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Abstract: The transient stability of power systems plays the key role in their smooth operation,
which is influenced by many working condition factors. To automatically evaluate transient stability
status precisely for power systems remains a practical issue. To realize data-driven evaluation for
the transient stability of the power systems, this paper proposes an ensemble machine learning-based
assessment approach for transient stability status of power systems, which is named as EM-TSA for
short. The experiments prove that the proposed model outperforms each secondary learning model and
the traditional deep learning model in terms of accuracy and safety indexes. Considering the effect of
noise, the experiments are repeated by adding Gaussian noise to the original test set. The results show
that the ensemble learning model can maintain 98.4% accuracy under various noisy environments.
In addition, the proposed model is combined with the sample transfer learning algorithm when the
system topology is changed. An online update method for transient stability models is proposed, and
compared with the previous approaches, the proposed algorithm can adapt to the online update of
transient stability assessment models.
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1. Introduction

As society’s dependence on electricity has been increasing, electricity has become the main source
of energy consumed in people’s daily life and production [1]. As the main energy consumed in our
daily life and production, and the electric power industry has become a basic industry of the national
economy [2] and has also become a basic industry related to social development [3]. Without effective
and timely control measures, the power systems may lose the ability of stable operation [4]. A chain
failure or even collapse may occur, resulting in a large-scale power outage, bringing huge economic
losses and catastrophic social impacts, and even endangering personal safety [5].
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The planning, design, operation and other work of the power system are inseparable from a large
amount of transient stability assessment [6]. The occurrence of transient instability will certainly lead
to unhealthy running or even disintegration of power systems [7]. This results in large-scale power
outages, bringing huge losses to the national economy and bad effects to social life [8]. Therefore,
through a large amount of power system transient stability assessment, preventive control technology
means or emergency control measures can be taken before the occurrence of instability [9]. This is
of great practical significance for more secure and stable smart grid systems [10]. Transient Stability
Assessment (TSA) refers to the assessment of the ability of the power system to maintain synchronous
operation and return to the original stable operation state or transition to the new operation state after
a large disturbance [11]. The disturbances that may cause transient stability problems are mainly the
following: (1) the occurrence of short-circuit faults; (2) the commissioning of loads; (3) the commis-
sioning of major components such as generators, transformers or lines. Among them, the disturbance
caused by a short-circuit fault has the greatest impact on the system, and the transient stability is often
tested by the operation under a short-circuit fault [12].

Universally, it is important to achieve a balance between electromagnetic torque of generators and
torque of prime movers. When the disturbance occurs, this balance is broken, and the unbalanced
torque acts on the rotor, making the work angle and speed of each generator change. Relative os-
cillation occurs between the generator sets, forming an electromechanical transient process with the
mechanical motion of each generator rotor [13]. There are two possible results of the electromechan-
ical transient process. One is that after a period of oscillation, the oscillation gradually decays, and
the generators continue to maintain synchronous operation, in which case the system is transient stable
[14]. The other is that the oscillation cannot decay and gradually expands, the generators cannot main-
tain synchronous operation, and the system is transient unstable, also called system instability [15].
Therefore, the characteristics of the power angle of each generator along with time after suffering a
large disturbance are often used as the criteria of the transient stability of the power system. When
the system is destabilized, it is required to take some emergency control measures to prevent the dis-
turbance from continuing to expand and causing system islanding or even widespread power outage
accidents [16].

To this end, it is necessary to perform the transient stability assessment accurately during the op-
eration of the system [17], so as to timely discover large disturbances such as cutting machine and
cutting load during the operating process of smart grids [18]. Hence, the whole system can be com-
pleted in time to assess the transient stability of early warning and take effective measures to prevent
the occurrence of failure [19]. The transient stability analysis and the control theory of the system have
been perfected, and fruitful results have been achieved [20]. However, the power system becomes in-
telligent and data-oriented with the development of artificial intelligence and big data technology. The
time domain simulation method and numerical analysis method alone can no longer meet the needs of
the modern power system, and they also do not meet the development trend of the power system intel-
ligence and data orientation. Based on the real-time online operation data of the power system, it is an
important task to analyze the stability of the power system [21]. With the rise of artificial intelligence,
the interdisciplinary technology of combining deep learning technology with transient stability assess-
ment has become more and more mature [22]. More and more scholars and experts have proposed
relevant basic theories and training algorithms to promote the TSA in power systems. The basic prin-
ciple of using machine learning theory for TSA in power systems is to use the ability of the assessment
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model to process data information, extract the unknown functional relationship between them through
a large amount of data training, and use the obtained functional relationship as the assessment standard
for discrimination.

In this paper, we explore the ensemble learning to predict the transient stability of a power system.
Motivated by the challenge of this issue and the previous research, an ensemble learning model is
proposed, and the predicted values corresponding to multiple machine learning models are learned
twice to obtain the final prediction results. An online update method for transient stability models
is proposed, in which the ensemble learning is combined with the sample transfer learning algorithm
when the system topology is changed.

2. Related work

The time-domain simulation method, also known as the indirect method, is the most technically
mature method for this purpose, and the main source for offline acquisition of data in machine learning
methods. First, a detailed mathematical model of each component in the system needs to be estab-
lished, and then the topological connection relations of each component in the system are constructed.
The two are combined to establish a full-system model of the system to be analyzed, and a set of non-
linear differential equations is used to describe the whole system. The numerical integration method
is adopted to solve the set of problems, and the stable operation state or the tidal current solution is
utilized as the initial value of the equations to solve the dynamic process of the variables in the system
under the disturbance condition with time, and to determine whether the system is temporarily stable
according to the change of the relative angle between the rotors of each generator. The time-domain
simulation method has the advantages of wide application and accurate results, but its disadvantages of
large computational volume and long computational time make it difficult to meet the real-time require-
ments of online transient stability assessment. At present, people are still continuously proposing new
improvements and innovations to the time-domain simulation method. In the work [14], an index for
quantitative analysis of generator stability is proposed based on the trajectory of generator energy after
disturbance. The work [15] utilized the higher-order Taylor series method to significantly improve the
computational speed of the time-domain simulation while ensuring the accuracy of the calculation. The
work [16] proposed a variety of termination criteria for time-domain simulation to reduce the number
of steps of numerical integration and improve the computational efficiency. The work [17] proposed
a generalized polynomial chaos approach that allows the analysis of transient stability that results in
the presence of uncertainties such as random fluctuations of load. The works [23] and [24] combined
explicit and implicit integration to further improve the integration efficiency.

As new energy sources are continuously connected to the grid, and the system scale becomes more
and more complex, the new development of the current power system puts forward higher requirements
for TSA, and traditional methods (such as time-domain simulation) face serious challenges in terms of
applicability, evaluation and prediction speed. The development of machine learning has provided new
possibilities for breakthroughs in both, and TSA methods based on machine learning have become a
frontier topic in the field of power system research. Compared with traditional TSA methods, machine
learning methods establish the mapping relationship between physical quantities of power systems and
assessment results by autonomous training models from the perspective of pattern recognition, and they
use the trained models to analyze the newly generated samples in the system. In recent years, numerous
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Figure 1. A scenario of a power system.

scholars have analyzed and improved the TSA of power systems based on machine learning. Most of
them utilized basic machine learning methods such as k-nearest neighbor (KNN), random forest (RF)
[19], support vector machine (SVM) [24], gradient boosting decision tree (GBDT) [21, 22], logistic
regression (LR), AdaBoost [25], etc.

Although various intelligent algorithms can contribute a lot to the optimal running and effective
scheduling of power systems, the security which acts as the foundation cannot be ignored. In this
branch, some researchers have also paid considerable research attention, so as to complete research of
a smart grid. Jian et al. [26] proposed a data-driven based security awareness framework for power
systems. Gonzalez et al. [27] tried the convolutional neural network based approach for static security
assessment of power systems. Chen [28] and Salehi [29] also explored power system analysis and se-
curity monitoring by machine learning based approaches. However, the previous work fails to capture
the dynamic variation of a power system with limited training data, and the model could be portable for
use in a new situation. Motivated by this, we proposes an ensemble machine learning-based transient
stability assessment approach to tackle those issues in this paper.

3. Methodology

3.1. Ensemble learning

Transient stability refers to the status of whether the power systems can transit to a new operating
state or return to the original operating state under a certain operating mode. This status can be deter-
mined according to operating indexes of power systems. Therefore, the inputs are operating indexes
of power systems, and the outputs are calculated the results of Transient Stability Assessment). In
supervised learning algorithms, the objective is to train a stable model that performs well in all aspects.
However, the actual situation is often not ideal, and only some models with preferences that perform
better in some aspects can be obtained, which are weakly supervised models. The EM-TSA proposed
in this paper obtains a better and more comprehensive strongly supervised model by combining these
existing weakly supervised models. In this way, even if a weak classifier makes an error when testing
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Figure 2. A schematic illustration of ensemble learning model.

a data set that it is not good at, others could correct the error in time.
The general structure of ensemble learning is to first train multiple base learners and then integrate

them into a more robust learner. By integrating multiple base learners to complement each other’s
strengths, ensemble learning can achieve better performance than a single learner. By the way of base
learner generation, ensemble learning can be divided into two categories: One is the ensemble learning
algorithm represented by Boosting, in which there is a dependency between base learners, and must
be generated serially; the other is the ensemble learning algorithm represented by Bagging, in which
there is no dependency between learners, and can be generated in parallel, as shown in Figure 2.

Bagging algorithm is the classical algorithm for parallel ensemble learning. In order to make the
ensemble base learners as independent as possible, the Bagging algorithm can randomly pick multiple
training subsets from the input data set by the self-sampling method, then train multiple base learners
based on the training subsets, and finally combine the base learners to form a whole. However, the
self-sampling method is mainly for the case of small data sets, and when the data volume is large,
using the self-sampling method will instead cause a decrease in learner accuracy due to the lack of
data volume. Therefore, in this paper, we use the traversal method to import the original data into
seven trainers for training, respectively, and finally obtain the total classifier by the integration method.
For different integration learning, there can be many integration methods. For example, the function
values obtained from different learners can be averaged to get the final result, or it can be obtained by
weighted average. In this paper, the predicted values of the sample data sets of different models are
obtained by training different models, and according to the labels of these predicted values with the
training data, they are substituted into the new machine learning model for secondary training. Finally,
they are tested with a test set. This is the idea of integrating the results of multiple classifiers in this
paper. The integration learning training process is as follows.

1) Divide the dataset S = {(xn, yn), n = 1, ...,N} into training and test sets.

S train = {(xtrain, ytrain)} (3.1)

S test = {(xtest, ytest)} (3.2)

2) Train the base learner, which can be expressed as follows.
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Modeli = Mi train(S train) (3.3)

yi
train = Model predict(xtrain) (3.4)

yi
test = Model predict(xtest) (3.5)

where the Model train and Model predict represent the training process and the testing process, re-
spectively.

3) Construct new data set S new, which integrates all the training data sets together.

S new = {y1
train, y

2
train, ..., y

7
train, } (3.6)

4) Train the new data set with the meta-learner, which can be expressed as follows.

ModelMeta = Model train(S new) (3.7)

5) Import the test set into the model to derive prediction results.

ypred = Model predict(xtest) (3.8)

3.2. Transfer learning

As the scale of data to be recorded in a power system is getting larger and larger, the system features
are getting more and more. However, the utilization rate of these data is not high. The main reason
is that the power system is a time-varying system, and its time-varying nature is reflected in the time-
varying data and time-varying system structure. With the continuous development of deep learning,
how to make good use of historical data is a critical issue to improve the efficiency of transient stability
assessment. Transfer learning in artificial intelligence and machine learning refers to an idea and mode
of learning. The problem solved by machine learning is to enable machines to acquire knowledge from
data autonomously and get the mapping relationship between data and results through input data and
results. Transfer learning focuses on transferring the learned knowledge from old problems to new
problems. In order to achieve the knowledge transfer successfully, the core target of transfer learning
is to find the similarity between the new problem and the original problem.

The basic approaches of transfer learning include sample transfer, feature transfer, model transfer,
and relationship transfer. In this paper, we conduct experiments on two of the more cutting-edge
approaches in transfer learning. For the sample-based transfer learning approach, data samples are
reused for transfer learning based on certain weight generation rules, such as the TrAdaBoost approach
[23]. For feature-based transfer method, it migrates each other by means of feature transformation to
reduce the gap between source and target domains, such as transfer component analysis proposed in
the work [24]. This makes the impact of some source domain data on the target domain different as
well. For example, the TrAdaBoost algorithm is precisely based on the AdaBoost algorithm, where the
features of the source domain are weighted and iterated, and a classifier is trained with each weighting,
and the update strategy of the weights is decided by the good or bad performance of this classifier. By
setting a distance function as the target value and establishing an optimization model with this function
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Table 1. Comparison of performance results.

Ac% TSR% TUR% Gmean%
Logistic 96.2 96.6 96.5 96.4
SVM 93.2 93.6 93.2 93.4
KNN 94.2 94.4 94.5 94.4
GBDT 95.2 94.8 94.3 94.6
ANN 96.2 96.6 96.5 96.2
RF 96.4 96.0 96.1 96.4
AdaBoost 97.2 97.4 96.8 97.1
EM-TSA 98.6 98.4 97.8 98.4

as the target function, the features with the highest correlation between the source and target domains
are extracted. The distribution adaption is to use the source domain and the target domain marginal
probability distribution to approximate the difference between the two domains:

d(Ds,Dt) ≈ ‖P(xs, xt)‖ (3.9)

where d(Ds,Dt) denotes the distance between the edge probability distribution of the source domain
and the target domain, and P(xt) denote the edge probability distributions of the data in the source
domain and the target domain, respectively.

However, since the characteristics of the source domain and the target domain are not identical,
the probabilities of the edge distributions of the two data are not equal. Therefore, it is not possible
to directly reduce the distance between the two. The transfer component analysis makes the mapped
data distribution satisfy the equation 10 by assuming that there exists a feature mapping ϕ in the space.
Then, the conditional distributions of the two domains after the mapping will also be close to each
other. Thus, training classification for machine learning can be performed.

P(ϕ(xs)) ≈ P(ϕ(xt)) (3.10)

TCA measures the degree of similarity between two distributions by constructing maximum mean
discrepancy (MMD).

DMMD(xs, xt) =

∥∥∥∥∥∥∥ 1
N1

N1∑
i=1

ϕ(xi) −
1

N2

N2∑
j=1

ϕ(x j)

∥∥∥∥∥∥∥
H

(3.11)

where xi, x j represent the source domain data and the target domain data, respectively; N1, N2 denote
the number of samples in the source and target domains, respectively; ϕ denotes the mapping function;
H denotes that this distance is measured by ϕ mapping the data into the regenerated Hilbert space.

4. Evaluation

The transient stability status can be determined according to operating indexes of power systems.
Machine learning-based methods can be formulated to establish a mapping from features (operating
indexes of power systems) to discriminative results (transient stability status). Therefore, the inputs are
operating indexes of power systems and the outputs are calculated statuses about “Transient Stability
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Figure 3. The performance comparison of Ac and TSR.

Assessment.” In our experimental data, there are 448 features in the initial dataset which is input for
training. For the final result, it is with the format of an one-dimensional data, because the discriminative
result is just a single numerical value that describes such status degree.

The input sample set is obtained by IEEE-10 machine 39 node system simulation calculations,
where the generator is a classical second-order model, and the load impedance model is a constant
impedance. The system is assumed to have a three-phase short-circuit fault at 0.1 second. The fault is
removed, and the original topology of the system is kept unchanged for four moments at 0.2 second,
0.35 second, 0.38 second, and 0.4 second, respectively. The simulation lasts for 3 seconds before
ending. The load level is increased by 5% each time from 80% to 130% for a total of 11. The
corresponding generator output is matched according to the different load levels to ensure the power
balance of the system and to maintain the voltage fluctuation of each bus within a reasonable range.
With the help of simulation software, the system data under the above fault conditions are calculated,
and 5643 data samples are generated, of which 3946 are stable samples, and 1697 are unstable samples.

The 5643 training samples obtained from the simulation are fully labeled and randomly divided into
two copies, one with 4643 training samples and the other with 1000 test samples. The parameters of
the deep belief network (DBN) model are known; the number of layers of the ANN model is the same
as that of the DBN. The number of input neurons and the number of output neurons are determined
by the input feature vector and the output category. The DT model used for classification purposes
is the C4.5 algorithm and is introduced. There, the confidence factor is set to the default value; the
kernel function of SVM is radial basis function (RBF). The parameters of the model structure were
determined by 5-fold cross-validation and grid search method.

Transient stability assessment of power systems is a typical class of non-equilibrium classification
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Figure 4. The performance comparison of TUR and Gmean.

Table 2. Time consumption with different models.

Mode training time /s prediction time per one
samples /ms

EM-TSA 80.4 0.94
CNN 160.4 0.21
LSTM 100.2 0.12

[2], and the damage caused by the missed or misjudgment of instability is obviously much greater
than that caused by the misjudgment of maintaining stability. The use of a single accuracy criterion
to evaluate the model performance is not objective enough, so the failure rate index is introduced to
comprehensively evaluate the evaluation performance of the TSA model. There, the confusion matrix
of transient stability assessment, true positive (TP) and false negative (FN) are the numbers of stable
samples being correctly or incorrectly assessed, and false positive (FP) and true negative (TN) are the
numbers of destabilized samples being correctly or incorrectly assessed.

The first metric is the accuracy rate, which represents the overall performance of the classifier in
classifying the test samples, and the expression is

Ac =
T P + T N

T P + T N + FP + FN
× 100%. (4.1)

The second metric is the stability rate, which is the percentage of correct predictions among all samples
with stable true labels, reflecting the security of the classifier in handling TSA problems.

TS R =
T P

T P + FN
× 100%. (4.2)

The third metric is the percentage of unstable samples that are correctly predicted among all samples
with unstable true labels, which mainly reflects the reliability of the classifier in dealing with TSA
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Figure 5. The performance comparison of CNN and LSTM.

problems, and the expression is

TUR =
T N

T P + FN
× 100%. (4.3)

The fourth metric is the geometric mean of the above two rates, and its expression is

Gmean =
√

TS R × TUR. (4.4)

In order to obtain the most effective integration method, the predictions obtained by the 7 ensemble
learning algorithms were used as the training set, and a set of 6530 sets of 7-dimensional features
was obtained as a sample training set. After traversing the 7 algorithms and the 8 models with mean
values and training them, the model evaluation metrics with the 8 methods were tested, and the test
results of each evaluation model are shown in Table 1. The performance of Ac, TS R, TUR, Gmean are
shown as Figures 3 and 4, respectively. In TSA, the security TSR parameter is clearly more important
than the reliability TUR parameter. Therefore, the performance exhibited by the learning model is
significantly higher than that of each classifier model before integration. In this paper, the proposed
learning algorithm is compared with the deep learning algorithms CNN and LSTM, where CNN uses
three one-dimensional convolutional layers. The number of convolutional neurons is 32, 64, 64, the
size of convolutional kernel is 6, and the training period is 60. The LSTM has two layers, the number
of hidden layers in each layer is 400, 200, the L1 regularization coefficients are 0.005, 0.005, the sparse
parameters are 0.15, 0.05, and the training period is 200. The performance of the two was analyzed, as
shown in Figure 5.

Table 2 compares the training speed of the proposed model with the deep learning models CNN
and LSTM. After the comparison, it is found that the proposed model has a better training speed,
but it takes slightly longer to predict a single sample. In order to better simulate the actual system
operation, the data may generate errors during the measurement and transmission, and this paper adds
noise conforming to the Gaussian distribution to the data. Figure 6 shows the accuracy and safety
parameter values of the learning model and each classifier involved in the integration, respectively,
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Figure 6. Comparison of accuracy for models under the interference of noise.

in the noisy environment. From Figure 6, it can be seen that the learning is more resistant to noise,
and the accuracy of the model prediction is always maintained at 98.4%, and the difference between
the two performances gradually increases as the noise increases. Except for the machine learning
methods appearing in the figure, the accuracy of the other methods decreases to a large extent under
the interference of noise. Especially, the accuracies of KNN algorithm and RF algorithm decreases to
89.8% and 95. 2%, respectively.

By using the TCA algorithm, the data generated after the topology change is used to migrate the
features with the historical data before the topology change, and then obtain a large amount of simu-
lation data. In this paper, the TCA method takes Gaussian kernel function for calculation, the width
of kernel function is 1, the feature dimension is 30, and the samples with different offsets are migrated
separately to obtain different sample sets for training the model. The test results are shown in Figure 7.
By comparison, it is found that the TrEnsemble method shows high prediction accuracy when only a
small number of training samples are available, and the accuracy increases when the training samples
are increased. Meanwhile, the TCA method is essentially a feature migration method, so it is actually
not sensitive to the training sample size, and its accuracy remains basically stable.

5. Conclusion

In this paper, an ensemble learning algorithm named as EM-TSA is proposed and introduced into
the transient stability assessment of power systems. In this paper, the predicted values corresponding to
multiple machine learning models are learned twice to obtain the final prediction results. Considering
the effect of noise, the experiments are repeated by adding Gaussian noise to the original test set. The
results show that the EM-TSA can maintain high accuracy under various noisy environments. The
proposed EM-TSA combined with the sample transfer learning algorithm is proposed to deal with the
system topology changing. Compared with the previous approaches, the proposed method can adapt
to the online update of transient stability assessment models.
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Figure 7. Comparison of accuracy for transfer learning.
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4. J. D. Morales, X. Ye, J. V. Milanović, Comparative analysis of integral-based indices
for on-line assessment of power system transient stability, in: 2021 IEEE PES Inno-
vative Smart Grid Technologies Europe (ISGT Europe), organizationIEEE, 2021, pp. 1–5.
https://doi.org/10.1109/ISGTEurope52324.2021.9639940

5. T. Zhao, X. Pan, M. Chen, A. Venzke, S. H. Low, Deepopf+: A deep neural network ap-
proach for DC optimal power flow for ensuring feasibility, in: 2020 IEEE International Con-
ference on Communications, Control, and Computing Technologies for Smart Grids, Smart-

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8226–8240.

http://dx.doi.org/https://doi.org/10.1109/LCSYS.2021.3088068
http://dx.doi.org/https://doi.org/10.1007/978-3-030-24274-9_7
http://dx.doi.org/http://arxiv.org/abs/1912.07477
http://dx.doi.org/https://doi.org/10.1109/ISGTEurope52324.2021.9639940


8238

GridComm 2020, Tempe, AZ, USA, November 11-13, 2020, publisherIEEE, 2020, pp. 1–6.
https://doi.org/10.1109/SmartGridComm47815.2020.9303017

6. Q. Wang, A study of intelligent evaluation of power system transient stability based on improved
svm algorithm, in: Proc. of the 2nd Int. Conf. Artificial Intelligence and Advanced Manufacture,
2020, pp. 230–237. https://doi.org/10.1145/3421766.3421823

7. A. Venzke, S. Chatzivasileiadis, Verification of neural network behaviour: Formal guar-
antees for power system applications, IEEE Trans. Smart Grid, 12 (2021), 383–397.
https://doi.org/10.1109/TSG.2020.3009401

8. Y. Wei, A. B. Bugaje, F. Bellizio, G. Strbac, Reinforcement learning based optimal load shedding
for transient stabilization, in: IEEE PES Innovative Smart Grid Technologies Conference Eu-
rope, ISGT-Europe 2022, Novi Sad, Serbia, October 10-12, 2022, publisherIEEE, 2022, pp. 1–5.
https://doi.org/10.1109/ISGT-Europe54678.2022.9960657

9. A. B. Mosavi, A. Amiri, H. Hosseini, A learning framework for size and type independent tran-
sient stability prediction of power system using twin convolutional support vector machine, IEEE
Access, 6 (2018), 69937–69947. 10.1109/ACCESS.2018.2880273

10. N. Nasser, M. Fazeli, Buffered-microgrid structure for future power networks;
a seamless microgrid control, IEEE Trans. Smart Grid, 12 (2021), 131–140.
https://doi.org/10.1109/TSG.2020.3015573

11. T. Su, Y. Liu, J. Zhao, J. Liu, Deep belief network enabled surrogate modeling for fast preventive
control of power system transient stability, IEEE Trans. Ind. Informatics, 18 (2021), 315–326.
https://doi.org/10.1109/TII.2021.3072594

12. K. Chen, S. Liu, N. Yu, R. Yan, Q. Zhang, J. Song, Z. Feng, M. Song, Distribution-
aware graph representation learning for transient stability assessment of power sys-
tem, in: 2022 Int. Joint Conf. Neural Networks, organizationIEEE, 2022, pp. 1–8.
https://doi.org/10.1109/IJCNN55064.2022.9892854

13. C. Peng, Y. Tao, Z. Chen, Y. Zhang, X. Sun, Multi-source transfer learning guided en-
semble LSTM for building multi-load forecasting, Expert Syst. Appl., 202 (2022), 117194.
https://doi.org/10.1016/j.eswa.2022.117194

14. A. Ghorbanali, M. K. Sohrabi, F. Yaghmaee, Ensemble transfer learning-based multimodal sen-
timent analysis using weighted convolutional neural networks, Inf. Process. Manag., 59 (2022),
102929. https://doi.org/10.1016/j.ipm.2022.102929

15. R. S. Alkhawaldeh, M. Alawida, N. F. F. Alshdaifat, W. Z. Alma’aitah, A. Almasri, Ensemble
deep transfer learning model for arabic (indian) handwritten digit recognition, Neural Comput.
Appl., 34 (2022), 705–719. https://doi.org/10.1007/s00521-021-06423-7

16. S. A. Siddiqui, N. Fatima, A. Ahmad, Chest x-ray and CT scan classification using ensem-
ble learning through transfer learning, EAI Endorsed Trans. Scalable Inf. Syst., 9 (2022), e8.
https://doi.org/10.4108/eetsis.vi.382

17. L. Wang, H. Liu, Z. Pan, D. Fan, C. Zhou, Z. Wang, Long short-term memory neural network with
transfer learning and ensemble learning for remaining useful life prediction, Sensors, 22 (2022),
5744. https://doi.org/10.3390/s22155744

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8226–8240.

http://dx.doi.org/https://doi.org/10.1109/SmartGridComm47815.2020.9303017
http://dx.doi.org/https://doi.org/10.1145/3421766.3421823
http://dx.doi.org/https://doi.org/10.1109/TSG.2020.3009401
http://dx.doi.org/https://doi.org/10.1109/ISGT-Europe54678.2022.9960657
http://dx.doi.org/10.1109/ACCESS.2018.2880273
http://dx.doi.org/https://doi.org/10.1109/TSG.2020.3015573
http://dx.doi.org/https://doi.org/10.1109/TII.2021.3072594
http://dx.doi.org/https://doi.org/10.1109/IJCNN55064.2022.9892854
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117194
http://dx.doi.org/https://doi.org/10.1016/j.ipm.2022.102929
http://dx.doi.org/https://doi.org/10.1007/s00521-021-06423-7
http://dx.doi.org/https://doi.org/10.4108/eetsis.vi.382
http://dx.doi.org/https://doi.org/10.3390/s22155744


8239

18. Q. Lv, Y. Quan, W. Feng, M. Sha, S. Dong, M. Xing, Radar deception jamming recognition based
on weighted ensemble CNN with transfer learning, IEEE Trans. Geosci. Remote. Sens., 60 (2022),
1–11. https://doi.org/10.1109/TGRS.2021.3129645

19. A. Pathak, K. Mandana, G. Saha, Ensembled transfer learning and multiple kernel learning for
phonocardiogram based atherosclerotic coronary artery disease detection, IEEE J. Biomed. Health
Inform., 26 (2022), 2804–2813. https://doi.org/10.1109/JBHI.2022.3140277

20. A. A. Maarouf, F. Hachouf, Transfer learning-based ensemble deep learning for road cracks detec-
tion, in: International Conference on Advanced Aspects of Software Engineering, publisherIEEE,
2022, pp. 1–6. https://doi.org/10.1109/ICAASE56196.2022.9931581

21. D. Chakraborty, D. Goswami, A. Ghosh, J. H. Chan, S. Ghosh, Learning from others: A data
driven transfer learning based daily new COVID-19 case prediction in india using an ensemble
of lstm-rnns, in: IAIT 2021: The 12th International Conference on Advances in Information
Technology, publisherACM, 2021, pp. 1–8. https://doi.org/10.1145/3468784.3470769 .

22. X. Liu, Q. Hu, Y. Cai, Z. Cai, Extreme learning machine-based ensemble transfer learning for
hyperspectral image classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 13 (2020),
3892–3902. https://doi.org/10.1109/JSTARS.2020.3006879

23. K. Zhong, Y. Wei, C. Yuan, H. Bai, J. Huang, Translider: Transfer ensemble learning from
exploitation to exploration, in: KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23–27, 2020, publisherACM, 2020,
pp. 368–378. https://doi.org/10.1145/3394486.3403079

24. H. Zhao, Q. Liu, Y. Yang, Transfer learning with ensemble of multiple feature representations,
in: 16th IEEE International Conference on Software Engineering Research, Management and
Applications, SERA 2018, Kunming, China, June 13–15, 2018, publisherIEEE Computer Society,
2018a, pp. 54–61. https://doi.org/10.1109/SERA.2018.8477189

25. X. Liu, G. Wang, Z. Cai, H. Zhang, Bagging based ensemble transfer learning, J. Ambient Intell.
Humaniz. Comput., 7 (2016), 29–36. https://doi.org/10.1007/s12652-015-0296-5

26. Y. Chen, H. Jin, H. Jiang, D. Xu, R. Zheng, H. Liu, Gpu-based static state security analy-
sis in power systems, in: Advances in Services Computing - 9th Asia-Pacific Services Com-
puting Conference, APSCC 2015, Bangkok, Thailand, December 7-9, 2015, Proceedings, vol-
ume 9464 of seriesLecture Notes in Computer Science, publisherSpringer, 2015, pp. 258–267.
https://doi.org/10.1007/978-3-319-26979-5 19

27. V. Salehi, A. Mazloomzadeh, J. F. Fernandez, O. A. Mohammed, Real-time power system analysis
and security monitoring by WAMPAC systems, in: IEEE PES Innovative Smart Grid Technologies
Conference, ISGT 2012, Washington, DC, USA, January 16-20, 2012, publisherIEEE, 2012, pp.
1–8. https://doi.org/10.1109/ISGT.2012.6175768

28. X. Liu, G. Wang, Z. Cai, H. Zhang, Bagging based ensemble transfer learning, J. Ambient Intell.
Humaniz. Comput., 7 (2016), 29–36. https://doi.org/10.1007/s12652-015-0296-5

29. J. Ding, C. Lu, B. Li, A data-driven based security situational awareness framework for power sys-
tems, J. Signal Process. Syst., 94 (2022), 1159–1168. https://doi.org/10.1007/s11265-022-01741-
y

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8226–8240.

http://dx.doi.org/https://doi.org/10.1109/TGRS.2021.3129645
http://dx.doi.org/https://doi.org/10.1109/JBHI.2022.3140277
http://dx.doi.org/https://doi.org/10.1109/ICAASE56196.2022.9931581
http://dx.doi.org/https://doi.org/10.1145/3468784.3470769
http://dx.doi.org/https://doi.org/10.1109/JSTARS.2020.3006879
http://dx.doi.org/https://doi.org/10.1145/3394486.3403079
http://dx.doi.org/https://doi.org/10.1109/SERA.2018.8477189
http://dx.doi.org/https://doi.org/10.1007/s12652-015-0296-5
http://dx.doi.org/https://doi.org/10.1007/978-3-319-26979-5_19
http://dx.doi.org/https://doi.org/10.1109/ISGT.2012.6175768
http://dx.doi.org/https://doi.org/10.1007/s12652-015-0296-5
http://dx.doi.org/https://doi.org/10.1007/s11265-022-01741-y
http://dx.doi.org/https://doi.org/10.1007/s11265-022-01741-y


8240

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8226–8240.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Methodology
	Ensemble learning
	Transfer learning

	Evaluation
	Conclusion

