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Abstract: This paper presents the Elzaki homotopy perturbation transform scheme (EHPTS) to ana-
lyze the approximate solution of the multi-dimensional fractional diffusion equation. The Atangana-
Baleanu derivative is considered in the Caputo sense. First, we apply Elzaki transform (ET) to obtain
a recurrence relation without any assumption or restrictive variable. Then, this relation becomes very
easy to handle for the implementation of the homotopy perturbation scheme (HPS). We observe that
HPS produces the iterations in the form of convergence series that approaches the precise solution. We
provide the graphical representation in 2D plot distribution and 3D surface solution. The error analysis
shows that the solution derived by EHPTS is very close to the exact solution. The obtained series
shows that EHPTS is a very simple, straightforward, and efficient tool for other problems of fractional
derivatives.

Keywords: Elzaki transform; diffusion problems; homotopy perturbation scheme; approximate
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1. Introduction

The study of fractional calculus (FC) yields the development of ordinary calculus with the his-
tory of more than 300 years earlier. In real-world, fractional-order derivatives are nonlocal, whereas
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integer-order derivatives are local. Many physical phenomena are designed by fractional partial dif-
ferential equations arising in biology, sociology, medicine, hydrodynamics, computational modeling,
chemical kinetics and among others [1–3]. One of the most exciting and challenging study to inves-
tigate the exact solution of some differential problem in physical science. Dong and Gao [4] derived
an integral formulation of the nonlocal operator Ginzburg-Landau equation with the half Laplacian.
To overcome this situation, numerous mathematical strategies have been put forth to configure the ap-
proximate solutions of these problems, such that Laplace iterative transform method [5], q-homotopy
analysis Sumudu transform method [6], ρ-Laplace transform method [7, 8], Haar wavelet method [9],
Chebyshev spectral collocation method [10], extended modified auxiliary [11] and many others. Re-
cently, various type of concepts and formulas of fractional operators are studied such as Riemann and
Liouville [12], Caputo and Fabrizio [13], Atangana and Baleanu [14], and Liouville and Caputo [15].
Later, Abro and Atangana [16] showed that Liouville-Caputo and Atangana-Baleanu operators have
excellent fractional retrieves. Caputo and Fabrizio [17] proposed a new concept of fractional derivative
with a stabilize kernel to represent the temporal and spatial variables in two different ways. Toufik
and Atangana [18] established a novel notion of fractional differentiation with a non-local and non-
singular kernel to expand the limitations of the traditional Riemann-Liouville and Caputo fractional
derivatives to solve linear and non-linear fractional differential equations. Gao et al. [19,20] presented
a new method to achieve a smooth decay rates for the damped wave problems with nonlinear acoustic
boundary conditions.

The diffusion equation with time fractional derivative presents the density dynamics in a material
undergoing diffusion. Jaradat et al. [21] provided the extended fractional power series approach for
the analytical solution of 2D diffusion, wave-like, telegraph, and Burgers models. They obtained the
results and claimed that both schemes are in excellent agreement. Dehghan and Shakeri [22] provided
variational iteration method for solving the Cauchy reaction–diffusion problem. Singh and Srivas-
tava [23] obtained the approximate series solution of multi-dimensional with time-fractional derivative
using reduced differential transform method. Shah et al. [24] used natural transform method for the
analytical solution of fractional order diffusion equations. Kumar et al. [25] used Laplace transform
for the analytical solution of fractional multi-dimensional diffusion equations.

He [26, 27] studied an idea of the HPS for the analytical results of ordinary and partial differential
problems. HPS provided the excellent findings and show the rate of convergence toward the precise
solution than other analytical approaches in literature. Odibat and Momani [28] have demonstrated
the significance of HPS in large number of fields and showed that HPS has an excellent treatment
in providing the exact solution of these problems. Tarig M. Elzaki [29] established a new approach
named as Elzaki transform (ET) to evaluate the approximate solutions in a wide range of areas. The
ET is a remarkable tool in order to show the physical nature of the differential problems compared
to other schemes. Recently, many authors studied the Elzaki transform involving Atangana-Baleanu
fractional derivative operator for various fields such as alcohol drinking model [30], Hirota-Satsuma
KdV equations [31], nonlinear regularized long-wave models, but all these approaches have some
limitations and restrictions.

In this paper, we eliminate these draw backs and study the Elzaki transform combined with the
HPS involving Atangana-Baleanu fractional derivative operator in Caputo sense for the approximate
solution multi-dimensional diffusion problems. The reason for using Atangana-Baleanu fractional
derivatives is its nonlocal properties and its capability to deal the complex behavior more efficiently
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than other operators. The obtained series show the significant results and we see that the computational
series approaches the precise results with few repetitions. This paper is designed as: In Section 2,
we define a few basic definitions of Atangana-Baleanu fractional derivative operator in Caputo sense
and Elazki transform. We formulate the strategy of EHPTS to achieve the numerical solution of the
differential problems in Section 3. We provide a three-example approach for assessing the validity and
dependability of EHPTS in Section 4 and we depict the conclusion in last Section 5.

2. Basic definitions

Definition 2.1. The Caputo fractional derivative (CFD) is given as [32]

Dαηϑ(η) =
1

(m − α)

∫ η

0

ϑm(v)
(η − v)α+1+m dv, m − 1 < α ≤ m. (2.1)

Definition 2.2. The Atangana-Baleanu Caputo (ABC) operator is defined as [33]

Dαηϑ(η) =
N(α)
1 − α

∫ η

m
ϑ′(v)Eα

[
−
α(η − v)α

1 − α

]
dv, (2.2)

where ϑ ∈ H1(α′, β′), β′ > α′, α ∈ [0, 1], Eα is Mittag Leffler function, N(α) is normalisation
function and N(0) = N(1) = 1.

Definition 2.3. The fractional integral operator in ABC sense is given as [33]

Iαη (ϑ(η)) =
1 − α
N(α)

ϑ(η) +
α

Γ(α)N(α)

∫ η

m
ϑ(v)(η − v)α−1dv. (2.3)

Definition 2.4. The Elzaki transform is given as [34]

E[ϑ(η)] = R( f ) = f
∫ ∞

0
e
−
η

f ϑ(η)dη, k1 ≤ f ≤ k2. (2.4)

Propositions: The differential properties of ET are defined as [35]

E[ηn] = n! f n+2,

E[ϑ′(η)] =
E[ϑ(η)]

f
− fϑ(0),

E[ϑ′′(η)] =
E[ϑ(η)]

f 2 − ϑ(0) − fϑ′(0),

(2.5)

Definition 2.5. The Elzaki transform of Dαηϑ(η) CFD operator is as

E[Dαηϑ(η)] = f −αR( f ) −
m−1∑
k=0

f 2−α+kϑk(0), m − 1 < α < m. (2.6)

Definition 2.6. The Elzaki transform of ABCDαηϑ(η) under ABC operator is as

E[ABCDαηϑ(η)] =
N(α)

α f α + 1 − α

(
R( f )

f
− fϑ(0)

)
, (2.7)

where f is the transfer parameter of η such that E[ϑ(η)] = R( f ).
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3. Formulation of EHTM

Consider a fractional partial differential equation in the following form,

ABCDαηϑ(θ1, η) + Lϑ(θ1, η) + Mϑ(θ1, η) = g(θ1, η), (3.1)

with the following initial condition

ϑ(θ1, 0) = a, (3.2)

here ABCDαηϑ represents ABC fractional derivative operator, a is constants. where L and M are linear
and nonlinear operators, g(θ1, η) in known term.
Employing ET on Eq (3.1), we obtain

E
[ABC

Dαηϑ(θ1, η) + Lϑ(θ1, η) + Mϑ(θ1, η)
]
= E[g(θ1, η)]. (3.3)

By the property of the ET differentiation, we have

N(α)
α f α + 1 − α

[
E[ϑ(θ1, η)] − f 2ϑ(θ1, 0)

]
= E[g(θ1, η)] − E

[
Lϑ(θ1, η) + Mu(θ1, η)

]
,

which can be written as

E[ϑ(θ1, η)] = f 2ϑ(θ1, 0) +
α f α + 1 − α

N(α)
E[g(θ1, η)] −

α f α + 1 − α
N(α)

E
[
Lϑ(θ1, η) + Mϑ(θ1, η)

]
.

Employing the inverse ET, we get

ϑ(θ1, η) = E−1
[
f 2ϑ(θ1, 0) +

α f α + 1 − α
N(α)

E[g(θ1, η)]
]
−

[α f α + 1 − α
N(α)

E
{
Lϑ(θ1, η) + Mϑ(θ1, η)

}]
.

In other words, we may also write it as

ϑ(θ1, η) = G(θ1, η) −
[α f α + 1 − α

N(α)
E
{
Lϑ(θ1, η) + Mϑ(θ1, η)

}]
. (3.4)

where

ϑ(θ1, η) = G(θ1, η) − E−1
[
f 2ϑ(θ1, 0) +

α f α + 1 − α
N(α)

E[g(θ1, η)]
]
.

Now, we apply HPS on Eq (3.4). Let

ϑ(η) =
∞∑

i=0

piϑi(n) = ϑ0 + p1ϑ1 + p2ϑ2 + · · · , (3.5)

where p is homotopy parameter and Mϑ(θ1, η) can be calculated by using formula,

Mϑ(θ1, η) =
∞∑

i=0

piHi(ϑ) = H0 + p1H1 + p2H2 + · · · , (3.6)
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where He’s polynomial are calculated as

Hn(ϑ0 + ϑ1 + · · · + ϑn) =
1
n!
∂n

∂pn

(
M

( ∞∑
i=0

piϑi

))
p=0

, n = 0, 1, 2, · · · (3.7)

Put Eqs (3.5)–(3.7) in Eq (3.4), we get

∞∑
i=0

piϑ(θ1, η) = G(θ1, η) −
[α f α + 1 − α

N(α)
E
{
L
∞∑

i=0

piϑi(θ1, η) +
∞∑

i=0

piHi

}]
. (3.8)

and similar power of p produces the following iterations, we get

p0 : ϑ0(θ1, η) = G(θ1, η),

p1 : ϑ1(θ1, η) = −E−1
[
α f α + 1 − α

N(α)
E
{
ϑ0(θ1, η) + H0(ϑ)

}]
,

p2 : ϑ2(θ1, η) = −E−1
[
α f α + 1 − α

N(α)
E
{
ϑ1(θ1, η) + H1(ϑ)

}]
,

p3 : ϑ3(θ1, η) = −E−1
[
α f α + 1 − α

N(α)
E
{
ϑ2(θ1, η) + H2(ϑ)

}]
,

...

(3.9)

on continuing, these iterations can be written in the following series

ϑ(θ1, η) = ϑ0(θ1, η) + ϑ1(θ1, η) + ϑ2(θ1, η) + ϑ3(θ1, η) + · · · =
∞∑

i=0

ϑi. (3.10)

which represents the approximate solution of the differential problem (3.1).

4. Numerical applications

Some numerical applications are provided to confirm the significance of EHPTS and the physical
behavior through the graphical representation. It is noticed that only few iterations are enough to
demonstrate the accuracy of EHPTS.

4.1. Example 1

Consider a one-dimensional fractional diffusion problem

∂αϑ

∂ηα
=
∂2ϑ

∂θ21
+ sin θ1, (4.1)

with the initial condition

ϑ(θ1, 0) = cos θ1, (4.2)
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and boundary condition

ϑ(0, η) = E−η, ϑ(π, η) = −E−η. (4.3)

Taking ET on Eq (4.1), we get

E
[∂αϑ
∂ηα

]
= E

[∂2ϑ

∂θ21
+ sin θ1

]
.

Employing the differential properties of ET under ABC operator, we get

N(α)
α f α + 1 − α

[
E[ϑ(θ1, η)] − f 2ϑ(θ1, 0)

]
= E

[∂2ϑ

∂θ21

]
+ f 2 sin θ1,

it may also be written as

E[ϑ(θ1, η)] = f 2ϑ(θ1, 0)) +
α f α + 1 − α

N(α)
f 2 sin θ1 +

α f α + 1 − α
N(α)

E
[∂2ϑ

∂θ21

]
. (4.4)

Taking inverse ET on Eq (4.4), we get, we get

ϑ(θ1, η) = cos θ1 + sin θ1
[ αηα

Γ(α + 1)
+ (1 − α)

]
+ E−1

[
α f α + 1 − α

N(α)
E
{
∂2ϑ

∂θ21

}]
. (4.5)

Applying HPS on Eq (4.5), we get

∞∑
i=0

piϑ(θ1, η) = cos θ1 + sin θ1
[ αηα

Γ(α + 1)
+ (1 − α)

]
+ E−1

[
α f α + 1 − α

N(α)
E
{ ∞∑

i=0

pi∂
2ϑ

∂θ21

}]
. (4.6)

Equating p on both sides, we have

p0 : ϑ0(θ1, η) = cos θ1 + sin θ1
[ αηα

Γ(α + 1)
+ (1 − α)

]
,

p1 : ϑ1(θ1, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ0

∂θ21

}]
,

p2 : ϑ2(θ1, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ1

∂θ21

}]
,

....

ϑ0(θ1, η) = cos θ1 + sin θ1
[ αηα

Γ(α + 1)
+ (1 − α)

]
,

ϑ1(θ1, η) = −
αηα

Γ(α + 1)
cos θ1 + (1 − α) cos θ1 − sin θ1

[ 2η2α

Γ(2α + 1)
+

(1 − α2)ηα

Γ(α + 1)
+ (1 − α)2

]
,

ϑ2(θ1, η) =
αη2α

Γ(2α + 1)
cos θ1 +

(1 − α)ηα

Γ(α + 1)
cos θ1 +

α(1 − α)ηα

Γ(α + 1)
+ (1 − α2) cos θ1
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+ sin θ1
[ αη3α

Γ(3α + 1)
+
α(1 − α)η2α

Γ(2α + 1)
+
α(1 − α2)η2α

Γ(2α + 1)
+

(1 − α)(1 − α2)ηα

Γ(α + 1)
+
α(1 − α)2ηα

Γ(α + 1)
+ (1 − α)3

]
,

similarly proceeding this process, we can obtain this iteration series such as

ϑ(θ1, η) = cos θ1 + sin θ1
[ αηα

Γ(α + 1)
+ (1 − α)

]
−
αηα

Γ(α + 1)
cos θ1 + (1 − α) cos θ1 − sin θ1

[ αη2α

Γ(2α + 1)
+

(1 − α2)ηα

Γ(α + 1)
+ (1 − α)2

]
+
αη2α

Γ(2α + 1)
cos θ1 +

(1 − α)ηα

Γ(α + 1)
cos θ1 +

α(1 − α)ηα

Γ(α + 1)
+ (1 − α2) cos θ1

+ sin θ1
[ αη3α

Γ(3α + 1)
+
α(1 − α)η2α

Γ(2α + 1)
+
α(1 − α2)η2α

Γ(2α + 1)
+

(1 − α)(1 − α2)ηα

Γ(α + 1)
+
α(1 − α)2ηα

Γ(α + 1)
+ (1 − α)3

]
,

(4.7)

which provides the close contact at α = 1 such that

Table 1. The EHPTS, exact and absolute error of ϑ(θ1, η) for Problem 1 at various value of
θ1 with α = 1 and η = 0.01.

θ1 EHPTS values Exact values Absolute error
0.1 0.986099 0.986097 2×10−7

0.2 0.972295 0.972292 3×10−6

0.3 0.948776 0.948771 5×10−6

0.4 0.915778 0.915771 7×10−6

0.5 0.873629 0.873621 8×10−6

0.6 0.822751 0.822742 9×10−6

0.7 0.763653 0.763642 1.1×10−6

0.8 0.696924 0.696912 1.2×10−5

0.9 0.623232 0.623219 1.3×10−5

1.0 0.543313 0.543299 8.6×10−4

ϑ(θ1, η) = (1 − e−η) sin θ1 + e−η cos θ1. (4.8)
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(a) The solution surface of Eq
(4.7) at α = 0.50

(b) The solution surface of Eq
(4.7) at α = 0.75

(c) The solution surface of Eq
(4.7) at α = 1

(d) The solution surface of Eq
(4.8) at α = 1

Figure 1. The approximate and exact solution surface for one-dimensional equation.

α=0.25

α=0.50

α=0.75

1 2 3 4 5
θ1

-3

-2

-1

1

2

3

η

ϑ (θ1 , η)

(a) 2D Plot distribution at various frac-
tional order of α

Approximate line

Exact line

1 2 3 4 5
θ1

-0.5

0.5

η

ϑ (θ1 , η)

(b) 2D Plot distribution at fractional order
of α = 1

Figure 2. Graphical error between the EHPTS and the exact results.

In Figure 1, we plot (a) surface solution for approximate results (b) surface solution for exact results.
We indicate the performance of the EHPTS at α = 1 with −1 ≤ θ1 ≤ 1 and 0 ≤ η ≤ 1 respectively.
Figure 2 represents the graphical error between the approximate solution obtained by the EHPTS for
(4.7) under ABC fractional derivative operators and the exact solutions for (4.8) at 0 ≤ θ1 ≤ 5 and
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η = 0.5. We observe that both solutions are in close contact and present that EHPTS is extremely
reliable and achieves the convenient findings.

4.2. Example 2

Next, consider a two-dimensional fractional diffusion problem

∂αϑ

∂ηα
=
∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
− ϑ, (4.9)

with the initial condition

ϑ(θ1, θ2, 0) = sin θ1 cos θ2, (4.10)

and boundary condition

ϑ(θ1, 0, η) = −ϑ(θ1, π, η) = e−3η sin θ1,
ϑ(0, θ2, η) = ϑ(π, θ2, η) = 0,

(4.11)

Taking ET on Eq (4.9), we get

E
[∂αϑ
∂ηα

]
= E

[∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
− ϑ

]
,

Employing the differential properties of ET under ABC operator, we get

N(α)
α f α + 1 − α

[
E[ϑ(θ1, η)] − f 2ϑ(θ1, 0)

]
= E

[∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
− ϑ

]
,

it may also be written as

E[ϑ(θ1, η)] = f 2ϑ(θ1, 0)) +
α f α + 1 − α

N(α)
E
[∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
− ϑ

]
, (4.12)

Taking inverse ET on Eq (4.12), we get

ϑ(θ1, η) = ϑ(θ1, 0) + E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
− ϑ

}]
. (4.13)

Applying HPS on Eq (4.13), we get

∞∑
i=0

piϑ(θ1, η) = sin θ1 cos θ2 + E−1
[
α f α + 1 − α

N(α)
E
{ ∞∑

i=0

pi∂
2ϑ

∂θ21
+

∞∑
i=0

pi∂
2ϑ

∂θ22
−

∞∑
i=0

piϑ
}]
.

Equating p on both sides, we have

p0 : ϑ0(θ1, θ2, η) = ϑ(θ1, 0, η),

p1 : ϑ1(θ1, θ2, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ0

∂θ21
+
∂2ϑ0

∂θ22
− ϑ0

}]
,
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p2 : ϑ2(θ1, θ2, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ1

∂θ21
+
∂2ϑ1

∂θ22
− ϑ1

}]
,

p3 : ϑ3(θ1, θ2, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ2

∂θ21
+
∂2ϑ2

∂θ22
− ϑ2

}]
,

p4 : ϑ4(θ1, θ2, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ3

∂θ21
+
∂2ϑ3

∂θ22
− ϑ3

}]
,

....

ϑ0(θ1, θ2, η) = sin θ1 cos θ2,

ϑ1(θ1, θ2, η) = − 3 sin θ1 cos θ2
[ αηα

Γ(α + 1)
+ (1 − α)

]
,

ϑ2(θ1, θ2, η) =9 sin θ1 cos θ2
[ α2η2α

Γ(2α + 1)
+

2α(1 − α)ηα

Γ(α + 1)
+ (1 − α)2

]
,

ϑ3(θ1, θ2, η) = − 27 sin θ1 cos θ2
[ α3η3α

Γ(3α + 1)
+

3α2(1 − α)η2α

Γ(2α + 1)
+

3α(1 − α)2ηα

Γ(α + 1)
+ (1 − α)3

]
,

ϑ4(θ1, θ2, η) =81 sin θ1 cos θ2
[ α4η3α

Γ(4α + 1)
+

4α3(1 − α)η3α

Γ(3α + 1)
+

6α2(1 − α)2η2α

Γ(2α + 1)
+

2α(1 − α)3ηα

Γ(α + 1)
+ (1 − α)4

]
,

similarly proceeding this process, we can obtain this iteration series such as

ϑ(θ1, θ2, η) = sin(θ1) cos(θ2) − 3 sin θ1 cos θ2
[ αηα

Γ(α + 1)
+ (1 − α)

]
+ 9 sin θ1 cos θ2

[ α2η2α

Γ(2α + 1)
+

2α(1 − α)ηα

Γ(α + 1)
+ (1 − α)2

]
− 27 sin θ1 cos θ2

[ α3η3α

Γ(3α + 1)
+

3α2(1 − α)η2α

Γ(2α + 1)
+

3α(1 − α)2ηα

Γ(α + 1)
+ (1 − α)3

]
+ 81 sin θ1 cos θ2

[ α4η3α

Γ(4α + 1)
+

4α3(1 − α)η3α

Γ(3α + 1)
+

6α2(1 − α)2η2α

Γ(2α + 1)
+

2α(1 − α)3ηα

Γ(α + 1)
+ (1 − α)4

]
,

(4.14)
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Table 2. The EHPTS, exact and absolute error of ϑ(θ1, θ2, η) for Problem 2 at various value
of θ1 with α = 1 and θ2 = 0.1, η = 0.1.

θ1 EHPTS values Exact values Absolute error
0.1 0.0735908 0.0735889 1.9×10−6

0.2 0.146446 0.1046443 3×10−6

0.3 0.217839 0.217833 6×10−6

0.4 0.287054 0.287047 7×10−6

0.5 0.353402 0.353393 9×10−6

0.6 0.416219 0.416208 1.1×10−5

0.7 0.474876 0.474864 1.2×10−5

0.8 0.528789 0.528775 1.4×10−5

0.9 0.577419 0.577404 1.5×10−5

1.0 0.620279 0.620263 1.6×10−5

which provides the close contact at α = 1 such that

ϑ(θ1, θ2, η) = e−3η sin θ1 cos θ2. (4.15)

(a) The solution surface of Eq
(4.14) at α = 0.50

(b) The solution surface of Eq
(4.14) at α = 0.75

(c) The solution surface of Eq
(4.14) at α = 1

(d) The exact surface of Eq (4.15)
at α = 1

Figure 3. The approximate and exact solution surface for two-dimensional equation.
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(a) 2D Plot distribution at various frac-
tional order of α

Approximate line

Exact line
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-0.6

-0.4
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0.2

0.4

0.6

η

ϑ (θ1 , θ2 , η)

(b) 2D Plot distribution at fractional order
of α = 1

Figure 4. Graphical error between the EHPTS and the exact results.

In Figure 3, we plot (a) surface solution for approximate results (b) surface solution for exact results.
We indicate the performance of the EHPTS at α = 1 with −1 ≤ θ1 ≤ 1, θ2 = 0.1 and 0 ≤ η ≤ 0.5
respectively. Figure 4 represents the graphical error between the approximate solution obtained by
the EHPTS for (4.14) under ABC fractional derivative operators and the exact solutions for (4.23) at
0 ≤ θ1 ≤ 5, θ2 = 0.5 and η = 0.25, 0.50, 0.75 and 1. We observe that both solutions are in close contact
and present that EHPTS is extremely reliable and achieves the convenient findings.

4.3. Example 3

Finally, consider a three-dimensional fractional diffusion problem

∂αϑ

∂ηα
=
∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
+
∂2ϑ

∂θ23
− 2ϑ, (4.16)

with the initial condition

ϑ(θ1, θ2, θ3, 0) = sin θ1 sin θ2 sin θ3, (4.17)

and boundary condition

ϑ(0, θ2, θ3, η) = ϑ(π, θ2, θ3, η) = 0,
ϑ(θ1, 0, θ3, η) = ϑ(θ1, π, θ3, η) = 0,
ϑ(θ1, θ2, 0, η) = ϑ(θ1, θ2, π, η) = 0,

(4.18)

Taking ET on Eq (4.16), we get

E
[∂αϑ
∂ηα

]
= E

[∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
+
∂2ϑ

∂θ23
− 2ϑ

]
,

Employing the differential properties of ET under ABC operator, we get

N(α)
α f α + 1 − α

[
E[ϑ(θ1, η)] − f 2ϑ(θ1, 0)

]
= E

[∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
+
∂2ϑ

∂θ23
− 2ϑ

]
, (4.19)
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it may also be written as

E[ϑ(θ1, η)] = f 2ϑ(θ1, 0)) +
α f α + 1 − α

N(α)
E
[∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
+
∂2ϑ

∂θ23
− 2ϑ

]
, (4.20)

Taking inverse ET on Eq (4.20), we get, we get

ϑ(θ1, η) = ϑ(θ1, 0) + E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ

∂θ21
+
∂2ϑ

∂θ22
+
∂2ϑ

∂θ23
− 2ϑ

}]
. (4.21)

Applying HPS on Eq (4.21), we get, we get

∞∑
i=0

piϑ(θ1, η) = sin θ1 sin θ2 sin θ3 + E−1
[
α f α + 1 − α

N(α)
E
{ ∞∑

i=0

pi∂
2ϑ

∂θ21
+

∞∑
i=0

pi∂
2ϑ

∂θ22
+

∞∑
i=0

pi∂
2ϑ

∂θ23
− 2

∞∑
i=0

piϑ
}]
.

Equating p on both sides, we have

p0 : ϑ0(θ1, θ2, θ3, η) = ϑ(θ1, θ2, θ3, 0),

p1 : ϑ1(θ1, θ2, θ3, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ0

∂θ21
+
∂2ϑ0

∂θ22
+
∂2ϑ0

∂θ23
− 2ϑ0

}]
,

p2 : ϑ2(θ1, θ2, θ3, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ1

∂θ21
+
∂2ϑ1

∂θ22
+
∂2ϑ1

∂θ23
− 2ϑ1

}]
,

p3 : ϑ3(θ1, θ2, θ3, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ2

∂θ21
+
∂2ϑ2

∂θ22
+
∂2ϑ2

∂θ23
− 2ϑ2

}]
,

p4 : ϑ4(θ1, θ2, θ3, η) = E−1
[
α f α + 1 − α

N(α)
E
{
∂2ϑ3

∂θ21
+
∂2ϑ3

∂θ22
+
∂2ϑ3

∂θ23
− 2ϑ3

}]
,

....

ϑ0(θ1, θ2, θ3, η) = sin θ1 sin θ2 sin θ3,

ϑ1(θ1, θ2, θ3, η) = − 5 sin θ1 sin θ2 sin θ3
[ αηα

Γ(α + 1)
+ (1 − α)

]
,

ϑ2(θ1, θ2, θ3, η) =25 sin θ1 sin θ2 sin θ3
[ α2η2α

Γ(2α + 1)
+

2α(1 − α)ηα

Γ(α + 1)
+ (1 − α)2

]
,

ϑ3(θ1, θ2, θ3, η) = − 125 sin θ1 sin θ2 sin θ3
[ α3η3α

Γ(3α + 1)
+

3α2(1 − α)η2α

Γ(2α + 1)
+

3α(1 − α)2ηα

Γ(α + 1)
+ (1 − α)3

]
,

ϑ4(θ1, θ2, θ3, η) =625 sin θ1 sin θ2 sin θ3
[ α4η3α

Γ(4α + 1)
+

4α3(1 − α)η3α

Γ(3α + 1)
+

6α2(1 − α)2η2α

Γ(2α + 1)
+

2α(1 − α)3ηα

Γ(α + 1)
+ (1 − α)4

]
,
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similarly proceeding this process, we can obtain this iteration series such as

ϑ(θ1, θ2, θ3, η) = sin θ1 sin θ2 sin θ3 − 5 sin θ1 sin θ2 sin θ3
[ αηα

Γ(α + 1)
+ (1 − α)

]
+ 25 sin θ1 sin θ2 sin θ3

[ α2η2α

Γ(2α + 1)
+

2α(1 − α)ηα

Γ(α + 1)
+ (1 − α)2

]
− 125 sin θ1 sin θ2 sin θ3

[ α3η3α

Γ(3α + 1)
+

3α2(1 − α)η2α

Γ(2α + 1)
+

3α(1 − α)2ηα

Γ(α + 1)
+ (1 − α)3

]
+ 625 sin θ1 sin θ2 sin θ3

[ α4η3α

Γ(4α + 1)
+

4α3(1 − α)η3α

Γ(3α + 1)
+

6α2(1 − α)2η2α

Γ(2α + 1)
+

2α(1 − α)3ηα

Γ(α + 1)
+ (1 − α)4

]
,

(4.22)

Table 3. The EHPTS, exact and absolute error of ϑ(θ1, θ2, θ3, η) for Problem 3 at various
value of θ1 with α = 1 and θ2 = 0.1, θ3 = 0.1 and η = 0.0.5.

x Approximate values Exact values Absolute error
0.1 0.00077427 0.000774393 2.7×10−7

0.2 0.0015408 0.00154105 2.5×10−7

0.3 0.00229194 0.00229231 3.7×10−7

0.4 0.00302018 0.00302066 4.8×10−7

0.5 0.00371824 0.00371883 5.9×10−7

0.6 0.00437915 0.00437985 7×10−7

0.7 0.00499631 0.0049971 7.9×10−7

0.8 0.00556354 0.00556443 8.9×10−7

0.9 0.00607518 0.00607615 9.7×10−7

1.0 0.00652613 0.00652717 1.04×10−6

which provides the close contact at α = 1 such that

ϑ(θ1, θ2, θ3, η) = e−5η sin θ1 sin θ2 sin θ3. (4.23)
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(a) The solution surface of Eq
(4.22) at α = 0.50

(b) The solution surface of Eq
(4.22) at α = 0.75

(c) The solution surface of Eq
(4.22) at α = 1

(d) The exact surface of Eq (4.23)
at α = 1

Figure 5. The approximate and exact solution surface for three-dimensional equation.
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(a) 2D Plot distribution at various frac-
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(b) 2D Plot distribution at fractional order
of α = 1

Figure 6. Graphical error between the EHPTS and the exact results.

In Figure 5, we plot (a) surface solution for approximate results at α = 0.50, 0.75, 1 (b) surface
solution for exact results. We indicate the performance of the EHPTS at α = 1 with 0 ≤ θ1 ≤ 10,
θ2 = 0.1, θ3 = 0.1 and 0 ≤ η ≤ 0.1 respectively. Figure 6 represents the graphical error between
the approximate solution obtained by the EHPTS for (4.22) under ABC fractional derivative operators
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and the exact solutions for (4.23) at 0 ≤ θ1 ≤ 10, θ2 = 0.1, θ3 = 0.1 and η = 0.25, 0.50, 0.75 and 1.
We observe that both solutions are in close contact and present that EHPTS is extremely reliable and
achieves the convenient findings.

5. Conclusion and Future Interact

This paper presents the study of EHPTS for obtaining the approximate solution of multi-
dimensional diffusion problems under ABC fractional order derivative. In addition, HPS produces
successive iterations and shows the results in the form of a series. This strategy does not involve rec-
tified constants, steady constraints, or massive integrals due to the noise-free results. Some examples
are carried out to provide the efficiency of EHPTS and showed the results in better obligations towards
the precise results. We compute the values of iterations and graphical results using the Mathematica
software 11. The physical solutions behavior of the graphical representation and plot distribution yield
that EHPTS is a very powerful and efficient method to produce the approximate solution of partial dif-
ferential equations that arise in science and engineering. This method evaluates and controls the series
of solutions that quickly arrive at the precise solution in a condensed acceptable domain. In future,
we consider the strategy of EHPTS for other fractional differential problems and compete with other
exceedingly fractional order systems of equations.
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