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Abstract: McCulloch-Pitts neuron-based neural networks have been the mainstream deep learning
methods, achieving breakthrough in various real-world applications. However, McCulloch-Pitts
neuron is also under longtime criticism of being overly simplistic. To alleviate this issue, the dendritic
neuron model (DNM), which employs non-linear information processing capabilities of dendrites,
has been widely used for prediction and classification tasks. In this study, we innovatively propose
a hybrid approach to co-evolve DNM in contrast to back propagation (BP) techniques, which are
sensitive to initial circumstances and readily fall into local minima. The whale optimization algorithm
is improved by spherical search learning to perform co-evolution through dynamic hybridizing. Eleven
classification datasets were selected from the well-known UCI Machine Learning Repository. Its
efficiency in our model was verified by statistical analysis of convergence speed and Wilcoxon sign-
rank tests, with receiver operating characteristic curves and the calculation of area under the curve.
In terms of classification accuracy, the proposed co-evolution method beats 10 existing cutting-edge
non-BP methods and BP, suggesting that well-learned DNMs are computationally significantly more
potent than conventional McCulloch-Pitts types and can be employed as the building blocks for the
next-generation deep learning methods.

Keywords: evolutionary algorithms; optimization methods; whale optimization algorithm;
back-propagation; artificial neural networks; deep learning; dendritic neuron model

1. Introduction

Artificial neural networks have been studied for more than half a century [1]. Among which, deep
learning [2], over the last two decades, has dominated the area of artificial intelligence research as a
result of the advancement of computer technology. Speech recognition has benefited greatly from
deep learning [3]. Visual classification and recognition [4], unmanned vehicles [5, 6] as well as
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protein structure prediction [7] also achieve fundamental technical evolution with the aid of deep
learning. Nowadays, the popular generative adversarial networks [8], neural network architecture
search [9], migration learning [10], federation learning [11], multitask learning [12],
meta-learning [5] and attention models [13] are all built based on neural networks.

Traditional neural networks usually contain one or two hidden layers, where each “neuron” is a very
simple computational unit [14]. A neuron receives input signals from others, which are amplified by
the connection rights, and when they reach a neuron, if the total amount exceeds a certain threshold,
the current neuron is “activated” and passes its output signals outwards. In fact, each neuron is a very
simple computational equation, and a so-called neural network is a mathematical system obtained by
nesting and iterating many such computational equations. The basic computational units of a neural
network are continuously differentiable. In the past, the sigmoid function was used as an activation
function of the neuron model, which was continuously differentiable. Recently, the rectified linear
units (ReLU) is used as an activation function in deep neural networks, which is also continuously
differentiable [15]. Thus, it is relatively easy to calculate the “gradient” of the whole system. Therefore,
the BP algorithm is used to train the neural network by gradient descent optimization [16]. Before the
work of Hinton et al. [17], it was not possible to train a neural network with more than five layers of the
meridians because the neural network suffered from “gradient disappearance” during training. When
the BP algorithm back-propagates the output layer of the neural network to the part far from it, a “zero”
adjustment may be derived, so that the part of the network far from the output layer cannot be adjusted
according to the output error, thus making the training fail. This is a huge technical hurdle to develop
deep neural networks based on traditional neural networks, and Hinton et al. demonstrate that deep
neural networks may be trained using “joint fine-tuning after layer-by-layer training” to avoid gradient
disappearance [17].

The complexity of a machine learning model is related to its capacity, which has a significant
impact on its learning ability [18, 19]. If the complexity of a learning model can be increased, then
its learning ability can also be improved. There are two ways to do this for neural network models:
make the models “deeper” or “wider” [20–22]. From the perspective of improving the complexity of
the models, “deepening” is more effective because, in simple terms, only the amount of computational
units is increased through “widening” and then that of basis functions; whereas through “deepening”,
the amount of not only basis functions but also layers of function nesting is increased, so the general
function expression ability will be stronger. Therefore, in order to improve the complexity, the network
should be “deepened” [23].

However, instead of building neural networks in increasing depth, some researchers have
reconsidered the problem of modeling neurons from scratch [24]. The McCulloch-Pitts neuron has
long been criticized for being overly simplified, using only weight to represent the strength of the
connection between two neurons [25, 26]. The complexity of a genuine biological neuron allows it to
exhibit both temporal and spatial characteristics. Some spiking neuron models have been presented,
which were motivated by the capacity of neurons to process temporal information [27–30]. As basic
units, due to their rich temporal dynamics, the new generations of neural units created as a
consequence of the integration of spiking neuron models into deep learning [31] offer a great lot of
promise for handling challenging recognition and prediction tasks. On the other hand, the
construction of neuronal models based on their spatial functionality and large tree-like structures have
also received a lot of research [32]. However, it is traditionally believed that this requires multiple
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layers of McCulloch-Pitts neurons [33], and that individual neurons with large dendritic structures
remain a challenge to model [34, 35].

Evolutionary optimization and brain-like inspired deep learning are at the core of artificial
intelligence, both of which are inspired by the knowledge of processing and natural evolution in the
brain to obtain optimal solutions and advance artificial intelligence [36]. Evolutionary computation is
influenced by the natural selection mechanism of “superiority and inferiority” during biological
evolution based on the law of transmission of genetic information, which is simulated by iterative
programs that are used to solve the problems as an environment and seek optimal solutions through a
natural evolution in a population of possible solutions. In 2005, Julie Greensmith [37] proposed that
hazard theory doctrines and dendritic cell work mechanisms inspired immune algorithms that could
be used to exploit prior knowledge to construct new algorithms that were fault-tolerant, immune,
robust and evolutionary, and that optimal solutions closer to the dynamics in real-world problems
should be sought. With the deepening of brain-like perception and cognition, the understanding and
study of brain biomechanics as well as the sparsity, learning, selectivity, directionality, knowledge and
diversity of brain neurons, deep learning networks are now being built to simulate these
properties [32]. Thereby, the feedback connections between dendrites and dendrites, dendrites and
synapses, layers and layers as well as neurons and neurons are less studied and utilized [32].

A neuron contains 104 dendritic interconnections on average, which leads to a broad range of
neuronal morphology. The nonlinearity of dendrites explains the dynamics of various neurons, which
mechanistically demonstrates the role of biological neurons in various circuits with behavioral
significance [38]. Peripheral evidence has provided strong support for the robustness of dendritic
computation, such as auditory coincidence detection [39], direction selectivity of the local
computation of dendritic branches [40] and logical operations [41]. Most recently, studies have even
shown that complex exclusive OR (XOR) logical computations can be performed through dendrites.
Several dendritic neuron models have been proposed [42–44]. Logic ANDs and ORs models were
employed as synapses inside the dendritic tree for interaction in Koch and Segev’s logical neuron
model [45]. In a two-layer model of a single neuron given by Poirazi et al. [46], synaptic subunits
experienced nonlinear information processing in the sigma style. Legenstein and Maass [47] offered a
mathematical model that supported the system’s capacity to be self-organized in mixing various input
qualities. These models, albeit used to take advantage of synapses’ nonlinear properties, are unable to
resolve complicated issues, notably those involving nonlinear separation [47]. Recently, it was shown
that k-tree neuron models, which depicted dendritic structures as entire binary trees, excel at various
challenging machine learning tasks including creating and expanding MNIST [48]. However, as the
authors have pointed out [48], the model is biologically infeasible for presenting an unstructured input
from mathematical representations and one-dimensional computational activities. By articulating
synaptic processing in terms of sigmoid functions and dendritic interactions inside dendrites, which
are performed by multiplicative operations, the development of a new physiologically realistic
dendritic neuron model (DNM) has been made [49–51].

DNM has proved its capacity to solve difficult challenges as a single neuron model [50, 52–54]. Its
huge dendritic connection structure is considered, so as to construct individual neuron learning
models under the width structure, make full use of the nonlinear information processing mechanism
on the synapses and achieve an automatic deletion [55] on the neuron structure. The intelligent
algorithm of multi-objective evolutionary learning [56, 57] is used to complete the neurons in the
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idiosyncratic function module, hyper-parameters, network structure and learning algorithm
auto-evolution on itself. Evolutionary computation is combined with deep networks [58], in which
weight learning is used for weight optimization of neural networks, dynamic structure learning for
neural network structure search, and super-parametric learning for the optimization of neural network
parameters. The properties of the standard problem of deep learning networks are used to maintain
the diversity of populations, deep learning networks are used to replace the expensive process of
fitness evaluation, and deep neural networks are used to learn the solution selection mechanism of
evolutionary computation. Six evolutionary algorithms are presented to learn a novel dendritic neuron
model with successful applications to classification, fitting and prediction problems [50, 59]. In
addition, the authors use the “orthogonal experiment method” to systematically study the algorithm
parameters and obtain optimal parameter combinations. With continuous research on evolutionary
algorithms, the necessity of combining evolutionary computation with deep networks is becoming
more and more prominent. A training dendritic neuron model learning method is proposed based on
the differential evolutionary algorithm of scale-free networks, and the trained model shows very a
high prediction accuracy in real PV power prediction problems, through which successful applications
to classification and fitting problems are also achieved [60]. The classification and fitting issues have
been satisfactorily addressed using the trained model. The experimental findings demonstrate that the
learning method suggested in the research, which is based on the globally optimum differential
evolution algorithm, may be utilized to significantly enhance the overall performance of the dendritic
neuron model, are also successfully applied to complex function optimization and many practical
problems to train dendritic neuron models [61]. Gao extended the original dendritic neural network to
a full-complex dendritic neuron model (CDNM), deriving its error backpropagation algorithm in the
complex domain and comprehensively discussing its initialization conditions, with nine different
analytic functions as its activation functions [54]. The effectiveness of CDNM is successfully verified
for complex XOR, non-minimum phase balance problems, and complex wind energy prediction
problems. In addition, the combination of evolutionary computation and deep networks has shown
outstanding results in dealing with practical problems [58].

Although various evolutionary algorithms have been proposed to learn DNMs, creating a
cutting-edge DNM learning algorithm is necessary and challenging. Mirjalili introduced the whale
optimization algorithm (WOA) [62] in 2016 to optimize the solution of the objective function by
imitating the foraging behavior of whale schools in the ocean. WOA offers benefits such as
straightforward operation, fewer parameters to specify, and strong performance in finding the
optimum. Nevertheless, it has flaws including weak convergence precision and a tendency to quickly
enter local optimum. To address these shortcomings, the hybrid algorithm is also quite hot recently,
which compensates for their shortcomings through other algorithms. Depending on the spherical
search algorithm (SS) [63, 64] and WOA, we propose a novel hybrid algorithm, namely SSWOA, to
learn DNM. In SSWOA, the SS algorithm is used to improve the low convergence problem of WOA,
which tends to fall into local optima. The local exploitation of the search space is the main goal of the
WOA algorithm. WOA optimization can speed up convergence while preventing a local optimum by
modifying non-convergence factors, establishing adaptive position weights, and setting adaptive
thresholds. To our best knowledge, no hybrid algorithm was employed to understand the single
dendritic neuron framework.

The contributions made in this study are listed as follows: 1) We innovatively employed a dynamic
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mixing of two separate algorithms via an intricate co-evolutionary process to test if the hybrid
algorithm’s performance can be improved further while learning single dendritic neuron models. 2)
The approach outperforms the original evolutionary algorithm, a derivative of the WOA algorithm, as
well as several other methods to train neural models, according to extensive tests conducted in
roughly three directions. The SSWOA algorithm may be used to more effectively resolve challenging
practical problems from the standpoint of useful functions.

The remainder of the article is structured as follows: the details of DNM is elaborated in Section 2.
SSWOA for learning DNM are discussed in Section 3. Section 4 provides comparison findings on 11
common classification tasks. Finally, Section 5 provides a summary and future projections.

2. Model architecture

There are 1011 neurons in the brain, with a total of nearly 1015 neural connections among the
neurons. There is an average of 104 interconnections for a neuron upon dendrites, causing a vast range
of different neuronal morphology. Nonlinearity of dendrites accounts for the dynamics of various
neurons, which mechanistically explains the role of biological neurons in various circuits with
behavioral significance [38]. Each neuron is capable of unequally handling thousands of different
synaptic inputs. Moreover, the large dendritic structure of dendrites [32] can largely help explain why
biological neural networks are able to handle quite complex tasks but consume little energy. Not only
the postsynaptic signals are nonlinearly integrated in dendrites, but irrelevant background information
is also filtered out there [65]. A physiologically valid single-neuron model was presented in light of
the dendrites’ capacity for nonlinear information processing, that is, DNM [50, 51].

Figure 1. Dendritic neuron models: (a) the structure of neurons in biology, (b) the structure
of the theoretical DNM.

DNM include four layers, i.e., the synaptic layer, dendritic layer, membrane layer, and somatic
layer. The method by which dendritic neurons in living organisms acquire information is seen in
Figure 1(a). A biological model of dendrites and extracellular inputs from other neurons is shown in
Figure 1(b). In contrast, specifically, information from other neurons (i.e., stimuli) is collected in the
synaptic layer. Information collected from other neurons (i.e., stimuli) is collected in the synapses
and then transferred to the dendritic layer, where all of the data is multiplicatively processed, and the
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outcomes are subsequently sent to the membrane layer for accumulative processing. All of the results
are then added together and sent to the soma layer, where the outcome is processed using another
sigmoid function.

2.1. Dendritic layer

Synapses enable neurons to receive signals from axons or dendrites of other synapses by joining
them to other dendrites or axons. Each input signal has a unique weight or threshold that is connected
to a branch of the dendrite on the axon. The relationship between the ith (i = 1, 2, ...,N) synapse and
the jth ( j = 1, 2, ...,M) synaptic layer, which receives input signals, is shown by the formula:

Yi j =
1

1 + e−k(wi j xi−θi j)
(2.1)

In this equation, xi is the ith dendritic input, xi is 0 or 1, Yi j is the ith synaptic input to the jth output,
and k is a parameter that describes the strength of presynaptic and postsynaptic connections among
neurons. The connection parameters wi j and θi j [50] indicate the weighting as well as threshold of
synapses, respectively. A learning method will be used to teach these two sorts of parameters.

Figure 2. Four connection states of the synapse layers.

After a synapse is activated through the sigmoid function, there are four connectivity scenarios [49],
as is shown in Figure 2, replying on different scores of wi j and θi j: direct-connecting state is also known
as being excited to connect (●), the opposite-connecting state is also known as an inhibitory connection
( ❚), constant-1 connection ( 1O) and constant-0 connection ( 0O). Furthermore, these four states can be
separated into the six situations depicted in Figure 3. Presynaptic neural input is represented by the
horizontal axis, while synaptic layer output is represented by the vertical axis.

1) As is shown in Figure 3a(1), when 0≤ wi j < θi j, for example, if wi j = 1.0 and θi j = 1.5, then it
indicates that there is never a connection. Regardless of its input value, the result is a constant score of
0. As is shown in Figure 3a(2), when wi j < 0 < θi j, for example, if wi j = −1.0 and θi j = 0.5, the output
score is 0 regardless of the input.

2) As is shown in Figure 3(b), when wi j < θi j < 0, a backward connection is established, for
example, if wi j = −1.0 and θi j = −0.5, it indicates that regardless of whenever the input goes from 0 to
1, the potential is always inversely proportional to the input.
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3) As is shown in Figure 3(c), when 0 < θi j < wi j,there is a direct link created, which is a fascinating
relationship. For example, if wi j = 1.0 and θi j = 0.5, the input is proportional to the output anytime
when the input is changed from 0 to 1.

4) As is shown in Figure 3d(1), when θi j < 0 < wi j , for example, if wi j = 1.0 and θi j = −0.5, it
signifies that the output is a linked constant score of 1, which is independent of the input value. As is
shown in Figure 3 d(2), when θi j < wi j < 0, for example, if wi j = −1.0 and θi j = −1.5, 1 is the output
value, which is unrelated to the input.

Figure 3. Six kinds of parameter settings which result in four kinds of connections in DNM.

2.2. Dendrite layer

Impulses are sent from the synaptic layer to the dendritic layer, which receives them. Because
synapses are nonlinear, that is, nonlinear signals are processed at the dendritic layer using the
multiplication operation, which is the same as logical AND, and can be explained as follows:

Z j =

N∏
i=1

Yi j (2.2)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7594–7632.



7601

2.3. Membrane layer

Each dendrite sends signals to the membrane layer, which adds the results, before sending the
processed information to the soma bodies. A logical OR operation, which can be expressed as the term
for this summing process:

V =
M∑
j=1

Z j (2.3)

2.4. Soma layer

After layer-by-layer signal processing is finished, the soma layer receives membrane layer signals,
and the final result is determined using a sigmoid function, which is expressed as follows:

O =
1

1 + e−ks(V−θs)
(2.4)

where θs has a score range of [0, 1] and ks is a distance score that represents the distance between the
dendrites and the soma.

2.5. Neuronal pruning mechanism

Nodes and weights are eliminated through a pruning mechanism, which is the most important
feature of DNM. Some dendrites and synapses can be unnecessary since the DNM has a complete
connectivity pattern at first. The DNM can be pruned during training by recognizing superfluous
synapses and duplicated dendrites. For many practical challenges, a simpler and unique neural
structure can be generated. The neural pruning process consists of two parts: dendritic pruning and
synaptic pruning. For synaptic pruning, the synaptic output is always when the synaptic layer
receiving the axonal input is in a constant-1 connection. Because of the multiplication used in the
dendritic layer, any arbitrary score multiplied by 1 will equal itself in the dendritic layer, and none of
the results will change. There is clearly a constant-1 connection in which the synaptic input has the
least effect on the output of the dendritic layer. Thus, those synapses with a constant-1 connectivity
have such little impact on the dendritic layer’s output that it is possible to disregard them entirely.
Therefore, throughout the computation we may completely disregard these synaptic layers. For
pruning of dendrites, the output is always 0 when the synaptic layer receiving the input signal is in a
constant-0 connection, regardless of the input value. When one synaptic output is 0, the output of all
other synapses is also 0 due to the multiplication operation. With a synapse’s output being 0, the
entire dendritic branch’s outcome will also be 0. They should be removed because they barely affect
the outcome of the adjacent soma. Thus, such dendritic layers ought to be eliminated.

DNM can also be used to implement neuronal pruning. Figure 4 shows the simulation for synaptic
and dendritic pruning. First, the DNM has with two dendrites and four synapses, as shown in Figure
4(a). From the Figure 4(b) and (c), it can be seen that synaptic and dendritic pruning has occurred.
According to the pruning mechanism of the neuron, the first synaptic layer needs to be discarded
because it belongs to the case of constant-1 connection. The fourth synapse on the second dendrite
belongs to the constant-0 connection case, so this dendrite should also be eliminated. Finally, the
morphology of the neuron after DNM pruning is shown in Figure 4(d).
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Figure 4. Simulation of synaptic and dendritic pruning.

3. Learning algorithm SSWOA

To train DNMs, an amount of training methods have been developed. The stochastic gradient
descent method BP has been widely employed [51, 52, 66], but it suffers from the local trapping
problems, which influences the performance of models with high inductive power. An effective global
search optimization method, biogeography-based optimization (BBO) [50] outperforms ant colony
optimization (ACO) [59], genetic algorithm (GA), evolutionary strategy (ES), particle swarm
optimization (PSO), and BP by a wide margin, showing to be a promising DNM training method. In
addition, states of matter search algorithm (SMS) [67] has also shown its superior performance in
training DNMs. Recently, DNM classification [68] and wind speed prediction [69] have both
employed differential evolution (DE) and one of its variations, LSHADE [70]. The learning capacity
of DNMs has been significantly enhanced by the most recent state-of-the-art information
feedback-based differential evolution algorithm (IFDE) [71]. Given that the learning algorithm
significantly influences how well DNMs perform, single algorithms have been used to train DNMs for
a long time, which motivates us to further enhance performance by utilizing several algorithms to
address a single algorithm’s faults. Therefore, the major objective of this work is to provide the best
learning method for DNMs.

The mathematical optimization challenge of minimizing the objective function can be used to
represent the learning problem of DNMs, which is represented as:

f (X) = MSE(Xk) =
1
P

P∑
p=1

(Tp − Op)2 (3.1)

where the SSWOA is the mean square error (MSE) between the computed target value and the output
of the DNM for individual Xi. P stands for the quantity of training samples, while Tp and Op stand for
the pth target value and the DNM’s actual output, respectively. Individual solutions represented by the

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7594–7632.



7603

following are among the learnable parameters in the DNM’s synaptic layer:

Xg = {w11,w12, ...,wnM, q11, q12, ..., qnM} (3.2)

where M is the number of DNM dendrites and n is the number of external inputs. As a result, the
dimensionality of the DNM learning problem as it has been defined is D = 2nM.

3.1. Characteristics of whale optimization and spherical search

The SS algorithm [63] is a vast, undirected search method that maintains a reasonable balance
between the expansion and exploration of the search space, which can be used to compute spherical
boundaries and develop innovative experimental answers for spherical boundary surfaces for
non-linear global optimization problems with constrained boundaries. SS algorithm starts with half of
the better solutions concentrating on development and the other half of the worse solutions
concentrating on exploration, in contrast to the majority of algorithms, which usually begin with
comprehensive exploration and then begin development, leading to increased diversity in the better
one half of the solutions and increased adaptability in the other half of the worse solutions.
Nonetheless, the search mechanism of SS algorithms leads to relatively poor exploration and often
settles for local optima.

WOA [62] is a multi-application optimization strategy that mimics the preference behavior of
humpback whales. Nonetheless, the ability to leverage the whale optimization technique is heavily
dependent on the distance between the search unit and the current best solution, and a good enough
current optimal solution is required. In this work, the benefits of the SS algorithm are combined with
the WOA approach to generate a hybrid whale algorithmo-based search algorithm (SSWOA). One
aspect of the SSWOA remains the computation of the search direction, thus the SS algorithm is used
to approximately establish the orientation of the ideal solution, and then the whale optimization
method is used to discover the optimal solution, thereby improving its performance.

The standard WOA has disadvantages such as slow convergence, the tendency to fall into local
optima and low convergence accuracy, which will affect the overall performance. Hence, in this work,
two improvements are innovatively made to the WOA: a non-linear convergence coefficient and a co-
evolutionary control strategy.

3.2. Spherical search optimization algorithm

Proposed by Abhishek Kumar [63] in 2019, a group-based meta-heuristic approach is the spherical
search (SS) method, which can contribute to solving nonlinear restricted global optimization problems.
The modified SS algorithm solution is shown in Figure 5 as a two-dimensional search space. The
surface of the spherical boundary is used in the SS method to generate the suitable next solution for
each individual solution. The method concentrates on global exploration while the spherical boundary
is small, while it specializes on local advancement when the spherical boundary is large. As a result, the
SS algorithm may in certain cases aid in achieving a balance between the advancement and exploration
of the search area. The solution initialization in the SS algorithm is denoted as follows:

X0
i j = Xl j + (Xh j − Xl j) ∗ rand(0, 1] (3.3)
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where Xh j and Xl j denote the jth element’s upper and lower boundaries, respectively. Within the limit,
rand(0, 1] generates random numbers from a uniform distribution in (0, 1].

Figure 5. SS algorithm in 2-D search space for solution update solution space.

The SS method uses the following formula to provide the appropriate test for the ith solution:

ϵ = ϕ +Ck
i Pk

iφ (3.4)

The projection matrix Pi determines the score of ϵ on the spherical edge of (D-1). For a given
solution, ϕ corresponds to multiple different Pk

i values and gives several ϵ values. The range of the
step length control vector Ck

i is [0.5, 0.7]. The search direction is φ, which is produced by utilizing
two random solutions as target locations. With “towards-rand” having stronger exploration skills and
“towards-best” having better local exploitation capabilities, the SS method uses both of these features
to determine the search direction. As a result, in the exploration space, the balance between the
advancement and exploration is maintained. Through the instilling of the variety in a superior solution
as well as inferior options, adaptation is promoted.

The direction of the search is φ. It is necessary to calculate the search direction as follows, using r1
and r2:

φ = (X̄t
k
+ r1

k − r2
k) − ϕ (3.5)

The desired point is ϕ. In Eq (3.5), from the present set of solutions, r1 and r2 are chosen at random
in the population.

The search direction, φ for the kth iteration of the ith solution in “towards-rand” is determined as:

φ = X̄pi
k
+ X̄qi

k
− X̄ri

k
− ϕ (3.6)

The search direction, φ, for the kth iteration of the ith solution is determined in “towards-best” as:

φ = ¯Xpbesti
k
+ X̄qi

k
− X̄ri

k
− ϕ (3.7)
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The population of i solutions is updated and filled with a new set in the subsequent iteration using
a greedy selection strategy that adheres to the following guidelines: If the test solution’s score f (ϵ) is
less than that of the solution to the goal function f (ϕ), therefore, yi substitutes xi, expressed as:

X⃗i
(k+1)
=

ϵ if f (ϵ) ≤ f (ϕ)
ϕ otherwise

(3.8)

3.3. Whale optimization algorithm

Figure 6. The WOA’s bubble net search mechanism: (a) a shrinking envelope mechanism
and (b) a spiral update position.

In 2016, Seyedali Mirjalili [62] introduced the whale optimization algorithm as a population-based
search strategy, as well as a program that mimics the hunting behavior of humpback whales via bubble
nets. Three parts make up the algorithm: encircling the target, unleashing a bubble net assault, and
hunting for prey. Figure 6 provides a rough idea of the bubble net search mechanism implemented
in WOA: Figure 6(a) is the shrink-wrap mechanism and Figure 6(b) is the spiral update position.
Considering that the intended prey is the best option for the existing population, other whales in the
population, after the selection of prey, would update their locations based on the current position of the
prey. Suppose that the ideal solution in the current population is the target prey, other whales in the
population, after the selection of prey, would update their locations based on the current position of the
prey, with the mathematical model as follows:

D⃗ =
∣∣∣∣C⃗ · ⃗Xt

best − X⃗t
i

∣∣∣∣ (3.9)

X⃗t+1
i = ⃗Xt

best − A⃗ · D⃗ (3.10)

where t stands for the current iteration count, and ⃗Xt
best represents the optimum solution’s position in the

present group vector. X⃗t
i shows where the whale is at the moment, A⃗ · D⃗ indicates enclosing measure,
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and A⃗ and C⃗ relate to the coefficient vectors which are represented as:

A⃗ = 2a⃗ · r⃗1 − a⃗ (3.11)

C⃗ = 2 · r⃗2 (3.12)

where a⃗ decreases linearly in the iterative procedure from 2 to 0, r⃗1 andr⃗2 are random vectors produced
using a uniform distribution in the [0, 1] range. Equation (3.12) states that the search unit (whale)
modifies its location in accordance with the location of the ideal solution (prey). By changing the
values of the A and C vectors, the whale’s area surrounding its prey may be managed.

According to Eq (3.13), reducing the score of a variable in Eq (3.11) results in the contraction and
enclosing behavior of the whale:

a⃗ = 2 − t ·
2

MaxIter
(3.13)

where t denotes the number of permissible iterations and MaxIter the maximum number of allowed
iterations. For a spiral route replica, the distance between the search unit X⃗t

i and the best response so
far ⃗Xt

best is computed first, followed by the spiral equation as in Eq (3.14). Following that, is used to
establish the position of the nearest search unit:

X⃗t+1
i = D⃗′ · ebl · cos(2πl) + ⃗Xt

best (3.14)

D⃗ =
∣∣∣∣C⃗ ∗ ⃗Xt

rand − X⃗t
i

∣∣∣∣ (3.15)

X⃗t+1
i = ⃗Xt

rand − A⃗ · D⃗ (3.16)

where D⃗ is the distance between the ith Whale and its prey, b is a constant defining the logarithmic
spiral form, and l is a random value between [-1, 1]. This is the best response so far. The whale must
hunt following the spiral pattern the prey takes as it shrinks the area around it. So, according to the
WOA algorithm, there is a 0.5 chance that the whale would use two different hunting strategies. Here
is the mathematical model:

X⃗t+1
i =

 ⃗Xt
best − A⃗ · D⃗ if P < 0.5

D⃗′ · ebl · cos(2πl) + ⃗Xt
best if P ≥ 0.5

(3.17)

3.4. Nonlinear convergence factor

Global search and local advancement are two actions performed by swarm intelligence algorithms.
If the two are not appropriately timed, the algorithm will enter local optimization or suffer from poor
performance and slower convergence. Population will remain diverse if the global search strength is
strong enough to prevent the algorithm from settling into the local optimum. The speed of the
algorithm’s convergence will increase whether local advancement can be ensured by the local
advancement strength. The WOA algorithm illustrates that the global search and local advancement
capabilities of WOA are dependent on parameter A. According to Eqs (3.10), (3.14), and (3.15), the
parameter “A⃗” is reliant on the convergence factor “A⃗” in the phase of comparing WOA. If the
convergence factor a⃗ is larger, the algorithm’s ability for global exploration will be strengthened,
preventing it from settling into the local optimum. On the other hand, if the convergence factor a⃗ is
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less, the algorithm will be more capable of global exploration. The algorithm’s capacity for local
growth will be enhanced, and will have a faster convergence rate. As the amount of iterations grows
in WOA, a⃗ decreases linearly. Based on the literature, the following formula must be employed to
ensure global exploration and local advancement capabilities, as well as to increase the algorithm’s
convergence rate:

a⃗ =
(
2 − t.

2
maxIter

)
.

(
1 −

t3

maxIter3

)
(3.18)

a⃗ =
(
−1 − t.

−1
maxIter

)
.

(
1 −

t3

maxIter3

)
(3.19)

Equation (3.16) should be used when a⃗ is between 2 and 0, while Eq (3.17) should be used when
a⃗ is between -1 and -2. Among them, t which indicates the current iteration count and maxIter,
which stands for the maximum iteration count. The first phases a⃗ will improve the capability of global
investigation and quicken the velocity of algorithm convergence when the effects of the convergence
factor a⃗. Later on, it will be more biased, with a focus on local advancement.

3.5. Co-evolutionary control strategy

WOA’s predatory behavior targeting humpback whale bubble nets employs two strategies: spiral
renewal and contraction circular processes. To choose a foraging strategy, the randomly generated P
in [0, 1] is compared to the algorithm’s assumed threshold of 0.5 by modeling the two processes
(contracting and enclosing prey and spiral paths) as illustrated in the calculation. Repeated testing on
the data set given in the image has made it clearly evident that WOA’s convergence time is
unnecessarily slow, making the local optimization issue easy to introduce. The possibility of altering
the threshold in WOA has been demonstrated in [72]. The score of the threshold will have an effect on
the algorithm’s findings while attempting to find the best answer. If the score is too high, the
algorithm’s optimization effect will be very little, but if the score is too small, the algorithm’s capacity
to evolve locally will be hindered. The feasibility of adaptive parameters is supported by
references [72, 73]. WOA’s original 0.5 threshold is replaced with the adaptive threshold. It will
change when the algorithm is adjusted repeatedly to discover the best mechanism for both local and
global advancement. Based on the above considerations, the threshold is modeled in the following
way:

γ = 1 −
[

1
α + β

.(α.
tα

maxIterα
+ β.

tβ

maxIterβ
)
]

(3.20)

Among them, γ represents the threshold in WOA, while t and maxIter stand for the current and
maximum iterations, respectively. α and β denote the control parameters, respectively. The updating
rule of individuals changes to the following equation when α = 3 and β = 2.

X⃗t+1
i =

 ⃗Xt
best − A⃗ · D⃗ ifP < γ

D⃗′ · ebl · cos(2πl) + ⃗Xt
best ifP ≥ γ

(3.21)
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3.6. Adaptive position weights

Algorithm 1: Learn the implementation procedures of DNM by SSWOA.
1 Initially, set the iteration number t = 1, the maximum function evaluation number

MaxFES = 30000.
2 begin
3 Create the whale population from scratch Xi (i = 1, 2, ..., n).
4 Evaluate the population using the fitness function defined in Eq (3.1).
5 Determine each search agent’s fitness.
6 ci ← rand (0, 1] .
7 while nFES ≤ MaxFES do
8 A← ComputeOrthogonalMatrix () .
9 for i = 1 to N do

10 diag (bi)← ComputeBinaryVector () .
11 if nFES < 1/2FES then
12 if i < 0.5*N then
13 SS is used to update the population’s towards-rand.

14 else
15 Improved WOA with adaptive thresholds is used to update the population’s

best-case scenario.

16 else
17 Update the towards-rand part of the population Using SS.

18 Examine whether any search agents move beyond the search space.
19 Evaluate the population using the fitness function defined in Eq (3.1).
20 Determine each search agent’s fitness.
21 Update if there is a better solution.
22 nFES = nFES + 1 .
23 −→xi ← S election

(
−→xi ,
−→yi

)
24 Output the best solution yi in the population which consists of optimal weights wi j and

thresholds qi j for DNM.
25 This is followed by morphological transformation, dendritic and synaptic pruning, and

hardware implementation for DNM.

The position vector of the randomly chosen whales, veca and vecA, is the primary factor that may
affect the WOA location update process in addition to the WOA algorithm’s location update process.
i.e., the population ⃗Xt

best’s position vector that was randomly chosen [74]. Moreover, taking into
consideration the numerous interactions between randomly selected whales and their prey at various
times during the algorithm’s iterative phase, adaptive parameters are utilized as weight coefficients
and paired with the aforementioned threshold to rewrite the locations of WOA as follows:

ω =
t3

maxIter3 (3.22)
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X⃗t+1
i = X⃗t

i · ω − A⃗ · D⃗, |A| ≥ 1, P < γ (3.23)

X⃗t+1
i = ⃗Xt

best · ω − A⃗ · D⃗, |A| < 1, P < γ (3.24)

X⃗t+1
i = D⃗′ · ebl · cos(2πl) + ⃗Xt

best · (1 − ω) , P ≥ γ (3.25)

where ω is the prey adaptive weight, which is chosen between [0,1]. If ω increases as the number
of iterations increases, so will the optimal solution of the prey chosen in each iteration, i.e., for the
present population. In Eqs (3.10), (3.16), and (3.17), the weight coefficient increases as the number of
iterations increases. While updating the location of the whale in Eqs (3.23)–(3.25), one may investigate
the best solution around the prey using the algorithm’s rapid convergence and optimization accuracy
Eq (3.25), thereby improving the local advancement ability. The whole implementation of SSWOA to
learn DNM is summarized in Algorithm 1.

4. Experimental results

4.1. Experimental setup

To comprehensively study of learning performance of SSWOA on DNM, a number of
representative optimization techniques have been compared, which are summarized within three
categories: the variants of SSWOA (including its components), some other evolutionary algorithms,
and some other machine learning techniques. These include the latest variant of the WOA algorithm,
i.e., the spatial bound whale optimization algorithm (SBWOA) [75] proposed in 2021, the cellular
automata-based whale optimization algorithm (CAWOA) [76] proposed in 2020, the nonlinear
adaptive weight and golden sine operator-based whale optimization algorithm (NGS-WOA) [77]
proposed in 2020, the hybrid improved whale optimization algorithm (HIWOA) [78] proposed in
2019, IFDE [71] proposed in 2021, which is currently regarded as the most effective method for
training DNM, BBO [50], SMS [67], the most effective version of SS, i.e., SASS [63], BP, K-nearest
neighbor (KNN), and support vector machines (SVM). All experiments were conducted using
MATLAB (R2019b) and implemented on a machine with a 32 GB RAM and Intel(R) Core
i7-10700K 5.1 GHz processor. To better verify the difference between the hybrid SSWOA algorithm
and its peer, we conduct the experiment from two aspects, namely the benchmark function in IEEE
CEC2017 [79], and the artificial dendritic neural model training problem (DNM). The following
evaluation tools were used to assess the performance of SSWOA.

4.2. Verifying the performance of SSWOA on IEEE CEC2017

To assess the performance of the SSWOA approach, single-peaked functions (F1–F3), basic multi-
peaked functions (F4–F10), hybrid functions (F11–F20), and combination functions (F21–F30) taken
from IEEE CEC2017 are used. The studies involved a comparison of SSWOA with IFDE, SS, SMS,
BBO, WOA, CAWOA, HIWOA, NGSWOA, and SBWOA. Instead, the commonly used parameters
are set as follows: the number of function evaluations with a population size of 100, the maximum
number of function evaluations of 104 × D, where D is the number of dimensions. Each algorithm to
obtain statistics was executed 51 times for each function separately.
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1) W/T/L: T represents the amount of functions where SSWOA performs similarly to other
algorithms. L represents the amount of functions for which SSWOA performs noticeably worse. W
represents the amount of functions for which SSWOA surpasses the other algorithms.

2) The convergence curve represents the most recent optimum history recorded at each repeat. The
function evaluation numbers are shown on the x-axis, while the average error score is shown on the
y-axis.

3) The box-and-whisker graph includes boxes and peaks. Maximum values are indicated by the line
above the blue box, and minimum values are indicated by the line below the blue box. The box’s upper
and lower edges correspond to the first and third quartiles, respectively. The red “+” sign represents the
extreme extremes, while the red line represents the median. Furthermore, the greater the discrepancy
between the highest and minimum numbers, the more unstable the method’s performance.

4.3. Verifying the performance of SSWOA for learning DNM

Additionally, 11 frequently used classification problems from the UCI Machine Learning
Repository were used to verify the performance of the proposed SSWOA for learning DNM,
including the BreastEW, Australia, CongressEW, Exactly, Heart, German, KrVsKpEW, Ionosphere,
SpectEW, TIC-tac-toe, and Vote datasets. Additionally, the number of attributes (features other than
class labels), the total sample size and the learning space dimension of the DNM for each problem
(i.e., D) are summarized in Table 1.

Table 1. DNM’ parameters setting in UCI classification datasets.

Classification datasets Attributes Instances Dimension of learning space
BreastEW 30 568 300
Australia 14 690 280
CongressEW 16 435 96
Exactly 13 1000 260
German 24 1000 48
KrVsKpEW 36 3196 72
Ionosphere 34 351 204
SpectEW 22 267 44
TIC-tac-toe 9 8 90
Vote 16 300 96
Heart 13 270 200

Samples including missing values were removed for a fair comparison or because of the classifier
used. The samples for each dataset were randomly divided. On the same computer, each method
for these comparisons was ran 30 times separately with the parameters set to recommended levels
in the relevant literature [80]. The amount of function evaluations for each of the algorithms under
comparison was made to be the same in order to provide a generally fair performance comparison,
namely, MaxFES = 3000. 70% of the samples were used for training, with the remaining 30% as test
samples.

First, we normalize all the values to prevent small numerical attributes from being dominated by
large numerical attributes. Therefore, the variables for which input is performed are normalized.
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Specifically, all attributes are normalized to the range [0, 1] based on a min-max normalization rule.
The equation can be expressed as follows:

Xnormalized =
Xoriginal − Xmin

Xmax − Xmin
(4.1)

Table 2. Orthogonal experimental design (L25(53)) method for hyper-parameters in DNM.

No. M K Q No. M K Q
#1 1 1 0.1 #14 5 15 0.1
#2 1 5 0.3 #15 5 20 0.3
#3 1 10 0.5 #16 10 1 0.7
#4 1 15 0.7 #17 10 5 0.9
#5 1 20 0.9 #18 10 10 0.1
#6 3 1 0.3 #19 10 15 0.3
#7 3 5 0.5 #20 10 20 0.5
#8 3 10 0.7 #21 20 1 0.9
#9 3 15 0.9 #22 20 5 0.1
#10 3 20 0.1 #23 20 10 0.3
#11 5 1 0.5 #24 20 15 0.5
#12 5 5 0.7 #25 20 20 0.7
#13 5 10 0.9

Table 3. DNM’ parameters setting in UCI classification datasets.

data set M K θ

BreastEW 5 5 0.7
Australia 10 15 0.3
CongressEW 3 5 0.5
Exactly 10 5 0.9
Heart 10 10 0.1
German 1 10 0.5
KrVsKpEW 1 5 0.3
Ionosphere 3 5 0.5
SpectEW 1 5 0.3
TIC-tac-toe 5 5 0.7
Vote 3 5 0.5

Furthermore, since three hyper-parameters of DNM need to be predetermined, Taguchi’s
orthogonal experimental design technique was used to determine the ideal arrangement of
hyper-parameter settings. This contained dendrite number M, firing parameter Q, and distance
parameter K [50, 81]. As Taguchi’s method is not a full factor analysis, but tests only partial
orthogonal combinations between factors and levels, with the promise of minimal experimental
testing and the most accurate statistical calculations of the implementation-related parameters. In
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DNM, each factor (i.e., hyper-parameter) was set to five levels as the following: M ∈ {1, 3, 5, 10, 20},
Q ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and K ∈ {1, 5, 10, 15, 20}. In order to completely find the most promising
set of parameters, a thorough factor analysis would thus need 53 = 125 trials, which is clearly
time-consuming. Taguchi technique can better go about this task of counting by using only an
orthogonal array L25(53) containing 25 combinations, as shown in Table 2. Table 3 shows the optimal
settings of the three hyper-parameters for each classification problem.

In our studies, we employed a wide range of performance criteria in order to further precisely
assess our model. True positives (TP) are cases that were both expected to be positive and were in fact
positive. The term “true negatives” (TN) refers to cases that are both predicted and actual negative.
False positive instances (FP) are those that are projected to be positive but are actually negative. False
negatives (FN) are instances where a negative forecast was made but the result was actually positive.
Accuracy (Acc), which is calculated using the formula below, is the proportion of accurate predictions
to all samples.

Acc =
T P + T N

T P + FP + FN + T N
(4.2)

The true positive rate is defined as the ratio of genuine positive cases in the positive class predicted
by the classifier to all positive instances (TPR), also known as sensitivity. This ratio is determined by
the following formula:

T PR =
T P

T P + FN
(4.3)

Rate of False Positives (FPR) FPR is the ratio of real negative instances to all negative instances in
the positive class that the classifier predicted. The following formula yields:

FPR =
FP

FP + T N
(4.4)

The true negative rate (TNR), also known as specificity, is the ratio of genuine negative cases
predicted by the classifier to all actual negative instances. It is calculated using the following formula:

T NR =
T N

FP + T N
(4.5)

The proportion of individuals who are labeled as negative but are actually positive is known as the
false negative rate (FNR). The following formula yields:

FNR =
FN

T P + FN
(4.6)

The bigger the FPR, the more negative categories are really in the expected positive categories
(horizontal axis of ROC FPR: 1-TNR, 1-Specificity). TPR sensitivity (positive category coverage),
the higher the TPR, the more positive categories are predicted in the positive category. The ideal goal
with T PR = 1 and FPR = 0, which corresponds to the (0, 1) point on the graph; hence, the closer the
ROC curve is to the (0, 1) point, the larger the divergence from the 45-degree diagonal, and the higher
the sensitivity and specificity values. As the ROC curve is generally above the straight line y = x, its
value is between 0.5 and 1. The reason for using AUC as an evaluation metric is that the ROC curve
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usually does not give a clear indication of which classifier is more effective. It is given by the following
equation.

AUC =
∫ 1

0
T PR(FPR)dFPR (4.7)

5. Performance comparison

5.1. Algorithm performance comparison

Tables 4–6 summarize the classification findings for the mean test error and standard deviation for
all comparison methods (std). We evaluated and compared several methods in dimensions 30, 50, and
100 at IEEE CEC2017, as well as examined the performance change of SSWOA from medium to
large dimensions. It is important to note that F2 was left in place despite the function’s unreliable
performance in CEC2017, particularly at high dimensions due to the guaranteed data integrity.
Compared to IFDE, SS, SMS, BBO, WOA, CAWOA, HIWOA, NGSWOA, and SBWOA, the number
of wins for SSWOA in Table 4 is 4, 19, 27, 21, 29, 29, 29, 29, 29, 29, 29, 29, in Table 5 are 4, 17, 24,
17, 28, 28, 29, 28, 28, 28, and in Table 6 are 4, 25, 27, 16, 27, 28, 27, 27, 27, 27, respectively. It is
shown that SSWOA outperforms all algorithms except IFDE in the 30, 50 and 100 dimensions of
CEC2017, indicating that SSWOA performs well in the medium, high and large dimensions of the
function.

Figures 7 and 8 provide the experimental findings to further demonstrate the advantages of SSWOA.
It is clear from the convergence plots that SSWOA’s convergence ability and speed are superior to
those of comparable methods, with the exception of IFDE. It is evident from Figure 7 that the SSWOA
convergence curve in F20 at D = 30 is very different from other algorithms.

To demonstrate the benefits of SSWOA’s performance in training DNM models for classification,
several comparison algorithms were adopted simultaneously to train DNM models and classify
datasets. The comparison results are presented in Table 7, where the criteria for comparison contain
accuracy and standard deviation, and the data of optimal classification results is shown in bold.
Although some are inferior to the non-algorithmic categories in terms of results, four results stand out
in comparison to the algorithm and outperform the other algorithms. This also demonstrates the
effectiveness and applicability of the SSWOA algorithm.

To better verify whether the hybrid algorithm SSWOA is the optimal choice for learning DNM, the
Wilcoxon symbolic ranking test [82] was conducted to identify the differences between each set of data,
and to determine if there were any significant differences between each pair of learning algorithms, and
to figure out whether the differences between algorithms were at the significance level of α = 0.05.
The p-values obtained, which are all below than the significance threshold, are included in Table 8 as
well. Taking Tables 7 and 8 into account, it can prove that the hybrid algorithm SSWOA outperforms
other comparative algorithms in terms of classification accuracy.
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Table 4. Experiment results on IEEE CEC 2017 on 30 dimensions.
SSWOA IFDE SS SMS BBO
Mean Std Mean Std Mean Std Mean Std Mean Std

F1 1.000E+02 1.025E-14 1.000E+02 0.000E+00 1.000E+02 6.962E-15 8.091E+06 3.047E+06 4.859E+04 1.970E+04
F2 2.000E+02 8.637E-10 2.000E+02 9.749E-15 2.000E+02 6.713E-10 5.111E+24 3.575E+25 1.229E+03 3.497E+03
F3 3.000E+02 4.890E-14 3.000E+02 0.000E+00 3.000E+02 4.823E-14 1.882E+04 5.335E+03 3.268E+02 9.881E+00
F4 4.638E+02 3.233E+01 4.188E+02 2.667E+01 4.545E+02 3.868E+01 6.025E+02 7.778E+01 4.817E+02 2.666E+01
F5 6.642E+02 8.277E+00 5.102E+02 1.981E+00 6.648E+02 9.606E+00 6.527E+02 3.673E+01 5.498E+02 1.363E+01
F6 6.000E+02 1.044E-04 6.000E+02 3.272E-08 6.000E+02 1.314E-03 6.422E+02 6.368E+00 6.001E+02 2.226E-02
F7 8.764E+02 8.389E+00 7.400E+02 2.077E+00 8.922E+02 7.987E+00 9.969E+02 6.078E+01 7.719E+02 1.233E+01
F8 9.491E+02 9.015E+00 8.111E+02 2.025E+00 9.634E+02 9.682E+00 9.205E+02 3.207E+01 8.556E+02 1.586E+01
F9 9.000E+02 1.254E-02 9.000E+02 0.000E+00 9.000E+02 9.007E-02 3.639E+03 9.918E+02 9.022E+02 5.301E+00
F10 7.496E+03 2.669E+02 2.752E+03 1.715E+02 7.928E+03 2.409E+02 5.284E+03 6.973E+02 4.251E+03 6.285E+02
F11 1.149E+03 2.411E+01 1.114E+03 1.691E+01 1.157E+03 2.673E+01 1.371E+03 8.786E+01 1.240E+03 5.599E+01
F12 2.794E+03 1.505E+03 2.239E+03 3.353E+02 3.736E+03 3.032E+03 9.534E+07 9.445E+07 6.112E+05 3.795E+05
F13 1.371E+03 1.234E+01 1.315E+03 6.847E+00 1.423E+03 5.015E+01 1.454E+05 1.169E+05 8.160E+03 5.435E+03
F14 1.455E+03 4.242E+00 1.422E+03 1.303E+00 1.462E+03 5.248E+00 6.136E+04 6.097E+04 3.330E+04 3.707E+04
F15 1.527E+03 3.430E+00 1.504E+03 1.481E+00 1.537E+03 9.508E+00 5.959E+04 3.872E+04 5.466E+03 4.934E+03
F16 2.734E+03 1.476E+02 1.802E+03 8.986E+01 2.779E+03 1.485E+02 3.217E+03 3.639E+02 2.584E+03 2.998E+02
F17 1.887E+03 2.571E+01 1.737E+03 5.908E+00 1.954E+03 5.906E+01 2.320E+03 2.098E+02 2.043E+03 1.719E+02
F18 1.828E+03 2.404E+00 1.823E+03 1.859E+00 1.832E+03 3.741E+00 9.864E+05 1.017E+06 2.357E+05 2.384E+05
F19 1.923E+03 1.462E+00 1.905E+03 1.686E+00 1.926E+03 2.268E+00 4.610E+06 2.972E+06 6.832E+03 4.802E+03
F20 2.378E+03 9.271E+01 2.050E+03 9.671E+00 2.412E+03 9.034E+01 2.524E+03 1.332E+02 2.507E+03 1.754E+02
F21 2.440E+03 8.854E+00 2.309E+03 1.784E+00 2.456E+03 8.907E+00 2.451E+03 2.845E+01 2.351E+03 1.285E+01
F22 2.300E+03 0.000E+00 2.300E+03 0.000E+00 2.300E+03 6.431E-14 2.339E+03 5.025E+01 3.294E+03 1.665E+03
F23 2.775E+03 3.339E+01 2.645E+03 3.585E+00 2.803E+03 1.392E+01 2.936E+03 7.343E+01 2.716E+03 1.957E+01
F24 2.899E+03 6.007E+01 2.822E+03 3.502E+00 2.959E+03 3.457E+01 3.109E+03 8.489E+01 2.889E+03 2.192E+01
F25 2.887E+03 1.563E-02 2.887E+03 1.275E+00 2.887E+03 3.726E-02 2.961E+03 3.008E+01 2.888E+03 3.993E+00
F26 4.374E+03 6.709E+02 3.125E+03 3.111E+02 4.156E+03 7.602E+02 6.097E+03 1.009E+03 4.475E+03 2.937E+02
F27 3.194E+03 8.725E+00 3.207E+03 7.417E+00 3.197E+03 1.002E+01 3.462E+03 6.493E+01 3.257E+03 1.657E+01
F28 3.117E+03 3.946E+01 3.111E+03 3.266E+01 3.144E+03 5.576E+01 3.347E+03 5.401E+01 3.210E+03 1.259E+01
F29 3.499E+03 4.767E+01 3.340E+03 8.677E+00 3.604E+03 8.944E+01 4.428E+03 3.207E+02 3.701E+03 1.961E+02
F30 5.237E+03 1.442E+02 5.075E+03 6.767E+01 5.352E+03 2.348E+02 1.275E+07 1.257E+07 7.939E+03 1.880E+03
W/T/L -/-/- 4/4/22 19/10/0 27/0/3 21/1/8

WOA CAWOA HIWOA NGSWOA SBWOA
Mean Std Mean Std Mean Std Mean Std Mean Std

F1 2.280E+06 1.670E+06 1.270E+09 3.430E+09 2.930E+10 4.940E+09 1.110E+09 1.370E+09 2.890E+06 1.590E+06
F2 5.830E+22 3.160E+23 3.000E+41 2.110E+42 7.140E+38 3.690E+39 6.250E+30 4.460E+31 1.350E+22 5.460E+22
F3 1.500E+05 5.610E+04 9.700E+04 5.970E+04 5.650E+04 4.970E+03 1.150E+05 4.500E+04 1.700E+05 6.860E+04
F4 5.320E+02 3.470E+01 7.420E+02 5.030E+02 4.880E+03 6.300E+02 6.430E+02 1.760E+02 5.500E+02 4.100E+01
F5 7.760E+02 4.330E+01 8.340E+02 5.720E+01 8.260E+02 3.300E+01 7.740E+02 6.430E+01 7.710E+02 5.160E+01
F6 6.670E+02 1.190E+01 6.730E+02 9.700E+00 6.710E+02 7.480E+00 6.680E+02 9.540E+00 6.660E+02 1.100E+01

F7 1.220E+03 1.030E+02 1.700E+03 2.340E+02 1.300E+03 4.690E+01 1.210E+03 8.590E+01 1.210E+03 9.360E+01
F8 1.000E+03 5.480E+01 1.070E+03 5.340E+01 1.030E+03 3.700E+01 1.010E+03 5.380E+01 9.930E+02 4.800E+01
F9 7.500E+03 2.320E+03 8.630E+03 2.310E+03 7.810E+03 1.020E+03 8.530E+03 2.620E+03 8.310E+03 2.830E+03
F10 6.070E+03 8.180E+02 6.590E+03 1.150E+03 6.860E+03 8.000E+02 5.770E+03 7.910E+02 5.930E+03 8.050E+02
F11 1.500E+03 1.620E+02 2.410E+03 3.090E+03 4.500E+03 5.180E+02 2.240E+03 1.080E+03 1.490E+03 1.290E+02
F12 4.200E+07 2.750E+07 2.710E+08 8.540E+08 5.960E+09 2.140E+09 6.710E+07 1.040E+08 3.750E+07 2.820E+07
F13 1.510E+05 9.320E+04 2.650E+08 9.110E+08 1.590E+09 6.950E+08 5.640E+06 3.910E+07 1.470E+05 8.460E+04
F14 6.730E+05 6.910E+05 9.340E+05 1.590E+06 2.600E+06 1.270E+06 6.860E+05 8.620E+05 6.180E+05 7.130E+05
F15 8.520E+04 6.210E+04 1.810E+04 1.440E+04 1.990E+08 1.210E+08 3.380E+06 1.070E+07 8.000E+04 4.210E+04
F16 3.530E+03 4.610E+02 3.380E+03 5.440E+02 4.310E+03 4.160E+02 3.440E+03 4.730E+02 3.560E+03 3.890E+02
F17 2.520E+03 2.340E+02 2.920E+03 3.870E+02 3.300E+03 4.480E+02 2.450E+03 2.190E+02 2.530E+03 2.930E+02
F18 2.960E+06 3.170E+06 1.150E+06 1.730E+06 3.590E+06 3.790E+06 4.070E+06 5.120E+06 2.590E+06 2.840E+06
F19 2.490E+06 2.400E+06 3.110E+05 1.100E+06 8.830E+07 5.060E+07 1.570E+06 1.920E+06 2.690E+06 2.410E+06
F20 2.730E+03 2.000E+02 2.930E+03 2.000E+02 2.760E+03 1.670E+02 2.710E+03 1.900E+02 2.720E+03 1.540E+02
F21 2.570E+03 5.330E+01 2.580E+03 5.130E+01 2.620E+03 3.240E+01 2.570E+03 5.790E+01 2.550E+03 5.910E+01
F22 6.240E+03 2.240E+03 7.460E+03 1.850E+03 6.410E+03 1.550E+03 6.960E+03 1.690E+03 6.340E+03 2.250E+03
F23 3.050E+03 1.120E+02 3.220E+03 1.190E+02 3.150E+03 9.630E+01 3.040E+03 1.060E+02 3.040E+03 1.120E+02
F24 3.170E+03 9.760E+01 3.330E+03 1.160E+02 3.260E+03 8.790E+01 3.160E+03 9.520E+01 3.150E+03 7.580E+01
F25 2.940E+03 3.150E+01 3.020E+03 9.090E+01 3.530E+03 7.180E+01 2.990E+03 4.840E+01 2.950E+03 2.820E+01
F26 7.440E+03 1.230E+03 8.460E+03 9.830E+02 8.620E+03 5.180E+02 7.410E+03 1.200E+03 7.590E+03 1.200E+03
F27 3.360E+03 8.800E+01 3.590E+03 2.120E+02 3.610E+03 1.630E+02 3.370E+03 9.270E+01 3.380E+03 9.360E+01
F28 3.300E+03 4.330E+01 3.530E+03 5.360E+02 5.050E+03 1.240E+02 3.400E+03 6.540E+01 3.320E+03 1.040E+02
F29 4.750E+03 3.910E+02 5.700E+03 7.390E+02 5.010E+03 3.920E+02 4.730E+03 4.260E+02 4.850E+03 4.930E+02
F30 9.630E+06 8.070E+06 7.290E+05 2.060E+06 6.960E+08 4.890E+08 7.030E+06 4.420E+06 1.060E+07 6.980E+06
W/T/L 29/0/1 29/0/1 29/0/1 29/0/1 29/0/1
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Table 5. Experiment results on IEEE CEC 2017 on 50 dimensions.
SSWOA IFDE SS SMS BBO
Mean Std Mean Std Mean Std Mean Std Mean Std

F1 1.000E+02 1.670E+06 1.000E+02 5.970E-15 1.000E+02 1.810E-04 2.890E+08 1.910E+08 3.150E+06 6.530E+05
F2 2.000E+02 3.160E+23 2.000E+02 2.980E-14 2.000E+02 8.090E-08 6.920E+52 4.570E+53 3.510E+12 1.520E+13
F3 3.000E+02 5.610E+04 3.000E+02 5.570E-14 3.000E+02 2.890E-01 1.090E+05 1.600E+04 4.780E+02 3.110E+01
F4 4.080E+02 3.470E+01 4.340E+02 4.490E+01 4.530E+02 6.600E+01 1.010E+03 2.290E+02 5.430E+02 5.710E+01
F5 8.160E+02 4.330E+01 5.260E+02 5.010E+00 8.350E+02 1.220E+01 7.920E+02 5.520E+01 6.010E+02 2.350E+01
F6 6.000E+02 1.190E+01 6.000E+02 4.390E-03 6.000E+02 5.760E-02 6.590E+02 5.890E+00 6.010E+02 5.130E-01
F7 1.060E+03 1.030E+02 7.770E+02 3.400E+00 1.080E+03 1.110E+01 1.400E+03 9.070E+01 8.630E+02 1.910E+01
F8 1.110E+03 5.480E+01 8.270E+02 4.270E+00 1.130E+03 1.200E+01 1.090E+03 5.840E+01 9.050E+02 2.240E+01
F9 9.010E+02 2.320E+03 9.000E+02 5.960E-14 9.020E+02 1.860E+00 1.360E+04 3.400E+03 1.190E+03 3.100E+02
F10 1.350E+04 8.180E+02 4.930E+03 3.680E+02 1.390E+04 3.690E+02 9.870E+03 1.050E+03 6.760E+03 1.020E+03
F11 1.150E+03 1.620E+02 1.160E+03 9.940E+00 1.200E+03 5.360E+01 2.290E+03 2.590E+02 1.320E+03 5.860E+01
F12 9.750E+04 2.750E+07 3.340E+03 5.440E+02 3.240E+05 2.360E+05 4.130E+08 2.290E+08 2.780E+06 9.970E+05
F13 3.040E+03 9.320E+04 1.360E+03 2.610E+01 4.260E+03 1.220E+03 2.170E+06 1.740E+06 3.090E+03 1.320E+03
F14 1.530E+03 6.910E+05 1.430E+03 4.850E+00 1.540E+03 9.410E+00 1.180E+06 1.010E+06 7.530E+04 5.830E+04
F15 1.770E+03 6.210E+04 1.550E+03 1.610E+01 1.770E+03 5.860E+01 1.460E+05 3.350E+05 5.530E+03 3.510E+03
F16 3.900E+03 4.610E+02 2.080E+03 9.220E+01 3.990E+03 1.950E+02 4.550E+03 5.850E+02 3.140E+03 4.760E+02
F17 3.300E+03 2.340E+02 2.090E+03 8.390E+01 3.260E+03 1.550E+02 3.630E+03 3.580E+02 2.920E+03 3.050E+02
F18 1.910E+03 3.170E+06 1.850E+03 1.780E+01 1.970E+03 4.410E+01 6.140E+06 4.320E+06 6.340E+05 4.530E+05
F19 1.970E+03 2.400E+06 1.940E+03 1.300E+01 1.980E+03 1.050E+01 4.990E+06 4.850E+06 1.810E+04 6.880E+03
F20 3.260E+03 2.000E+02 2.320E+03 1.050E+02 3.390E+03 1.730E+02 3.250E+03 2.690E+02 3.130E+03 2.790E+02
F21 2.630E+03 5.330E+01 2.330E+03 3.750E+00 2.630E+03 1.350E+01 2.630E+03 5.940E+01 2.400E+03 2.180E+01
F22 2.540E+03 2.240E+03 2.610E+03 9.600E+02 4.580E+03 4.980E+03 1.110E+04 2.530E+03 8.560E+03 8.120E+02
F23 3.020E+03 1.120E+02 2.730E+03 7.480E+00 3.030E+03 5.750E+01 3.470E+03 1.270E+02 2.890E+03 3.080E+01
F24 2.910E+03 9.760E+01 2.900E+03 6.010E+00 3.000E+03 1.270E+02 3.720E+03 1.620E+02 3.050E+03 3.710E+01
F25 3.010E+03 3.150E+01 3.030E+03 3.320E+01 3.020E+03 3.690E+01 3.330E+03 9.560E+01 3.070E+03 2.810E+01
F26 3.830E+03 1.230E+03 3.500E+03 4.890E+02 4.560E+03 1.110E+03 1.030E+04 1.050E+03 5.430E+03 3.850E+02
F27 3.230E+03 8.800E+01 3.240E+03 9.240E+00 3.230E+03 1.350E+01 4.560E+03 3.110E+02 3.620E+03 8.190E+01
F28 3.280E+03 4.330E+01 3.280E+03 2.370E+01 3.280E+03 2.590E+01 3.820E+03 2.070E+02 3.320E+03 1.790E+01
F29 4.020E+03 3.910E+02 3.280E+03 1.290E+01 4.020E+03 1.630E+02 6.610E+03 7.960E+02 3.990E+03 2.650E+02
F30 9.580E+05 8.070E+06 6.110E+05 3.020E+04 1.130E+06 1.580E+05 1.920E+08 6.670E+07 9.130E+05 1.180E+05
W/T/L -/-/- 4/0/26 17/10/3 24/2/4 17/2/11

WOA CAWOA HIWOA NGSWOA SBWOA
Mean Std Mean Std Mean Std Mean Std Mean Std

F1 6.970E+06 6.390E+06 4.160E+09 5.340E+09 5.060E+10 5.690E+09 3.770E+09 2.750E+09 9.140E+06 6.190E+06
F2 5.640E+54 3.890E+55 2.120E+74 1.520E+75 8.310E+79 5.330E+80 1.710E+61 1.220E+62 2.130E+55 1.480E+56
F3 7.080E+04 3.140E+04 1.430E+05 5.810E+04 1.460E+05 1.180E+04 9.610E+04 2.730E+04 8.990E+04 3.980E+04
F4 6.710E+02 5.830E+01 1.310E+03 6.820E+02 1.440E+04 2.860E+03 1.140E+03 5.530E+02 6.840E+02 6.020E+01
F5 9.260E+02 9.860E+01 1.090E+03 9.790E+01 9.980E+02 5.900E+01 9.580E+02 8.230E+01 9.070E+02 6.600E+01
F6 6.750E+02 1.030E+01 6.810E+02 8.930E+00 6.810E+02 6.320E+00 6.770E+02 1.060E+01 6.760E+02 7.820E+00
F7 1.680E+03 1.260E+02 2.770E+03 4.230E+02 1.800E+03 6.010E+01 1.720E+03 1.090E+02 1.690E+03 1.040E+02
F8 1.200E+03 8.440E+01 1.360E+03 9.610E+01 1.240E+03 3.940E+01 1.240E+03 9.350E+01 1.210E+03 9.330E+01
F9 2.080E+04 6.290E+03 2.320E+04 4.350E+03 2.620E+04 5.030E+03 1.950E+04 4.540E+03 2.030E+04 6.370E+03
F10 9.820E+03 1.080E+03 1.050E+04 1.630E+03 1.100E+04 1.420E+03 9.580E+03 1.220E+03 9.900E+03 1.440E+03
F11 1.590E+03 1.280E+02 2.250E+03 1.160E+03 1.050E+04 1.350E+03 2.970E+03 1.410E+03 1.600E+03 1.070E+02
F12 1.930E+08 8.900E+07 2.630E+09 3.500E+09 2.850E+10 8.880E+09 5.140E+08 6.300E+08 1.990E+08 1.010E+08
F13 2.080E+05 1.120E+05 1.030E+09 2.720E+09 9.770E+09 5.780E+09 4.330E+07 7.970E+07 1.930E+05 1.570E+05
F14 8.500E+05 7.030E+05 2.050E+06 3.680E+06 1.770E+07 8.570E+06 1.010E+06 1.140E+06 6.240E+05 4.910E+05
F15 7.190E+04 4.750E+04 6.410E+07 4.020E+08 3.200E+09 9.510E+08 1.360E+07 5.940E+07 8.440E+04 6.080E+04
F16 4.780E+03 6.170E+02 4.770E+03 1.020E+03 5.870E+03 6.290E+02 4.720E+03 6.570E+02 4.880E+03 6.070E+02
F17 3.990E+03 4.900E+02 4.870E+03 6.830E+02 5.350E+03 5.920E+02 3.950E+03 4.000E+02 4.050E+03 3.600E+02
F18 6.200E+06 4.600E+06 4.160E+06 4.650E+06 1.000E+08 5.600E+07 6.640E+06 5.010E+06 5.270E+06 4.090E+06
F19 2.450E+06 1.590E+06 7.030E+07 3.380E+08 6.840E+08 4.940E+08 3.670E+06 1.380E+07 2.790E+06 2.020E+06
F20 3.650E+03 3.150E+02 3.990E+03 3.140E+02 3.460E+03 2.650E+02 3.650E+03 3.430E+02 3.640E+03 3.350E+02
F21 2.860E+03 9.980E+01 2.920E+03 1.060E+02 2.960E+03 6.630E+01 2.860E+03 1.010E+02 2.870E+03 1.160E+02
F22 1.160E+04 1.330E+03 1.240E+04 1.890E+03 1.270E+04 1.100E+03 1.150E+04 1.030E+03 1.190E+04 1.200E+03
F23 3.590E+03 1.920E+02 3.950E+03 2.380E+02 3.800E+03 1.040E+02 3.540E+03 1.540E+02 3.630E+03 1.710E+02
F24 3.690E+03 1.670E+02 4.040E+03 2.050E+02 3.840E+03 1.660E+02 3.660E+03 1.390E+02 3.720E+03 1.610E+02
F25 3.140E+03 3.370E+01 3.640E+03 5.270E+02 6.700E+03 4.480E+02 3.470E+03 1.970E+02 3.140E+03 3.760E+01
F26 1.330E+04 1.860E+03 1.520E+04 2.460E+03 1.370E+04 5.490E+02 1.250E+04 1.560E+03 1.260E+04 1.660E+03
F27 4.260E+03 4.060E+02 5.090E+03 6.690E+02 5.590E+03 5.960E+02 4.320E+03 4.150E+02 4.220E+03 4.810E+02
F28 3.440E+03 6.640E+01 4.790E+03 1.180E+03 6.810E+03 8.960E+02 4.120E+03 3.470E+02 3.420E+03 5.460E+01
F29 6.910E+03 6.690E+02 8.370E+03 1.600E+03 1.600E+04 4.700E+03 6.620E+03 7.270E+02 7.110E+03 6.790E+02
F30 8.090E+07 2.370E+07 6.070E+06 7.830E+06 2.000E+09 6.460E+08 7.290E+07 2.860E+07 9.370E+07 3.530E+07
W/T/L 28/0/2 28/0/2 29/0/1 28/0/2 28/0/2
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Table 6. Experiment results on IEEE CEC 2017 on 100 dimensions.
SSWOA IFDE SS SMS BBO
Mean Std Mean Std Mean Std Mean Std Mean Std

F1 4.890E+03 5.380E+03 1.000E+02 0.000E+00 6.570E+03 6.330E+03 2.130E+10 3.780E+09 8.880E+07 8.550E+06
F2 2.000E+02 1.720E-03 2.100E+02 3.600E+01 2.000E+02 2.840E-05 2.780E+140 1.410E+141 1.240E+44 6.690E+44
F3 1.560E+05 1.840E+04 3.000E+02 0.000E+00 1.550E+05 1.870E+04 3.510E+05 3.910E+04 2.410E+03 6.260E+02
F4 4.320E+02 4.540E+01 4.580E+02 6.730E+01 4.960E+02 8.830E+01 4.290E+03 8.590E+02 7.020E+02 4.360E+01
F5 1.280E+03 1.770E+01 5.880E+02 1.490E+01 1.300E+03 2.250E+01 1.440E+03 1.130E+02 8.080E+02 4.260E+01
F6 6.020E+02 7.470E-01 6.000E+02 3.780E-02 6.020E+02 7.320E-01 6.760E+02 5.840E+00 6.040E+02 1.220E+00
F7 1.620E+03 1.920E+01 8.970E+02 8.750E+00 1.640E+03 2.630E+01 2.950E+03 2.010E+02 1.400E+03 3.930E+01
F8 1.590E+03 1.500E+01 8.850E+02 1.330E+01 1.600E+03 2.380E+01 1.810E+03 1.110E+02 1.110E+03 4.340E+01
F9 9.760E+02 3.020E+01 9.010E+02 6.090E-01 1.030E+03 6.550E+01 4.180E+04 6.370E+03 6.300E+03 1.450E+03
F10 1.760E+03 1.310E+02 1.350E+04 4.940E+02 3.040E+04 4.150E+02 2.600E+04 1.990E+03 1.520E+04 1.260E+03
F11 7.400E+05 1.260E+06 1.610E+03 6.680E+01 1.730E+03 1.090E+02 8.080E+04 1.270E+04 2.520E+03 2.010E+02
F12 3.560E+04 8.650E+03 2.410E+04 7.790E+03 9.960E+05 1.560E+06 5.650E+09 1.970E+09 2.960E+07 7.740E+06
F13 2.890E+04 5.570E+03 2.140E+03 5.950E+02 3.370E+04 7.670E+03 6.090E+07 4.270E+07 7.550E+03 2.070E+03
F14 2.860E+03 3.290E+02 1.650E+03 2.410E+01 3.840E+03 2.070E+03 8.910E+06 3.370E+06 8.450E+05 4.090E+05
F15 2.240E+04 3.470E+03 1.740E+03 3.840E+01 2.680E+04 7.030E+03 1.220E+07 5.040E+07 2.740E+03 1.270E+03
F16 7.890E+03 8.460E+02 3.400E+03 3.240E+02 8.410E+03 4.550E+02 9.760E+03 1.340E+03 5.160E+03 6.630E+02
F17 5.910E+03 2.740E+02 3.180E+03 2.090E+02 6.130E+03 2.930E+02 6.980E+03 8.980E+02 4.470E+03 5.120E+02
F18 4.910E+04 1.950E+04 2.000E+03 4.260E+01 9.080E+04 3.490E+04 1.060E+07 4.980E+06 1.830E+06 8.420E+05
F19 2.780E+04 9.170E+03 2.080E+03 2.100E+01 4.240E+04 2.510E+04 2.480E+07 1.980E+07 3.120E+03 1.350E+03
F20 6.330E+03 2.170E+02 4.040E+03 2.090E+02 6.520E+03 2.530E+02 5.640E+03 6.120E+02 5.170E+03 3.770E+02
F21 3.100E+03 2.190E+01 2.390E+03 1.360E+01 3.130E+03 2.220E+01 3.680E+03 1.250E+02 2.650E+03 5.200E+01
F22 3.070E+04 5.820E+03 1.490E+04 2.440E+03 3.110E+04 5.900E+03 2.930E+04 1.750E+03 1.790E+04 1.270E+03
F23 2.950E+03 1.930E+01 2.890E+03 1.300E+01 2.990E+03 8.820E+01 5.090E+03 2.110E+02 3.280E+03 4.860E+01
F24 3.390E+03 2.590E+01 3.280E+03 1.200E+01 3.420E+03 2.600E+01 7.570E+03 5.820E+02 3.890E+03 8.220E+01
F25 3.190E+03 3.790E+01 3.240E+03 4.630E+01 3.240E+03 6.040E+01 5.310E+03 3.960E+02 3.340E+03 5.090E+01
F26 6.820E+03 2.280E+02 6.090E+03 8.240E+02 7.150E+03 3.100E+02 3.140E+04 2.800E+03 1.160E+04 9.240E+02
F27 3.370E+03 1.990E+01 3.350E+03 2.100E+01 3.400E+03 3.820E+01 7.330E+03 7.850E+02 3.860E+03 9.910E+01
F28 3.320E+03 2.820E+01 3.330E+03 3.050E+01 3.340E+03 5.980E+01 7.690E+03 9.880E+02 3.450E+03 3.420E+01
F29 6.060E+03 1.080E+03 4.240E+03 2.070E+02 6.850E+03 8.370E+02 1.430E+04 1.800E+03 6.670E+03 4.430E+02
F30 1.660E+06 7.930E+05 5.520E+03 1.830E+02 1.480E+06 6.080E+05 8.600E+08 3.900E+08 6.510E+04 2.010E+04
W/T/L -/-/- 4/0/26 25/4/1 27/0/3 16/0/14

WOA CAWOA HIWOA NGSWOA SBWOA
Mean Std Mean Std Mean Std Mean Std Mean Std

F1 3.870E+07 1.730E+07 2.900E+10 1.140E+10 1.580E+11 1.890E+10 2.030E+10 8.880E+09 4.040E+07 1.330E+07
F2 3.200E+132 1.270E+133 6.080E+147 3.050E+148 6.560E+156 2.270E+133 8.690E+141 4.610E+142 2.130E+135 1.320E+136
F3 6.000E+05 1.740E+05 4.700E+05 9.200E+04 2.970E+05 1.770E+04 4.470E+05 1.800E+05 6.180E+05 1.880E+05
F4 9.910E+02 8.560E+01 4.300E+03 1.450E+03 4.580E+04 8.280E+03 2.700E+03 6.830E+02 1.010E+03 7.650E+01
F5 1.450E+03 1.220E+02 1.900E+03 2.000E+02 1.600E+03 5.710E+01 1.490E+03 1.010E+02 1.460E+03 1.150E+02
F6 6.790E+02 8.180E+00 6.900E+02 7.770E+00 6.860E+02 6.690E+00 6.830E+02 8.390E+00 6.800E+02 8.700E+00
F7 3.280E+03 1.580E+02 5.870E+03 9.520E+02 3.530E+03 1.120E+02 3.310E+03 1.770E+02 3.260E+03 1.900E+02
F8 1.870E+03 1.010E+02 2.280E+03 1.980E+02 2.050E+03 7.770E+01 1.970E+03 1.250E+02 1.890E+03 1.150E+02
F9 3.550E+04 7.650E+03 5.060E+04 9.130E+03 4.850E+04 6.610E+03 4.050E+04 1.130E+04 3.990E+04 1.140E+04
F10 1.980E+04 2.670E+03 2.480E+04 3.100E+03 2.350E+04 2.420E+03 2.010E+04 2.120E+03 2.080E+04 2.420E+03
F11 8.560E+03 6.140E+03 7.400E+04 4.590E+04 1.070E+05 1.340E+04 3.970E+04 1.630E+04 8.010E+03 2.650E+03
F12 5.900E+08 2.610E+08 8.610E+09 1.100E+10 8.380E+10 1.610E+10 2.970E+09 2.770E+09 7.340E+08 2.570E+08
F13 2.130E+05 8.380E+05 4.160E+08 9.260E+08 1.750E+10 5.280E+09 1.820E+08 3.950E+08 8.900E+04 3.800E+04
F14 1.900E+06 8.350E+05 6.990E+06 8.900E+06 6.220E+06 1.730E+06 4.360E+06 2.400E+06 1.900E+06 8.480E+05
F15 6.230E+04 2.760E+04 3.730E+08 1.020E+09 7.650E+09 2.940E+09 5.000E+07 2.320E+08 9.570E+04 1.290E+05
F16 1.010E+04 1.490E+03 9.210E+03 2.430E+03 1.610E+04 1.420E+03 9.990E+03 1.560E+03 9.640E+03 1.550E+03
F17 7.030E+03 8.310E+02 2.460E+04 3.340E+04 3.270E+04 4.100E+04 7.970E+03 3.290E+03 6.980E+03 8.450E+02
F18 2.290E+06 9.530E+05 9.090E+06 2.040E+07 1.210E+07 8.980E+06 3.190E+06 1.740E+06 2.130E+06 8.640E+05
F19 1.380E+07 6.270E+06 3.070E+08 1.330E+09 6.730E+09 2.410E+09 4.650E+07 1.560E+08 1.470E+07 7.700E+06
F20 6.380E+03 5.190E+02 6.900E+03 7.970E+02 6.090E+03 5.080E+02 6.210E+03 5.390E+02 6.210E+03 6.190E+02
F21 3.910E+03 2.230E+02 4.130E+03 1.890E+02 4.080E+03 1.550E+02 3.880E+03 2.190E+02 3.900E+03 1.880E+02
F22 2.320E+04 2.310E+03 2.820E+04 3.140E+03 2.690E+04 2.450E+03 2.290E+04 2.420E+03 2.390E+04 2.560E+03
F23 4.740E+03 2.270E+02 5.570E+03 3.220E+02 5.090E+03 2.790E+02 4.740E+03 3.090E+02 4.680E+03 3.290E+02
F24 6.020E+03 4.710E+02 7.810E+03 6.060E+02 6.750E+03 6.390E+02 5.910E+03 4.530E+02 5.960E+03 3.500E+02
F25 3.630E+03 8.140E+01 6.140E+03 1.470E+03 1.310E+04 1.620E+03 4.930E+03 5.090E+02 3.620E+03 6.150E+01
F26 3.070E+04 3.190E+03 3.840E+04 4.520E+03 3.430E+04 1.470E+03 3.030E+04 3.160E+03 3.130E+04 3.380E+03
F27 5.050E+03 6.420E+02 6.950E+03 1.510E+03 6.850E+03 1.150E+03 4.950E+03 5.470E+02 5.040E+03 6.460E+02
F28 3.710E+03 6.380E+01 8.540E+03 2.460E+03 1.030E+04 6.460E+02 5.460E+03 8.260E+02 3.730E+03 6.140E+01
F29 1.390E+04 1.950E+03 2.450E+04 1.580E+04 4.060E+04 1.620E+04 1.310E+04 1.570E+03 1.370E+04 1.880E+03
F30 1.910E+08 8.620E+07 5.650E+08 1.260E+09 1.370E+10 4.390E+09 2.630E+08 3.050E+08 2.160E+08 7.530E+07
W/T/L 27/1/2 28/0/2 27/0/3 27/1/2 27/1/2
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Figure 7. Convergence and Box-and-whisker of D30.

Figure 8. Convergence and Box-and-whisker of D50 and D100.
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Table 8. p-values obtained by the Wilcoxon sign-ranked test for SSWOA.

SSWOA vs. WOA SASS NGSWOA CAWOA HIWOA
0.0051 0.0294 0.0039 0.0039 0.0039

SBWOA IFDE SMS BBO BP KNN
0.0039 0.0144 0.0039 0.011 0.0144 0.1424

Table 9. Running times of SSWOA and its competitors.

SSWOA IFDE SASS WOA CAWOA HIWOA NGSWOA
Australia 41.46 42.18 53.36 40.79 38.46 38.64 42.49
BreastEW 34.81 35.30 13.63 35.43 33.23 32.21 36.70
CongressEW 15.77 15.73 16.63 14.91 13.55 14.06 16.77
Exactly 47.15 48.72 47.74 46.00 43.79 44.69 0.68
German 19.39 20.28 19.50 17.98 17.95 18.21 21.65
Heart 22.22 23.27 22.95 39.47 20.66 20.52 20.61
Ionosphere 16.18 16.52 16.57 14.88 13.82 14.47 17.16
KrVsKpEW 56.58 57.81 57.46 54.46 51.88 53.51 59.04
SpectEW 4.23 5.45 4.22 3.81 3.98 3.36 7.33
TIC-tac-toe 25.86 26.62 26.55 24.32 24.14 24.54 27.38
Vote 10.47 10.62 11.73 9.15 9.05 9.18 12.18
Ave. 26.74 27.50 26.39 27.38 24.59 24.85 23.82

SBWOA SMS BBO BP KNN SVM RandomForest
Australia 42.66 40.85 14.09 357.67 1.55 1.02 1.42
BreastEW 37.53 34.18 16.36 306.28 0.84 0.81 0.83
CongressEW 18.07 16.12 10.83 264.42 0.83 0.78 0.83
Exactly 48.36 47.72 16.38 403.77 0.87 0.83 0.84
German 21.05 19.94 22.19 78.23 0.87 0.85 0.93
Heart 20.87 22.26 9.43 49.23 0.79 0.75 0.81
Ionosphere 17.98 16.20 12.07 152.62 0.71 0.87 0.91
KrVsKpEW 59.66 57.71 62.68 13752.18 0.87 1.04 0.88
SpectEW 6.22 5.19 5.86 154.23 0.87 0.87 0.89
TIC-tac-toe 28.55 26.15 14.25 261.07 0.93 1.05 0.86
Vote 11.95 10.70 8.46 48.75 1.36 1.74 1.52
Ave. 28.45 27.00 17.51 1438.95 0.95 0.97 0.97

5.2. Algorithm training model performance comparison

In order to precisely visualize the performance of SSWOA, we decided to employ two different
graphs, namely the box-and-whisker plots graphs (Figures 9 and 10) and the convergence graph, i.e.,
Figure 11. Figures 9 and 10 depict two typical problems, namely the CongressEW, Exactly. This
box-and-line diagram includes two evaluation metrics, MSE and accuracy. The box-and-whisker plot
includes the maximum, minimum, first quartile, and median. Figure 10 summarizes the maximum,
minimum, first quartile, median, third quartile and extreme values. The distribution of solutions
shown in Figure 10 indicates that the difference between the lowest and highest numbers shows how
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consistently the algorithm performs. Additionally, the reduced height in terms of MSE suggests that
the algorithm might provide a superior answer during training.

SSWOA has the best median and lowest values for the Exactly and CongressEW issues, as can
be observed in Figures 9 and 10, which indicates that SSWOA exhibits the optimal effect in training
DNM. It is inevitable that some of the evolutionary algorithms may experience problems with excesses
in the training process. Nevertheless, SSWOA presents the best classification accuracy for all problems
tested compared to its peers.

Figure 11 introduces the convergence plots for all compared algorithms. It can be noticed from the
graphs that SSWOA has a reasonable convergence rate compared to other learning algorithms.
Therefore, combining Figures 10–11 and the time displayed by Table 9, we can conclude that
SSWOA is a hybrid algorithm that combines high classification accuracy, good robustness and high
convergence. SSWOA is exactly the DNM’s learning system that shows the greatest promise.

In addition, we compared the ROC curves and AUC values of the models trained by both
evolutionary and non-evolutionary algorithms, as shown in Figure 12. From the Congress dataset we
can observe that the AUC values of SSWOA are slightly larger than those of the evolutionary
algorithms IFDE, SASS, which is much better than WOA and its variants. Also, in evolutionary
algorithms, the AUC values of SSWOA are also slightly larger than those of non-evolutionary
algorithms. This is even more evident in the dataset Exactly, where SSWOA has a larger computed
area under the ROC curve than other evolutionary and non-evolutionary algorithms. This is also true
for other important metrics. Based on these experimental results, we can easily conclude that the
hybrid algorithm has better classification performance than other single algorithms. To a certain
extent, SSWOA improves the classification accuracy, precision and has good robustness and high
convergence on the basis of one single algorithm.

Figure 9. Box-and-whisker plots of the classification effects of SSWOA and its comparative
algorithms for the CongressEW and Exactly datasets (Acc).
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Figure 10. Box-and-whisker plots of the classification effects of SSWOA and its comparative
algorithms for the CongressEW and Exactly datasets (MSE).

Figure 11. Convergence plots of the classification effects of SSWOA and its comparative
algorithms on the CongressEW, Exactly datasets.

Figure 12. ROC and AUC of CongressEW and Exactly.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7594–7632.
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5.3. Morphology and logical circuits realization

In training the DNM with the evolutionary algorithm, it is important to determine the appropriate
values of wi j and qi j. As described in Section 2, wi j represents the state that the synapse is in, i.e.,
excitation or inhibition, while qi j represents a threshold value regarding the presence or absence of the
synapse. Then, in Figure 13, we represent synaptic weights obtained from the DNM model of synapses
on both Exactly and CongressEW datasets, suggesting that dendrites impose a strong influence on
excitation types and synaptic plasticity.

These state transitions are based on mechanisms previously used in morphology and include here
four types of connected states, i.e., direct, inverse, constant 1 and constant 0. Once the pruning
operation is complete, this morphological representation can be converted to a logic circuit on the
hardware. The ultimate morphology may be acquired after dendritic and synaptic pruning. The
precise information is shown in Figure 14. A complex and large unpruned morphology can be seen in
the Exactly dataset, whereas only four dendritic layers were retained after pruning and up to seven
attributes in the dataset were also removed from the data by the learned DNM, with only X1–X5, X7,
X9 and X11 needing to be involved in information processing. Figure 15 shows the neuromorphology
of the DNM on the CongressEW dataset. Attribute X1 has been removed, which is functionally
equivalent to a feature extraction, and more than half of the attributes have been removed. This drastic
simplification produces a short and clear logic circuit.

It is also easy and convenient to implement inside hardware. It is important to note that typical
neural networks take a significant amount of design work to build their complete models, whether
they are implemented digitally, analogously, or on FPGA-based circuits [83,84], Even silicon photonic
chips are required for the hardware implementation of some particular neural networks [85]. Compared
to these efforts, the hardware implementation of DNMs is relatively simple, as only logic circuits are
utilized, which brings DNMs greater potential and broader prospects in real-world applications.

Figure 13. Learning result of the synaptic weight on the Exactly and CongressEW datasets.
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Figure 14. Morphology and logical circuit of DNM on the Exactly dataset.
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Figure 15. Morphology and logical circuit of DNM on the CongressEW dataset.
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6. Conclusions and future works

A hybrid algorithm (SSWOA) was innovatively proposed in the paper to train the single dendritic
neuron model. SSWOA was constructed by fusing the benefits of the SS algorithm and the WOA
approach. The SS algorithm was employed to roughly determine the direction of the best option,
followed by the advancement capabilities of the whale optimization algorithm were used to find the
optimal solution, thus improving the capability of the search algorithm. The specific solution is to use
SS to exploit exploration in the direction-Rand and WOA to exploit in the other portion towards-best,
allowing faster convergence in the best region.

Twelve common classification tasks were used in the experiments, and the findings show that
SSWOA can perform much better than BP and ten other non-BP advanced learning methods. The
findings also verified that the performance of the hybrid algorithm can be further enhanced when
learning single dendritic neuron models.

However, the proposed SSWOA has the following limitations: 1) it is less impressive in terms of
time consumption and outcomes compared to other machine learning techniques, 2) the DNM learned
by SSWOA still suffers from the curse of dimensionality, thus limiting its applicability on large-scale
applications, e.g., image recognition of ImageNet, videos information processing, etc.

The future work of this study include: 1) There is no one global optimization procedure that is the
optimal for all optimization problems, according to the renowned “no free lunch” theory. In training
DNMs, a variety of heuristic optimization strategies have shown good results, although they still have
drawbacks. It is still unclear whether we need to take into account the effectiveness of other heuristic
optimization methods, e.g., the farmland fertility algorithm [86–88], African vultures optimization
algorithm [89], mountain gazelle optimizer [90], artificial gorilla troops optimizer [91], that co-evolve
to ultimately improve the DNM.

2) DNM can identify neuromorphology for a particular task, implying that for a neuron with
organized dendrites, it is possible for DNM to determine the amount of dendrites required, the
location of the presynaptic axon terminals connecting the dendrites, and the nature of the connections,
i.e., excitatory or inhibitory. If we can utilize this local spatial information for visual orientation
detection, as Taylor [92] suggests, we will have a better understanding of how a neuron is structured
when executing a particular task.

3) Given the spatial dendritic structure, the promising single-neuron model DNM should be able
to serve as the foundation for multi-layer deep learning models, enhancing its capacity to resolve
challenging real-world problems.

4) More bio-experimental data, such as auditory coincidence detection data, may be obtained with
DNM since it can conduct neural morphology detection. The exact rules and methods that biologists
and neurologists may utilize as teacher signals while examining neurons, synapses, and dendrites.
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