to transfer some solutions from source tasks to target tasks
to enhance the convergence speed of the target tasks [30]. For instance, a decision variable trans-
lation strategy and a decision variable shuffling strategy are proposed in [31] for solving expensive
optimization problems. Recently, a self-adaptive multitask evolutionary algorithm is proposed in [32].
It adaptively adjusts the transfer rate of the population to reduce the harm of negative transfer and bal-
ance the diversity and convergence within the population. In paper [33], two multitasking optimization
algorithms of Multifactorial Optimization (MFO), popular particle swarm optimization (MFPSO) and
differential evolution search (MFDE), are proposed to explore the versatility of MFO in multitasking
optimization. There are also some algorithms in this category proposed to solve multi-objective prob-
lems, and a transfer rank is defined in [34], which quantifies the priority of transferred solutions to
improve the probability of a positive transfer. Transferred solutions are selected from the neighbors
of solutions that achieved the positive transfer in [35], and an incremental learning method is used to
select the transferred solutions in [30]. An effective transferred solutions selection mechanism is essen-
tial for enhancing the convergence characteristic of their target tasks. Most individual transfer-based
algorithms randomly select individuals to be transferred, and the main focus is on when to transfer and
how many individuals are to be transferred. There is a lack of research on which individuals are to be
transferred. Also, reducing the notorious negative transfer of these algorithms should also be treated
cautiously.

In addition, to improve the effectiveness of the knowledge transfer, an evolutionary multitasking op-
timization algorithm based on a multi-source knowledge transfer mechanism (EMaTOMKT) [36] uses
adaptive mating probability (AMP) strategy to determine the probability of knowledge transfer and
uses task selection (MTS) strategy based on maximum mean discrepancy (MMD) [29] to select multi-
ple similar tasks as learning sources. [37,38] proposed a new evolutionary multitasking algorithm with
two-stage adaptive knowledge transfer based on population distribution. A novel method of extract-
ing and transferring knowledge is proposed to reduce the probability of generating negative transfer.
A task selection strategy [39] based on credit assignment is to select a task for knowledge transfer
by leveraging the feedback from the transferred solutions across tasks. In MaTEA [40], an adaptive
mechanism is used to select the auxiliary tasks to achieve knowledge transfer between tasks. This
adaptive mechanism is realized by dynamically measuring the similarity between tasks and analyzing
the effectiveness of knowledge transfer between tasks.

Aiming to execute more effective and robust knowledge transfer between various optimization
tasks, we propose a single-objective multitask optimization based on elite individual transfer, namely,
MSOET, in this paper. Considering the effectiveness of the algorithm EMaTOMKT [36] in solving the
single-objective many-task problem, this paper quotes the idea of using the parameters of the Gaussian
distribution model to generate offspring to achieve knowledge transfer. We borrow this idea to enhance
the global search ability of the algorithm. However, unlike how EMaTOMKT directly employs the
clustering technique and the estimation of distribution algorithms to generate the offspring, the core
of the MSOET is selecting the appropriate auxiliary tasks and transferring the common features of the
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elite population selected from auxiliary tasks. To improve the positive transfer probability between op-
timization tasks, in this paper, only the individuals in the transfer population which are better than the
optimal individuals in the target population are selected for knowledge transfer. The main contributions
of this paper are as follows.

• Select the individuals in the transfer population for transfer: Select the individuals which are
better than the target tasks for transfer, which can improve the efficiency of knowledge transfer.
• The elite individuals transferred from the auxiliary tasks are combined with the current population

to build a Gaussian distribution model, which can guide the population to converge faster and help
to enhance the robustness of the algorithm, to produce offspring individuals.

The rest of this paper is organized as follows. Section 2 introduces the proposed algorithm frame-
work. In Section 3, we experimentally compare MSOET with ten evolutionary multitask optimization
algorithms on nine test instances. Finally, Section 4 concludes this paper.

Task 1 Task K

Initialize the populations P={P1, ,PK },

the mean     and the variance Covk   

Calculate the mean     variance 

Covk by using algorithm 2  

Rand<pd ?

Produce offspring 

by using crossover 

and mutation

Produce offspring 

by sampling from

      

Environment selection and update         

kx

best

kp

Stopping 
condition 
satisfied?

Output the best individuals 
best

kp

Yes No
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No

kx

( , )k kCovx  ( ,( ,k k( ,( ,( ,( ,

Figure 1. The flowchart of the proposed multitask optimization algorithm.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8261–8278.



8265

2. The proposed multitask optimization based on elite individual transfer

In this section, we first give the overall framework of the proposed MSOET algorithm and then
present a detailed description of the elite knowledge transfer strategy. Finally, we provide an analysis
of the proposed algorithm.

2.1. The framework of the proposed algorithm

First, different tasks may have different search spaces. The search space of all tasks is mapped to a
unified search space according to Eq (2.1).

yki =
xki − Lki

Uki − Lki
, k = 1, · · · ,K, i = 1, · · · ,Dk (2.1)

where xki is the value of solution x on the i-th dimension of kth task, and Uki and Lki are the upper
and lower bounds on i-th dimension of k-th task, respectively. yki is the value mapped from xki to the
unified search space. After such a transformation, the search space of all tasks is unified to [0, 1]D,
where D = max

1≤k≤K
{Dk}. Thus, without loss of generality, we assume that all tasks have the same search

space X = [0, 1]D. Moreover, a skill factor is introduced for each individual to facilitate the assignment
of fitness values and the comparison of individuals [19]. The skill factor τi of pi is one of the component
tasks, where pi achieves the best rank among all tasks, that is,

τi = arg min
1≤k≤K

{rik}, (2.2)

where rik is the factorial rank, which is the index of pi in the list of population members that are sorted
in ascending order according to the value of the objective function fk of the kth task.

The framework of the proposed MSOET is given in Algorithm 1. The flowchart of this algorithm
is shown in Figure 1. First, we randomly initialize the population P = {P1, · · · , PK} with a size of
N in the unified search space X and set the initial generation t = 0. The skill factors of individuals
are assigned with a random number k ∈ {1, · · · ,K}, and the total number of individuals with skill
factors of k is N. Record the optimal individual of the current population as pbest

k , k = 1, · · · ,K. The
optimal individual of single-objective optimization refers to the individual with the minimum function
value in the population. When the termination condition is not satisfied, the probability model of the
subpopulation is constructed by Algorithm 2.

Then, choose different ways to produce offspring according to a certain probability pd (the value
of pd can be found in the parameter setting part of the experiment). If rand < pd, for solution
p j

k, two offspring o1 and o2 are generated by using crossover and mutation on p j
k and pr

k which are
randomly chosen from Pk. Otherwise, o1 and o2 are sampled from a Gaussian distribution model
N(xk,Covk), where xk is the mean, and Covk is the variance of the Gaussian distribution model obtained
by Algorithm 2. rand is a uniform random number in [0, 1]. In this way, knowledge transfer between
tasks can be realized. The skill factors of o1 and o2 inherit that of their parents, and then evaluate
offspring o1 and o2 in terms of the corresponding task. Population P and offspring Q are merged,
and the best N individuals are selected as the next generation population. Finally, update the optimal
individual pbest

k of the population. The optimal individual pk is found. If the function value of pk is
smaller than that of pbest

k , which means that pk is better than pbest
k , then replace Pbest

k with pk. Otherwise,
pbest

k remains the same, k = 1, · · · ,K.
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Algorithm 1: The Pseudocode of MSOET
input :

1. The population size N;
2. The mating probability pb.

output: The best individuals pbest
k , k = 1, · · · ,K.

� Initialize and evaluate the population P = {P1, · · · , PK} in the unified search space, t = 0;
� Initialize pbest

k with minimum function values in populations Pk, k = 1, · · · ,K;
while the stopping criterion is unsatisfied do

for k = 1 to K do
(xk,Covk) = S KT (P, k)← Algorithm 2
for j=1 to N/2 do

if rand < pd then
� Select the j-th individual p j

k from Pk as the first parent;
� Randomly select an individual pr

k from Pk as another parent;
� Two offspring o1 and o2 are produced with crossover and mutation on p j

k and
pr

k.
else
� Two offspring o1 and o2 are produced by sampling from N(xk,Covk).

end
� Evaluate o1 and o2 and let them inherit the skill factors of their parents;
� Put o1 and o2 into offspring population Oi = Oi ∪ o1 ∪ o2.

end
� Choose the best N individual from Pk ∪ Ok to form the next population;
� Find the best individual pk in Pk ∪ Ok;
if f (pk) < f (pbest

k ) then
pbest

k = pk ← Update pbest
k

end
end
� Set t = t + 1;

end

2.2. Knowledge transfer strategy based on elite individual transferred

The selection of the transferring individuals is very important to improve the efficiency of the al-
gorithm and avoid negative transfer in multitask optimization. Therefore, we propose a knowledge
transfer strategy based on elite individual transfer in this paper. Algorithm 2 is the main innovation of
this paper, and the flow chart of Algorithm 2 is shown in Figure 2.

First of all, we find out the population of the source task of each task, which is used for transferring.
We calculate the Kendall correlation coefficient of the factorial rank of the population member. The
Kendall correlation coefficient is one of the three most famous correlation coefficients in statistics, and
it has been applied to a wide range of applications. Hence, we adopt the Kendall correlation coefficient
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Task 1 Task K
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Transfer the elite individuals 

in the transfer population to 

the target population 
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k
x

End

Figure 2. The flowchart of the knowledge transfer strategy based on elite individual trans-
ferred.
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Figure 3. Performance analysis of elite knowledge transfer.

to measure the similarity between tasks.

ρkl =
1
2

C − D
N(N − 1)

, (2.3)

where C is the number of concordant pairs, and D is the number of discordant pairs. A pair of solutions
(pi, p j) is a concordant pair with respect to task k and task l, if (rik < r jk, ril < r jl) or (rik > r jk, ril > r jl).
Otherwise, (pi, p j) is a discordant pair. Then, the source task of k-th task is given as

l∗ = arg max
1≤l≤K,l,k

{ρkl}. (2.4)
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Then, the transferring population of k-th task is PT
k = Pl∗ , and set the skill factor of PT

k to k. Then,
evaluate population PT

k and all the individuals in PT
k which are better than the current population Pk

are put into the set S . That is, the individuals in PT
k whose objective function value is smaller than the

smallest function of Pk are put into the set S . A new set Pk ∪ S is obtained by merging the current
population Pk with the individuals in S . A Gaussian distribution model is constructed by the merged
population P ∪ S . The mean xk and variance Covk of the Gaussian distribution model can be obtained
by Eqs (2.5) and (2.6).

xk =
1

|Pk ∪ S |

∑
x∈Pk∪S

x (2.5)

Covi =
1

|Pk ∪ S | − 1

∑
x∈Pk∪S

(x − xk)(x − xk)T (2.6)

where |Pk ∪ S | is the number of individuals in Pk ∪ S . By doing so, the good individuals in PT
k can

help to improve the evolution of the population and enhance the global search ability of the algorithm.
Through targeted selection, the offspring sampled from the Gaussian distribution composed of elite
individuals and the current population are more likely to have higher quality.

Algorithm 2: Strategies for Knowledge Transfer
input :

1. The current population P;
2. Task k.

output: The mean xk and variance Covk of the Gaussian distribution model of the task k.
� Calculate the Kendall correlation coefficient ρkl by Eq (2.3).
� Find the transfer population PT

k for task k: PT
k = Pl∗ with l∗ = arg max

1≤l≤K,l,k
{ρkl}.

� Set the skill factor of the individual in PT
k to k.

� Evaluate the population PT
k .

� Find out the individuals in PT
k that are better than the current population Pk and put them into

S .
� Apply Eqs (2.5) and (2.6) to individual x in P ∪ S to get xk and Covk, respectively.

2.3. Performance analysis of the knowledge transfer based on elite individual transferred

Figure 3 shows the elite knowledge transfer of the proposed MSOET algorithm. The solid black
circles on the left of Figure 3 are the current population of Task 1, and the red stars are the elite
individual which transferred from Task 2 to Task 1. The black ellipse is the Gaussian distribution
model trained by the current population, and the red ellipse is the Gaussian distribution model trained
by the current population and elite individuals. The black and red models are recorded as Gaussian
distribution models 1 and 2, respectively. The solid black circle on the right of Figure 3 is the current
population of Task 2, and the solid red circle is the individual selected for transfer.

From the comparison of Gaussian distribution models 1 and 2, it can be seen that model 2, which is
trained by elite individuals transferred from Task 2 and the current population, can produce offspring
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with better convergence than model 1, so as to accelerate the evolution of the population and improve
the performance of the algorithm.

3. Experimental studies

3.1. The compared algorithms

We compared the proposed MSOET algorithm with the following ten most advanced evolution-
ary algorithms. The code for these algorithms is available on the official platform MTO-Platform at
https://github.com/intLyc/MTO-Platform.

1) AT-MFEA [41] employs domain adaptation technique for solving heterogeneous problems and
proposes a novel rank loss function for acquiring a superior intertask mapping.

2) IMEA [42] is an evolutionary multitasking optimization framework based on the island model.
Information about the individuals on one island is transferred to another island through an inter-
island crossover.

3) LDA-MFEA [43] proposes a linearized domain adaptation strategy that transforms the search
space of a simple task into a search space similar to its constitutive complex task.

4) MFDE [33] proposes a multifactorial optimization based on differential evolution and presents a
mating approach for multitask optimization in MFDE.

5) MFEA [19] represents one of the most widely used implementation paradigms of the evolutionary
multitasking optimization algorithms. An implicit genetic transfer strategy presented in this paper
can accelerate convergence for a variety of complex optimization problems in a multitasking
environment.

6) MFEA-AKT [25] proposes a new MFEA with adaptive knowledge transfer, in which the
crossover operator employed for knowledge transfer is self-adapted based on the information
collected along the evolutionary search process.

7) MFPSO [33] proposes a multifactorial optimization algorithm embarking with particle swarm
optimization, and a mating approach is designed for multitask optimization in MFPSO.

8) MTEA-AD [44] is a multitask evolutionary algorithm based on anomaly detection. The anomaly
detection model identifies candidate-transferred individuals that can effectively reduce the risk of
negative transfer.

9) MTEA-SaO [45] adaptively selects a best-fitting solver for each task and enables knowledge
transfer using the implicit similarities between tasks.

10) SOO algorithm is that two tasks evolve separately without communication between tasks.

3.2. Test problems

The test suite [46] is used to evaluate the performance of the proposed MSOET algorithm. This
test suite consists of 9 test questions, each containing 2 tasks, and each task is a single-objective
optimization problem. The properties of these nine test questions are shown in Table 1. Nine test
questions are designed according to the global optimal degree of intersection and the similarity of
the fitness landscape. According to the global optimal intersection degree, it can be divided into the
complete intersection (CI), partial intersection (PI) and no intersection (NI). According to the similarity
of fitness landscape between tasks, it can be divided into high similarity (HS), medium similarity (MS),
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and low similarity (LS). According to this classification method, nine combinations can be formed and
designed, as shown in Table 1.

Table 1. Properties of single-objective multitask benchmarks.

Problem Task NO. Properties D Decision space

CIHS
T1 Griwank 50 [-100,100]
T2 Rastrigin 50 [-50,50]

CIMS
T1 Ackley 50 [-50,50]
T2 Rastrigin 50 [-50,50]

CILS
T1 Ackley 50 [-50,50]
T2 Schwefel 50 [-500,500]

PIHS
T1 Rastrigin 50 [-500,500]
T2 Sphere 50 [-50,50]

PIMS
T1 Ackley 50 [-50,50]
T2 Rosenbrock 50 [-50,50]

PILS
T1 Ackley 50 [-50,50]
T2 Weierstrass 50 [-0.5,0.5]

NIHS
T1 Rosenbrock 50 [-50,50]
T2 Rastrigin 50 [-50,50]

NIMS
T1 Griwank 50 [-100,100]
T2 Weierstrass 50 [-0.5,0.5]

NILS
T1 Rastrigin 50 [-50,50]
T2 Schwefel 50 [-500,500]

3.3. Parameter settings

• Population Size N: The population size N of all algorithms is set to 100.
• Termination Condition: The maximum generation of all algorithms is 1000.
• Hybrid Variation Parameter: SBX [47] is used as the crossover operator, and polynomial mutation

is used as the mutation operator. Among them, ηn is set to 2 in SBX, and the variation parameter
of polynomial ηm is set to 5.
• Number of Runs: All algorithm runs 30 times independently for each test question.
• Private Parameter: The probability pd is set to 0.3 in Algorithm 1.
• The results of the compared algorithms are implemented with the official platform MTO-

Platform* on MATLAB2020b. The algorithm-specific parameters use their default values.
• Statistical Test: The Wilcoxon rank-sum test with a level of 0.05 is used to analyze the significance

of the performance between algorithms. The symbols “†”, “§” and “‡” indicate that the proposed
MSOET algorithm is inferior, equal and better than the contrasted algorithm, respectively. In
addition, in order to compare the algorithms intuitively, the algorithms that perform best in the
test problems were marked in bold.

*https://github.com/intLyc/MTO-Platform
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3.4. Analysis of experimental results

Table 2. The average function value and significance analysis obtained by the compared
algorithms over 30 independent runs on complete intersection test problems.

Algorithms CIHS-T1 CIHS-T2 CIMS-T1 CIMS-T2 CILS-T1 CILS-T2 (†,§,‡)

MSOET 2.89E-06 3.29E+00 8.88E-16 0.00E+00 2.01E+01 4.19E+03 (—)

SOO 1.70E-01† 3.32E+02† 3.43E+00† 3.08E+02† 2.11E+01† 2.93E+03‡ (5,0,1)

AT-MFEA 4.63E-02† 4.93E+01† 1.52E-01† 6.88E+00† 2.12E+01† 2.44E+03‡ (5,0,1)

IMEA 9.62E-01† 3.51E+02† 4.57E+00† 3.56E+02† 2.12E+01† 4.46E+03† (6,0,0)

LDA-MFEA 1.03E+00† 3.47E+02† 6.40E+00† 4.03E+02† 2.06E+01† 5.57E+03† (6,0,0)

MFDE 5.26E-01† 3.64E+02† 2.75E+00† 3.55E+02† 2.12E+01† 1.43E+04† (6,0,0)

MFEA 8.33E-01† 2.73E+02† 5.84E+00† 3.16E+02† 2.02E+01§ 4.45E+03† (5,1,0)

MFEA-AKT 5.69E-01† 2.71E+02† 6.67E+00† 3.51E+02† 2.03E+01† 4.39E+03† (6,0,0)

MFPSO 1.14E+00† 4.54E+02† 8.24E+00† 5.07E+02† 2.12E+01† 1.31E+04† (6,0,0)

MTEA-AD 9.24E-01† 2.96E+02† 4.47E+00† 3.12E+02† 2.10E+01† 4.47E+03† (6,0,0)

MTEA-SaO 1.08E-01† 2.74E+02† 1.36E+00† 2.49E+02† 2.12E+01† 4.34E+03† (6,0,0)

Table 3. The average function value and significance analysis obtained by the compared
algorithms over 30 independent runs on partial intersection test problems.

Algorithms PIHS-T1 PIHS-T2 PIMS-T1 PIMS-T2 PILS-T1 PILS-T2 (†,§,‡)

MSOET 5.96E+01 3.37E-26 3.74E-14 5.71E+01 8.88E-16 2.44E-03 (—)

SOO 3.06E+02† 1.82E+00† 3.33E+00† 1.06E+03† 3.34E+00† 1.24E+01† (6,0,0)

AT-MFEA 3.87E+02† 1.34E-01† 2.71E-01† 1.20E+02† 3.43E-01† 2.28E-01† (6,0,0)

IMEA 4.34E+02† 1.14E+02† 4.93E+00† 1.32E+04† 5.49E+00† 5.26E+00† (6,0,0)

LDA-MFEA 7.48E+02† 3.55E+02† 6.64E+00† 5.90E+04† 1.90E+01† 1.46E+01† (6,0,0)

MFDE 4.46E+02† 1.59E+01† 3.05E+00† 1.55E+03† 1.39E+01† 8.03E+00† (6,0,0)

MFEA 6.59E+02† 8.79E+01† 5.10E+00† 9.71E+03† 1.96E+01† 1.91E+01† (6,0,0)

MFEA-AKT 5.94E+02† 3.56E+01† 4.20E+00† 1.50E+03† 5.98E+00† 7.13E+00† (6,0,0)

MFPSO 7.77E+02† 3.24E+03† 6.13E+00† 2.32E+04† 9.61E+00† 7.77E+00† (6,0,0)

MTEA-AD 4.53E+02† 1.28E+02† 4.69E+00† 9.90E+03† 5.65E+00† 5.29E+00† (6,0,0)

MTEA-SaO 3.43E+02† 1.71E+00† 1.58E+00† 4.82E+02† 2.53E+00† 2.00E+00† (6,0,0)
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Table 4. The average function value and significance analysis obtained the compared algo-
rithms over 30 independent runs on no intersection test problems.

Algorithms NIHS-T1 NIHS-T2 NIMS-T1 NIMS-T2 NILS-T1 NILS-T2 (†,§,‡)

MSOET 4.77E+01 7.15E-02 1.08E-04 9.28E-03 6.13E+01 3.82E+03 (—)

SOO 9.32E+02† 3.22E+02† 1.59E-01† 3.76E+01† 3.35E+02† 3.03E+03‡ (5,0,1)

AT-MFEA 1.56E+02† 1.95E+02† 5.63E-02† 3.78E+00† 3.91E+02† 2.33E+03‡ (5,0,1)

IMEA 1.77E+04† 4.23E+02† 9.81E-01† 2.55E+01† 4.42E+02† 4.44E+03† (6,0,0)

LDA-MFEA 5.21E+04† 4.65E+02† 1.11E+00† 2.79E+01† 9.14E+02† 5.97E+03† (6,0,0)

MFDE 1.38E+03† 3.79E+02† 5.49E-01† 1.15E+01† 4.49E+02† 1.42E+04† (6,0,0)

MFEA 1.08E+04† 3.70E+02† 9.35E-01† 2.80E+01† 7.60E+02† 4.46E+03† (6,0,0)

MFEA-AKT 2.24E+03† 3.31E+02† 6.80E-01† 2.19E+01† 7.10E+02† 4.34E+03† (6,0,0)

MFPSO 1.02E+05† 5.03E+02† 1.44E+00† 2.25E+01† 1.25E+03† 1.31E+04† (6,0,0)

MTEA-AD 1.31E+04† 3.81E+02† 9.94E-01† 2.40E+01† 4.42E+02† 4.59E+03† (6,0,0)

MTEA-SaO 3.62E+02† 2.75E+02† 1.60E-01† 1.15E+01† 3.04E+02† 4.64E+03† (6,0,0)
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(f) CILS-T2

Figure 4. Plot of the average convergence trend of the compared algorithms over 30 inde-
pendent runs on CIHS, CIMS and CILS.
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Figure 5. Plot of the average convergence trend of the compared algorithms over 30 inde-
pendent runs on PIHS, PIMS and PILS.

Tables 2–4 show the average function values obtained by the proposed MSOET algorithm and the
compared algorithms over 30 independent runs on the test problems. For the sake of intuition, the
algorithm that performs best on the test problem is represented with a gray background. The last
column of these tables shows the results of the significance analysis of these algorithms. Figures 4–6
plot the average convergence trend of the compared algorithms over 30 independent runs on the test
problems. These tables and figures show that the proposed MSOET algorithm performs best in 16 of
the 18 tasks. This proves the effectiveness of the proposed MSOET algorithm. The number of “†”
is far more than that of “‡”, which also shows that the proposed algorithm has advantages over other
algorithms.

This phenomenon is because the proposed MSOET algorithm makes use of the cooperation between
tasks to transfer the high-quality individuals of another task to the target task and work with the cur-
rent population to build a model for generating offspring. Using this model can produce high-quality
offspring, accelerate the evolution of the population, and improve the algorithm’s performance.

4. Conclusions

In this paper, we have proposed a new evolutionary single-objective multitasking algorithm based
on elite knowledge transfer (MSOET), which can solve multiple single-objective optimization tasks at
the same time. MSOET combined the excellent individuals of the transfer population with the current
population to construct a Gaussian distribution model and used the calculated mean and variance to
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generate offspring to achieve knowledge transfer between tasks. The excellent individual can effec-
tively and robustly improve the performance of the algorithm. From the analysis of the experimental
part, we can see that compared with the existing ten advanced evolutionary single-objective multi-
tasking algorithms, MSOET has a better convergence effect. We expect to execute more effective and
robust knowledge transfer between various optimization tasks, even low-related optimization tasks, in
our future works. Meanwhile, we will explore how to execute knowledge transfer on the population
level instead of the individual level.
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Figure 6. Plot of the average convergence trend of the compared algorithms over 30 inde-
pendent runs on NIHS, NIMS and NILS.
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