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Abstract: Given the particular characteristics of a sudden outbreak of an epidemic on a regional scale 
and considering the possible existence of a latent period process, this paper takes the distribution of 
regional emergency supplies as the research object. Form the proposes a dynamic vehicle path problem 
from the perspective of real-time demand changes. First, when there is a sudden outbreak of a small-
scale epidemic, there is uncertainty about demand in the epidemic area. The objective functions of 
minimizing the vehicle travel route cost of emergency vehicles, the late arrival penalty cost of 
emergency vehicles, and the fixed cost of emergency vehicles, as well as the objective function of 
minimizing the total distance traveled by vehicles, are established. Second, a mathematical model of 
the dynamic real-time demand vehicle route problem is built using the actual vehicle routing problem 
as a basis. The model is then solved using the SFSSA method. Finally, the computational results 
demonstrate that the SFSSA algorithm can effectively reduce transportation cost and distance when 
solving the constructed mathematical model problem, providing a solution to the problem of 
optimizing the route of emergency material distribution vehicles for a regional scale. 
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1. Introduction 

In recent years, the earth’s ecological environment has deteriorated, resulting in many natural 
catastrophes and public health crises that are hazardous to people's lives and have a considerable 
negative impact on the economy [1]. The most recent case was the Corona Virus Disease 2019 
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(COVID-19) in late 2019, which swept the world and caused huge losses not only economically but 
also socially, with people at risk of losing their jobs, the virus spreading in food and supply chains 
disrupted [2]. In public health emergencies, there are many uncertainties in dispatching emergency 
logistics vehicles within regional prevention and control, and subjective decisions will limit emergency 
rescue efficiency. Therefore, an objective analysis of the actual problem and developing a reasonable 
dispatching plan is the key to improving emergency rescue efficiency [3]. Following the COVID-19 
outbreak, the epidemic has not been completely eradicated, with fewer large outbreaks but frequent 
regional ones. Given the potential for the sudden emergence of new points of need in the epidemic 
area and the continuing spread of the epidemic, the rational and practical delivery of relief supplies to 
the various points of need in the epidemic area is an appropriate countermeasure required to address 
the problem.  

The distribution of emergency supplies is addressed in this study by means of the vehicle routing 
problem with dynamic real-time demand (VRPDRTD). Emergency logistics must take into account 
not only the cost of transport but also the efficiency and effectiveness of the distribution of emergency 
supplies. Firstly, to ensure the timeliness of rescue, the emergency supplies need to be transported to 
the disaster point at the earliest possible time. Considering the delay in emergency vehicle material 
distribution, this paper sets up the time window constraint for emergency material distribution. 
Secondly, to ensure the effectiveness of emergency distribution vehicles in the delivery of materials 
and make the model more in line with actual needs, the load of emergency materials of the delivery 
vehicles is constrained during the modeling process of this paper. Thirdly, given the dynamics of the 
outbreak and its evolution, the needs of the endemic areas are also dynamic. Therefore, the 
emergency distribution plan in this document will be adapted and updated to dynamic real-time 
needs. Finally, the model considers minimizing vehicle travel distances to ensure a reasonable 
distribution route for supplies.  

The study of regional emergency material distribution considers this research problem's 
specificity. This research creates a mathematical model of the regional emergency material distribution 
vehicle route optimization issue based on four factors: distribution time window, vehicle loading, 
dynamic real-time demand, and distance traveled. On this basis, the sine cosine and firefly perturbed 
sparrow search algorithm (SFSSA) is applied to enhance the algorithm search mechanism by 
introducing chaotic tent mapping, initializing the population to improve the algorithm search 
mechanism, using the improved sine cosine optimization algorithm with random weights at the 
discoverer position to improve the local search ability of the algorithm, and introducing the firefly 
algorithm at the end of the algorithm to perturb the sparrow search algorithm [4]. Finally, the problem 
is solved by simulation experiments. The results of the simulations show that the algorithm used is 
better than the SSA and GA algorithms at solving the problem of figuring out the best route for 
emergency supplies to be delivered across a region. 

The remaining work of this paper is organized as follows. Section II reviews the literature related 
to the vehicle routing problem, dynamic vehicle routing problem, and emergency material distribution 
problem. Section III defines the related issues as well as mathematical modeling. Section IV describes 
the SFSSA algorithm. Section V performs the verification analysis of the above problems. 

2. Literature review 

The vehicle routing problem (VRP) has been studied for more than 60 years and was first 
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proposed by Dantzig and Ramser in 1959 [5]. VRP is also a classic NP-Hard problem as a classic 
optimization combination problem in operations research [6]. The VRP problem has been widely 
involved in the joint transport of drones and trucks [7], electric vehicles’ routes [8], and the 
optimization of green vehicles’ routes [9]. Currently, most objective functions for solving vehicle route 
problems focus on solving cost-minimization problems. For example, Minh Anh Nguyen et al. 
consider combined drone and truck transport as a solution to the “last mile” delivery problem to 
minimize transport costs [10]. Hornstra et al. developed cost models, including cost fitness functions 
such as route and cargo picking costs [11]. Xia et al. consider the problem of the inability to split 
customer requirements and thus discrete split delivery according to orders and solve the model by 
designing a new forbidden search algorithm [12]. The literature still has cost minimization as a research 
objective. Faced with a shortage of transport resources during a public health emergency, the above 
literature problem does not apply to solving the problem of vehicle routing for the distribution of 
emergency supplies [13].  

The dynamic vehicle route problem has received more attention from academics as they confront 
vehicle route optimization issues. The research field and application scope of the dynamic vehicle 
route problem is extensive, which promotes the new direction and progress of the study of DVRP [14]. 
For example, Sabar et al. examine dynamic vehicle routing with previous customer uncertainty. The 
goal of the study is to include new customers in the program. Minimize cost problems for all 
customers without violating problem constraints. The problem is solved using the adaptive method 
combined with the evolutionary operator and local search method. Help decision-makers design the 
best solution [15]. Li et al. study the periodic dynamic vehicle route problem based on delayed service 
according to the continuous updating problem of customer demand and design a hybrid variable 
neighborhood artificial bee colony algorithm with a multi-stage solution, which can better balance the 
route update and vehicle real-time information matching problem for new and old customers [16]. 
Xiang Xiaoshu et al. proposed an ACO-CD algorithm based on coverage diversity based on the 
dynamic vehicle route problem with unknown customer demand. They verified the effectiveness of 
the algorithm by testing it [17]. Resmi Ramachandran Pillai and Michael Arock proposed capacitated 
DVRP with time windows (CDVRPTW), which was used to solve the CDVRPTW problem by 
combining the improved firefly algorithm with spike nerve P [18]. Jiang et al. proposed deep 
reinforcement learning algorithms to solve the problem of dispatching emergency supplies with 
dynamic demand changes [19]. 

When optimizing the route of emergency distribution vehicles, it is necessary to consider the 
special aspects of emergency logistics, improve the efficiency of rescue time, make reasonable 
arrangements for the distribution of emergency supplies, and other issues for which emergency 
logistics is an essential part of the solution [20]. For example, Du et al. introduced a UAV vehicle route 
optimization problem with time window constraints to improve the efficiency of medical supplies 
delivery. They formulated a mixed integer programming model considering contactless delivery, total 
transit time, and customer service time windows [21]. Espejo‐Díaz and Guerrero consider that the 
affected population’s psychological affordability affects emergency supplies’ distribution. Therefore 
construct mathematical models to balance the cost of rescue routes [22]. Suzuki examines how the 
choice of material convergence (MC) method affects emergency supplies “last mile” distribution. The 
paper refers to two analytical methods. One is the P method (transport of primary emergency supplies 
to the affected area first). The other is the M method (including emergency and non-emergency 
supplies for shipments to affected areas). Finally, it is proved that the M method practice is more 
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effective than the P method [23]. Mishra et al. present a dynamic planning model with a sliding time 
window based on disaster scenario dynamics to analyze catastrophe indicators and distribute 
emergency supplies effectively, which helps deal with the distribution of emergency supplies in 
regional outbreaks [24]. 

In addition, the problem of emergency material distribution vehicle routes is a complex multi-
objective optimization problem. In solving such problems, precise algorithms have certain limitations 
in dealing with such practical issues. More heuristic algorithms, such as the genetic algorithm [25], ant 
colony optimization algorithm [26], and particle swarm optimization algorithm [27], are used to solve 
this problem. This paper uses the group intelligence algorithm of recent years to solve the algorithm. 
It is feasible to solve practical problems by improving the algorithm. 

In summary, due to the sudden epidemic outbreak, the government has adopted regional 
prevention and control measures that require the timely supply of daily supplies to the population. 
Moreover, in the relevant research on the problem of emergency material distribution vehicles, most 
of the objective functions constructed by the appropriate models of existing problems are considered 
with the goal of cost minimization, which is impractical in evaluating the actual epidemic problem. 
Therefore, this paper studies the problematic situation of optimizing the route of emergency material 
distribution vehicles in the background of epidemic prevention and control in the region. The research 
ideas in this paper are as follows. 

1) The uncertainty factors due to the outbreak of regional epidemics are considered to build a 
mathematical model of the emergency material distribution vehicle route optimization issue from four 
aspects: time window limitation, vehicle loading, dynamic real-time demand, and driving distance. 

2) In this paper, considering the increase of material demand points and demand in the epidemic 
prevention and control region, the dynamic real-time demand in the prevention and control region is 
more in line with the actual situation of emergency material demand in the event of an epidemic, to 
cope with the negative impact on society after the sudden outbreak of the epidemic.  

3) The SFSSA algorithm is used to solve the model. The experiment proves that the SFSSA 
algorithm is superior to the SSA and GA algorithms. 

3. Model establishment 

3.1. Problem description 

Following the COVID-19 outbreak, the epidemic has not been completely eradicated and the 
government will usually resort to city closures or area-wide closure and control measures in the face 
of a continuous and uninterrupted outbreak. To prevent the spread of the epidemic, people must stay 
at home under a quarantine policy until the epidemic disappears. But, this would prevent individuals 
from going out and purchasing the necessities for their everyday lives, such as daily medications for 
their families. The commodities that inhabitants need daily would need to be distributed by the 
government at each demand point. Therefore, a practical solution is needed for the issue of efficiently 
and timely distributing aid to the numerous locations of need in the epidemic regions.  

This paper’s problem is optimizing regional emergency material distribution vehicle routes under 
dynamic real-time demand: One emergency material distribution center and N demand points in a 
range-determined prevention and control area. The geographical location of each node is known, and 
the distribution process is a closed loop. The starting point of all distribution vehicles is the emergency 
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material distribution center. Demand point requirements, maximum vehicle load capacity, and demand 
point delivery windows are known. Demand point requirements combined do not exceed the vehicle 
load sum, allowing for mixing emergency supplies at different demand points and fixed service times 
at demand points. 

The following fundamental model assumptions are established in this research to comprehend the 
study and model better. 

1) At the beginning of the rescue, the emergency material delivery vehicle departs from the 
distribution center, and upon completion of the delivery, all vehicles return to the distribution center.  

2) Sets the location of the distribution center unchanged, and no out-of-stock status exists. 
3) Consideration is given only to the distribution of emergency supplies, i.e., the flow of 

emergency supplies is unidirectional. 
4) Emergency material delivery vehicles travel uniformly during the delivery process.  
5) The demand point has requirements for the service time window, and the delivery vehicle can 

arrive at the delivery demand point earlier but not later.  
6) During the period, it is required that all demand points must be visited, each demand point can 

only be served by one vehicle for delivery, and each demand point can only be called once.  
7) All distribution vehicles have the exact vehicle parameters, i.e., the same model, each vehicle 

has the same emergency supplies, and the maximum load capacity of each vehicle is known. 
8) The material requirements at the point of demand do not exceed the vehicle’s maximum 

capacity. 
9) No consideration is given to other external factors during the travel of emergency material 

distribution vehicles. 

3.2. Parameter setting 

The meanings of the mathematical symbols in the model are shown in Table 1 below. 

Table 1. Parameter setting. 

Symbol Description 
𝑁 The collection of demand points, 𝑁 = {1,2, . . . , 𝑛} 
𝐾 The collection of available automobiles, 𝐾 = {1,2, . . . , 𝑘} 
𝑄 Maximum load per vehicle and approved load 
𝐿 The farthest distance the car can go is L > 0 
𝛿 The maximum number of vehicles that can be used to transport emergency supplies 

𝑞௜௝  loading a vehicle from demand point 𝑖 to 𝑗 
𝑝௜

௥ The number of materials allocated at the demand point 
𝑑௜௝  Vehicles may travel a non-negative distance between demand points 𝑖 and 𝑗 if (0 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁)exists.  
𝑡௜௝ The amount of time it takes a car to get from demand point 𝑖 to point 𝑗 (0 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁)  
𝑡𝑑௜ The moment when dynamic demand first appeared 

[𝐸଴, 𝐿଴] The time window for receiving dynamic demand points by emergency material distribution centers 
𝑁௨ The new demand point specifications, 𝑁௨ = {𝑛 + 1, 𝑛 + 2, . . . , 𝑛 + 𝑚} 
𝑠௜ The service time at the demand point 𝑖 where 𝑘 = {1,2, … , 𝑘} and 𝑖 = {1,2, . . . , 𝑛} 
𝑡௞௜ Vehicle 𝑘 travel time to demand point 𝑖 
𝑡௞଴ Vehicle 𝑘 timing of departure from the distribution point for emergency supplies 
𝑙௞௜ Vehicle 𝑘 should depart after it has served demand point 𝑖, 𝑙௞௜ = 𝑎௞௜ + 𝑠௜ 

[𝐸௜ , 𝐿௜] The window of service for demand point 𝑖 
𝛼 𝐿௜  unit penalty cost factor for being beyond the time frame 
𝐶 Cost of unit distance 
𝐹௞ Use of a vehicle for a fixed cost,𝐹௞ > 0 
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The meanings of the decision variables in the model are shown in Table 2 below. 

Table 2. Decision variable settings. 

Symbol Description 
𝑥௞௜௝  Vehicle 𝑘 performs a distribution duty between demand points 𝑖 and 𝑗, 𝑥௞௜௝  is 1; otherwise, 𝑥௞௜௝  is 0 
𝑦௞௜  Vehicle 𝑘 service demand point 𝑖, 𝑦௞௜ is 1, otherwise 𝑦௞௜ is 0 

3.3. Model construction 

As this research exclusively addresses regional epidemics that take place on a regional scale, there 
is no problem with a widespread epidemic state or the distribution of supplies across provinces and 
cities. As a result, the government takes precautions to keep residents quarantined within their homes. 
Because of this, the primary concern that we focus on is how to reduce the cost of distribution, which 
takes into account both the cost of the vehicle's route and the cost of the vehicle's stationary use. 
Another vehicle delay penalty cost is taken into consideration given that the emergency circumstance 
is taken into account. In this paper, we consider the costs incurred in the process of emergency material 
distribution as vehicle route cost, vehicle delayed arrival penalty cost, and vehicle fixed use cost, 
respectively, and each cost is specified as follows.  

1) Vehicle route cost: 

min𝑧ଵ = ∑ ∑ ∑ 𝑑௜௝. 𝑥௞௜௝
௄
௞ୀଵ௝∈ே∪ேೠ௜∈ே∪ேೠ

. 𝐶                (1) 

2) Vehicle delayed arrival penalty cost: 

min𝑧ଶ = ∑ ∑ 𝛼. 𝑚𝑎𝑥{𝑡𝑘𝑖 − 𝐿𝑖, 0}௄
௞ୀଵ௜∈ே∪ேೠ

                            (2) 

3) Vehicle fixed cost: 

min𝑧ଷ = ൣ∑ ∑ ∑ 𝑥௞௜௝
௄
௞ୀଵ௝∈ே∪ேೠ௜∈ே∪ேೠ

൧ ∗ 𝐹𝑘                         (3) 

In addition to this point of interest, given that we are located in a control area for the regional 
distribution of materials, we have set as one of our priorities the reduction of the total distance that 
needs to be traveled by vehicles in the event of an emergency. Thus, the objective function that 
minimizes the total cost of vehicle route cost, vehicle delayed arrival penalty cost, vehicle fixed cost, 
and the objective function that minimizes the total distance traveled by the vehicle is constructed, and 
the optimization model of the regional emergency material distribution vehicle route problem under 
real-time dynamic demand is as follows.  

min𝑍ଵ = (𝑧ଵ, 𝑧ଶ, 𝑧ଷ)                      (4) 

min𝑍ଶ = ∑ ∑ ∑ 𝑑௜௝ . 𝑥௞௜௝
௄
௞ୀଵ௝∈ே∪ேೠ௜∈ே∪ேೠ

                      (5) 

s.t. 

  ∑ ∑ 𝑥௞௜௝
௄
௞ୀଵ௝∈ே∪ேೠ

= 1,                               ∀𝑖 ∈ 𝑁 ∪ 𝑁௨                      (6) 
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  ∑ ∑ 𝑥௞௜௝
௄
௞ୀଵ௜∈ே∪ேೠ

= 1,                                ∀𝑗 ∈ 𝑁 ∪ 𝑁௨                     (7) 

  ∑ 𝑞௜𝑦௜௞௜∈ே∪ேೠ
≤ 𝑄,                                        ∀𝑘 ∈ 𝐾                      (8) 

  𝑞ଵ௝ = 𝑥ଵ௝ 𝑄,                                                    ∀𝑗 ∈ 𝑁 ∪ 𝑁௨, ∀𝑘 ∈ 𝐾             (9) 

   ∑ 𝑥௞௜௛௜∈ே∪ேೠ
= ∑ 𝑥௞௛௝௜∈ே∪ேೠ

,                    ∀ℎ ∈ 𝑁 ∪ 𝑁௨, ∀𝑘 ∈ 𝐾          (10) 

   ∑ 𝑝௜
௥

௜∈ே∪ேೠ
≤ 𝑄 ∗ 𝛿,                                   (11) 

   ∑ 𝑥௞ଵ௝௝∈ே∪ேೠ
= ∑ 𝑥௞௜ଵ௜∈ே∪ேೠ

,                     ∀𝑘 ∈ 𝐾                      (12) 

   ∑ 𝑥௞௜௝௜∈ே = 𝑦௞௜,                                                ∀𝑗 ∈ 𝑁                   (13) 

   ∑ 𝑥௞௜௝௜∈ேೠ
= 𝑦௞௜,                                              ∀𝑗 ∈ 𝑁௨                 (14) 

   ∑ ∑ 𝑑௜௝. 𝑥௞௜௝௝∈ே∪ேೠ௜∈ே∪ேೠ
,                             ∀𝑘 ∈ 𝐾                   (15) 

   ∑ ∑ 𝑥௞௜௝௝∈ே௜∈𝑁 = ∑ ∑ 𝑥௞௝௛௛∈ே௜∈𝑁 ,                𝑖 ≠ 𝑗 ≠ ℎ, ∀𝑘 ∈ 𝐾    (16) 

   ∑ ∑ 𝑥௞௜௝௝∈ேೠ௜∈ேೠ
= ∑ ∑ 𝑥௞௝௣௣∈ேೠ௜∈𝑁𝑢

,         𝑖 ≠ 𝑗 ≠ 𝑝, ∀𝑘 ∈ 𝐾     (17) 

   𝐸௜ ≤ 𝑎௞௜ ≤ 𝐿௜ ,                                                    ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 ∪ 𝑁௨       (18) 

   𝑎௞௜ + 𝑠௜ + 𝑡௜௝ = 𝑎௞௝ ,                                         ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 ∪ 𝑁௨               (19) 

   𝑡𝑑௜ ∈ [𝐸଴, 𝐿଴],                                                     𝑖 ∈ 𝑁 ∪ 𝑁௨       (20) 

   Q > 0, 𝑝௜
௥ > 0, 𝑞௜ > 0                                                                           (21) 

Equation (4) is the objective function of minimizing the cost of the mathematical model. The first 
term is the vehicle route cost, the second is the vehicle delayed arrival penalty cost, and the third is the 
vehicle fixed cost. Equation (5) is the objective function of minimizing the total distance traveled by 
the vehicle for the mathematical model. 

Equations (6) and (7) for each demand point to accept only one emergency vehicle once the 
distribution of emergency supplies services, dynamic real-time demand, including the initial demand 
point and new demand points. Equation (8) represents the vehicle capacity constraint, i.e., the vehicle 
does not exceed the maximum vehicle capacity when departing from the distribution center. Equation (9) 
indicates that all vehicles exiting from emergency material distribution centers are fully loaded. 
Equation (10) suggests that a vehicle visiting this demand point must leave from this demand point. 
Equation (11) indicates that the total demand for supplies at the demand point cannot exceed the service 
capacity of the emergency supplies distribution center. Equation (12) shows ensuring that each vehicle 
departs from the distribution center and returns to the distribution center. Equations (13) and (14) are 
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expressed as the exact vehicle access demand point constraint and additional demand point constraint. 
Equation (15) is described as a vehicle travel distance constraint; that is, the total distance traveled by 
any vehicle 𝑘 must not exceed its maximum travel distance. Equations (16) and (17) are expressed as 
demand point location and additional demand point location access constraints; for any vehicle 𝑘, the 
flow to access demand point 𝑗 is conserved, i.e., the flow to and from demand point 𝑗 is the same. 
Equation (18) represents the time window constraint for demand point 𝑖. Equation (19) is the time to 
calculate the vehicle’s arrival at the demand point 𝑗 . Equation (20) indicates the time to limit the 
emergence of dynamic demand within a defined period. Equation (21) is expressed as a non-negative 
variable constraint. 

3.4. Dynamic real-time demand information processing strategy 

Because COVID-19 is highly infectious and has an incubation period, it is not possible to 
determine whether the patients carrying the virus have themselves become mobile. Furthermore, 
because it is not certain that mobility has occurred, it is also uncertain as to whether or not other areas 
are already infected with the virus. Based on information from the center for disease control and 
prevention (CDC), the government will determine whether there are any suspected cases in the area 
(e.g., residents who have been in contact with patients with COVID-19 or who have traveled to 
medium- to high-risk areas). The site will be closed-off management and its residents isolated. In the 
process of emergency material distribution, the location of the demand point in the epidemic area is 
not static, and the location of the demand point also changes dynamically, which requires the 
dispatching system to respond quickly to meet the demand for emergency materials at the demand 
point, as shown in Figure 1. This study considers the dynamic real-time demand problem, which is 
based on the government through the CDC to get the existence of the situation described above will 
be closed to manage the area designated as a material demand point. The government will be all 
residents of the area nucleic acid testing. Based on the samples taken, the CDC will determine the 
presence of positive patients, according to the test results, to determine whether a new demand point 
has been added.Therefore, in this paper, considering the particular characteristics of the post-epidemic 
outbreak situation, dynamic real-time demand includes both the increase and the increase or decrease 
of demand of initial demand points. 

As shown in Figure 2, the emergency distribution center receives real-time demand information 
one after another in the time window [𝐸଴, 𝐿଴]. When the interval between this moment and the last 
optimized processing time reaches 𝑇, the moment is taken as a time separation point 𝑢(𝑡), called the 
batched processing moment, as shown in Figure 2. According to the established optimization criterion, 
it is possible to divide the receiving time window [𝐸଴, 𝐿଴]  into, e.g., stemmed time intervals 
[𝑢(𝑡 − 1), 𝑢(𝑡)] , which in turn transforms the dynamic vehicle route problem into multiple 
instantaneous static vehicle route problems. 
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Emergency material distribution center Initial demand points Planning route  

(a) Initial route 

Emergency material distribution center Initial demand point

Planning route

New demand point

Traveled route Cancel route  

(b) Dynamic information re-routing 

Figure 1. Dynamic vehicle route optimization schematic. 
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E0 L0

u（1） u（2） u（3） u（t-1） u（t）

Initial 
planning

Dynamic message 
reception ends

Batch processing momentInitial information Dynamic information

Dynamic real-time information reception time

 

Figure 2. Dynamic batching optimization strategy. 

Due to the increase in demand at the initial demand point in the dynamic real-time demand 
problem considered in this paper, there may be an urgent need for this material at the demand point. 

Let a demand point 𝑚 issue a dynamic demand request at the moment 𝑡𝑑൫𝑡𝑑 > 𝑢(𝑡)൯, 𝑡௞௠ denotes 

the start time of vehicle 𝑘 service demand point 𝑚 in the original plan distribution scheme, the service 
time window of the new demand point m will be [𝑒௜, 𝑙௜], if 𝑙௜ ≤ 𝑢(𝑡) + 𝑇, then the demand is an urgent 
demand problem. To quickly respond to this type of urgent demand problem, the urgent dynamic 
demand moment 𝑡𝑑  of this type is chosen as the next batch processing moment 𝑢(𝑡 + 1) , and the 
demand point of the urgent demand is inserted into the original route to form a new route planning. 
This research examines the emergency material distribution route optimization issue to get a viable 
distribution route. This paper considers the emergency material distribution route optimization 
problem focusing on bringing a reasonable distribution route. The strategy considers the urgent needs 
of demand points that can be processed promptly to improve the efficiency of emergency supplies 
distribution, which can effectively avoid the penalty costs arising from delays. According to the 
analysis above, the initial planning and dynamic demand stages may address the emergency material 
distribution route optimization issue while considering the dynamic real-time demand. The two-stage 
solution procedure is described below and may be seen in Figure 3. 
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Start

Input initial demand point 
information

Develop initial distribution 
plan

Perform distribution tasks

Receive dynamic real-time 
information

End

Phase I

Phase II

YES NO

Whether to reach the L0 moment

Whether it is the emergency 
material or meet the conditions 

of batch processing

Optimize current 
SVRPTW issues

Update delivery 
routes

NO

YES

Receive information about the 
next phase of demand points

 

Figure 3. Two-phase flow diagram with real-time dynamic demand. 

4. Model solution  

4.1. The basic sparrow search algorithm 

The sparrow search algorithm (SSA) is a swarm intelligence optimization algorithm proposed by 
Xue and Shen in 2020, which mainly simulates the predatory and anti-feeding behavior of sparrow 
groups [28]. Individual sparrows are usually classified as explorers, followers, and scouts. In their 
natural state, individuals watch each other, and followers in a sparrow group typically compete for the 
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food resources of their high-feeding peers to improve their predation rate. While foraging, all 
individuals remain alert to their surroundings to prevent the arrival of natural predators [29]. 

In the sparrow search algorithm, the best individual within the group is given priority in the search 
process to obtain food. As an explorer, it has access to a more extensive foraging search range than its 
followers. During each iteration, the explorer’s position is updated in the following manner. 

𝑋௜ௗ
௧ାଵ = ൝

𝑋௜ௗ
௧ ⋅ exp ቀ−

௜

ఈ⋅௜௧௘௥೘ೌೣ
ቁ , 𝑅ଶ < 𝑆𝑇

𝑋௜ௗ
௧ + 𝑄 ⋅ 𝐿 , 𝑅ଶ ≥ 𝑆𝑇

                            (22) 

where 𝑋௜ௗ denotes the position of a single sparrow, 𝑖 marks the current iteration, 𝑖𝑡𝑒𝑟௠௔௫ denotes the 
maximum iteration, 𝛼  is a random number between [0, 1] , 𝑅ଶ (𝑅ଶ ∈ [0,1])  and 𝑆𝑇 (𝑆𝑇 ∈ [0.5,1]) 
denoting the warning value and safety value, respectively, 𝑄 denotes a random number adhering to the 
normal distribution, 𝐿 is a 1 ×  𝑑 matrix, meaning that each of its elements is 1. 

The location of followers is updated in the following manner. 

𝑋௜ௗ
௧ାଵ = ቐ

𝑄 ⋅ exp ቀ
௑ೢ೚ೝೞ೟

೟ ି௑೔೏
೟

௜మ
ቁ ,  𝑖 >

௡

ଶ

𝑋௕௘௦௧
௧ାଵ + ห𝑋௜ୢ

௧ − 𝑋௕௘௦௧
௧ାଵ ห ⋅ 𝐴ା ⋅ 𝐿 , 𝑖 ≤

௡

ଶ

                            (23) 

where 𝑋௕௘௦௧ represents the location of the best explorer, 𝑋௪௢௥௦௧ is the current global worst position, 
and 𝑛 represents the size of the population. 𝐴 + is 𝐴ା = 𝐴்(𝐴𝐴்)ିଵ, where 𝐴 is a 1 ×  𝑑 matrix with 
each element randomly assigned to 1 or -1.  

The location of the scout is updated in the following manner. 

𝑋௜ௗ
௧ାଵ = ቐ

𝑋௕௘௦௧
௧ + 𝛽 ⋅ ห𝑋௜ୢ

௧ − 𝑋best 
௧ ห , 𝑓௜ > 𝑓௚

𝑋௜,௝
௧ + 𝐾 ⋅ ൬

ห௑೔ౚ
೟ ି௑ೢ೚ೝೞ೟

೟ ห

(௙೔ି௙ೢ )ାఌ
൰ ,  𝑓௜ = 𝑓௚

                            (24) 

where 𝑋௕௘௦௧ denotes the current global optimal position, 𝛽 is the step control parameter, 𝐾 denotes a 
random number within the range [−1, 1], 𝑓 denotes the fitness value, 𝑓௚ and 𝑓௪ denote the current 
optimal and worst fitness values, respectively, and is a constant to prevent the denominator from 
being 0. 

The basic SSA algorithm flows as follows. 
Step 1. Initialize the population and the number of iterations, and initialize the explorer and 

follower ratio. 
Step 2. The fitness values are calculated and ranked. 
Step 3. The explorer position is updated according to Eq (25). When 𝑅ଶ < 𝑆𝑇, the surrounding 

environment is safe, no natural enemies appear, and the explorer will conduct an extensive search. 
When 𝑅ଶ ≥ 𝑆𝑇, it means that natural enemies appear, and a warning signal needs to be sent to the 
sparrows in the population, at which time all sparrows need to fly to other safe places to find food. 

Step 4. The location of the follower is updated using Eq (26). When 𝑖 >
௡

ଶ
, the 𝑖௧௛ the follower is 

in a bad position and hence extremely hungry, and the follower must fly to other locations to get food. 

When 𝑖 ≤
௡

ଶ
 is reached, the 𝑖௧௛ the follower is looking for food in the ideal location. 

Step 5. The scout position was updated using Eq (27). When 𝑓௜ > 𝑓௚ , the sparrow is on the 
periphery of the population and is highly vulnerable to predator attack. When 𝑓௜ = 𝑓௚, the scout knows 
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the danger and should move closer to other sparrow positions to avoid being attacked. 
Step 6. Calculate the fitness value and update the sparrow position. 
Step 7. If the stop condition is satisfied, exit and output the result; otherwise, repeat the execution 

of Step 2. 

4.2. Improving the sparrow search algorithm 

The mathematical model constructed in this paper has a complex problem with many constraints, 
which makes the objective function very sensitive to personal changes. SSA algorithms that use global 
update policies tend to be less effective at solving such mathematical models. Tent chaotic mapping 
has good ergodicity and randomness characteristics [30]. Introducing it into the basic SSA algorithm 
in the initial static phase can significantly improve the population diversity and the ability to jump out 
of the local optimum of the SSA algorithm. In the sparrow search algorithm, the explorer's position is 
constantly updated during the food search. When the explorer finds the optimal place, many sparrows 
are attracted to concentrate together, increasing the probability of the population falling into a local 
solution. Therefore, during the dynamic demand change phase, the sine and cosine features in the sine 
and cosine algorithm are utilized at the explorer position to fluctuate toward the optimal solution 
position [31]. Furthermore, introducing random inertia weights can balance the global convergence 
ability and improve the algorithm’s ability to find the optimal global solution [32]. Finally, the optimal 
route planning route is updated using the firefly perturbation strategy [33]. Make the algorithm more 
suitable for the mathematical model of this paper in solving this problem. The SFSSA algorithm flow 
chart is shown in Figure 4. 

Before describing the algorithm, a symbolic description of the improved sparrow search algorithm 
is given in Table 3. 

Table 3. Symbolic description of the SFSSA algorithm. 

Symbols Description 
𝑍௜

ௗ The original chaotic sequence in the interval (0,1) 
𝑋௜.௠௔௫

ௗ  Maximum value for the 𝑋௜
ௗ sequence 

𝑋௜.௠௜௡
ௗ  The minimum value for the 𝑋௜

ௗ sequence 
𝑋௜

ௗ Sequences of the population after chaotic disturbances 
𝑟଴ The range [0,2𝜋] contains random numbers 
𝑟ଵ The range [0,2] contains random numbers 
𝜇 The random inertia weighting factor 
𝐼଴ Source of firefly light intensity 
𝛽଴ Maximum firefly attraction strength 
𝛾 Brightness absorption coefficient 

𝑟௜,௝
ଶ  The separation in space between fireflies 𝑖 and 𝑗 

𝑥௜
ௗ、𝑥௝

ௗ The locations of 𝑖 and 𝑗 in the d-dimensional space of sparrows 

𝛼 Step factor in the [0, 1] range 
𝜖 Random figures between [−0.5, 0.5] 
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Output results

End

YES
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Figure 4. SFSSA algorithm flowchart. 

Step 1. Initialize parameters. 
Population size 𝑁, the maximum number of repetitions, explorer 𝑃𝐷, scout 𝑆𝐷, warning value 

𝑅ଶ, and safety value 𝑆𝑇 are among the parameter settings. 
Step 2. Initialize the population based on tent chaos mapping. 
The chaotic tent sequences are introduced in the initialization population stage to increase the 

population diversity and speed up the convergence speed of the SSA algorithm in the early stage by 
using the characteristics of chaotic sequences [34]. 

The chaotic tent mapping generating sequence initialization population improvement SSA 
algorithm is expressed in the manner shown below. 

𝑍௜
ௗ = ቊ

2𝑍௜
ௗ                     , 0 ≤ 𝑍௜

ௗ < 0.5

2൫1 − 𝑍௜
ௗ൯        , 0.5 ≤ 𝑍௜

ௗ ≤ 1
                            (25) 

To avoid the chaotic tent sequence from falling into small and unstable periodic points during the 
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iteration, a random variable 𝑟𝑎𝑛𝑑(0,1) ×
ଵ

ே೅
 is introduced to the original chaotic tent map expression, 

and the improved chaotic tent map expression is as follows. 

𝑍௜
ௗ = ቐ

2𝑍௜
ௗ +  𝑟𝑎𝑛𝑑(0,1) ×

ଵ

ே೅
                  , 0 ≤ 𝑍௜

ௗ < 0.5

2൫1 − 𝑍௜
ௗ൯  +  𝑟𝑎𝑛𝑑(0,1) ×

ଵ

ே೅
       , 0.5 ≤ 𝑍௜

ௗ ≤ 1
             (26) 

Generating chaotic variables 𝑍௜
ௗ carrier substitution into the space to be solved by Eq (26) [35]. 

           
𝑋௜

ௗ = 𝑋௜.௠௜௡
ௗ + 𝑍௜

ௗ൫𝑋௜.௠௔௫
ௗ − 𝑋௜.௠௜௡

ௗ ൯                                      (27) 

Step 3. Calculate population fitness values. 
The fitness value 𝑓௜ is calculated for each sparrow based on the objective function value (fitness 

function value). In this model, the current optimal fitness value 𝑓௚  and the corresponding optimal 
position 𝑋௕௘௦௧ are selected, and the current worst fitness value 𝑓௪ and the corresponding worst position 
𝑋௪௢௥௦௧ are selected. 

Step 4. Update explorer location. 
In the basic sparrow search algorithm, when 𝑅ଶ < 𝑆𝑇, the explorer gets smaller in each dimension 

of the individual sparrow as the number of iterations is updated, and the search space gradually 
decreases, increasing the probability of falling into the optimal local solution. Therefore, a random 
weight factor is introduced in the explorer position to improve the sine cosine optimization algorithm. 
The random weight factor 𝜔 is introduced to enhance the search ability in the early search period and 
balance the global exploration. The parameter 𝑟଴  helps the algorithm to search in [0,2𝜋]  to avoid 
falling into the local optimum in the late search period and improve the local pioneering ability. The 
equation of this process is shown as follows. 

           

𝜔 = 𝜔௠௜௡ + (𝜔௠௔௫ − 𝜔௠௜௡) sin ቀ
௧గ

௜௧௘௥೘ೌೣ
ቁ                                       (28) 

𝑋௜ୢ
௧ାଵ = ቊ

(1 − 𝜔) ⋅ 𝑋௜ୢ
௧ + 𝜔 ⋅ sin 𝑟଴ ⋅ ห𝑟ଵ ⋅ 𝑋best − 𝑋௜ୢ

௧ ห      , 𝑅ଶ < 𝑆𝑇

(1 − 𝜔) ⋅ 𝑋௜ୢ
௧ + 𝜔 ⋅ cos 𝑟଴ ⋅ ห𝑟ଵ ⋅ 𝑋best − 𝑋௜ୢ

௧ ห      , 𝑅ଶ ⩾ ST

         (29) 

Step 5. Update the location of followers. 
Step 6. Update the scout location. 
Step 7. Based on the optimal location search of the firefly perturbation strategy, determine the 

direction of population movement. 
The equation for the degree of firefly luminescence is as follows. 

𝐼 = 𝐼଴. 𝑒ିఊ௥೔,ೕ
మ

                            (30) 

The following is the equation for the attraction of fireflies. 

𝛽 = 𝛽଴. 𝑒ିఊ௥೔,ೕ
మ

                           (31) 
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Step 8. The firefly perturbation approach is used to update the ideal location. 

The firefly at 𝑥௜
ௗ  will move to 𝑥௝

ௗ  according to the equation below, if a firefly at 𝑥௝
ௗ =

൫𝑥ଵ
ௗ , 𝑥ଶ

ௗ , 𝑥ଷ
ௗ ⋯ , 𝑥௝

ௗ൯ is brighter than a firefly at 𝑥௜
ௗ = ൫𝑥ଵ

ௗ , 𝑥ଶ
ௗ , 𝑥ଷ

ௗ ⋯ , 𝑥௜
ௗ൯ [36]. 

𝑥௜
ௗ = 𝑥௜

ௗ + 𝛽଴. 𝑒ିఊ௥೔,ೕ
మ

. ൫𝑥௝
ௗ − 𝑥௜

ௗ൯ + 𝛼. ϵ                  (32) 

Step 9. Calculate the fitness value and decide where the population should be placed. 
Step 10. If the stop condition is met, go on and output the outcome; otherwise, repeat step (3). 

  
(a) R class demand point location distribution 
map 

(b) C class demand point location distribution 
map 

 
(c) RC class demand point location distribution map 

Figure 5. Location map of each type of demand point. 
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4.3. Algorithm performance test analysis 

4.3.1. Solomon benchmark test 

The SFSSA algorithm is used for comparison tests with the SSA algorithm and the GA algorithm 
to verify the effectiveness and merit-seeking ability of the SFSSA algorithm, and the classical data sets 
(Solomon benchmark data sets R, C and RC) are selected for the experiments [37]. The Solomon 
benchmark test dataset contains five parameters: vehicle capacity, location, demand point demand, 
demand time window, and service time. The dataset categories are divided into six classes, R1, R2, C1, 
C2, RC1 and RC2, where the data of class R conforms to the characteristics of randomly dispersed 
geographic information data, the data of class C conforms to the features of accumulation, and the data 
of class RC serves to the parts of mixed random and agglomeration. Classes R1, C1 and RC1 have a 
narrower scheduling range, with fewer functional requirements per vehicle. More comprehensive 
scheduling ranges for classes R2, C2 and RC2 and more functional requirements per vehicle. The 
distribution of demand point locations for classes R, C and RC is shown in Figure 5. 

4.3.2. Numerical experiments 

The comparison results of class R, class C and class RC datasets are in Tables 4–6, respectively. 
The parameters of the GA algorithm are adjusted such that it has a crossover probability of 0.9, a 
variance probability of 0.09, several iterations of 100, and a population size of 1000. Similarly, this is 
done to evaluate the algorithm’s performance for its fairness. The parameters of the SSA method are 
configured to have a population size of 1000, an SD of 0.1, an ST of 0.8, iterations equal to 100, and 
a PD value of 0.2. The experiments are programmed using MATLAB R2020b and run on a 64-bit host 
with Intel(R) Core(TM) i5-11400H @ 2.70GHz and Windows 11. 

Table 4. R class data algorithm comparison. 

Datasets 
SFSSA SSA GA 

Cost Distance Time Cost Distance Time Cost Distance Time 

R101 24771 2287.1 28.95 25040 2324.0 28.30 27912 2571.2 36.67 

R102 24797 2309.7 33.17 25621 2382.1 36.49 26313 2441.3 40.44 

R103 24548 2284.8 31.93 25082 2318.2 36.85 27425 2572.5 40.82 

R104 23640 2184.0 30.69 24571 2297.1 36.51 25830 2403.0 40.52 

R105 24751 2295.1 30.52 24843 2324.3 36.68 26988 2518.8 41.21 

R201 23747 2204.7 29.57 24048 2224.8 35.79 26462 2466.2 38.96 

R202 24004 2230.4 28.93 25002 2340.2 36.59 26724 2492.4 40.52 

R203 23746 2214.6 29.90 24115 2251.5 36.98 27608 2580.8 40.51 

R204 24260 2236.0 29.11 24319 2271.9 35.92 25303 2350.3 35.97 

R205 24143 2254.3 35.04 24381 2268.1 35.79 26151 2435.1 38.40 

Comparison results in Tables 4–6 show that SFSSA outperforms SSA and GA in class R, C, and 
RC data sets jointly selected as R101-R105, C101-C105, and RC101-RC105 comparison results. The 
comparative analysis of the experimental results shows that the traditional GA is less effective in 
solving the vehicle route problem, especially when the number of demand points is significant. It is 
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difficult for the GA to find a more excellent solution; SSA runs better results in solving the vehicle route 
problem than GA; SFSSA can achieve better solutions in solving the vehicle route problem than SSA 
and GA. Therefore, SFSSA can effectively solve the vehicle route problem with good computational 
performance and better finding ability, which is suitable for studying vehicle route problems. 

Table 5. C class data algorithm comparison. 

Datasets 
SFSSA SSA GA 

Cost Distance Time Cost Distance Time Cost Distance Time 

C101 23937 2163.7 31.02 25690 2339.0 27.89 30062 2756.2 44.05 

C102 21548 1944.8 27.85 23659 2135.9 27.97 22352 2025.2 32.59 

C103 21948 1984.8 30.25 23205 2100.5 26.98 23587 2148.7 36.13 

C104 21144 1904.4 29.27 21165 1916.5 30.72 24912 2281.2 37.72 

C105 22454 2015.4 27.43 23070 2067.0 27.00 28225 2582.5 37.40 

C201 22337 2033.7 31.07 22359 2035.9 26.71 22877 2087.7 35.60 

C202 21520 1952.0 27.10 22230 2023.0 26.59 23139 2113.9 31.25 

C203 21748 1974.8 27.17 22256 2025.6 26.45 23207 2120.7 36.20 

C204 21325 1932.5 33.54 21513 1951.3 30.89 23841 2184.1 35.51 

C205 21658 1955.8 30.22 22147 2014.7 36.83 23345 2144.5 40.49 

Table 6. RC class data algorithm comparison. 

Datasets 
SFSSA SSA GA 

Cost Distance Time Cost Distance Time Cost Distance Time 

RC101 26832 2483.2 34.69 29793 2779.3 31.48 3066.9 2836.9 33.42 

RC102 26676 2477.6 33.61 27992 2609.2 29.09 29162 2706.2 34.68 

RC103 27585 2568.5 27.49 27867 2596.7 27.70 30679 2877.9 34.26 

RC104 26705 2470.5 27.91 27013 2501.3 27.54 30102 2810.2 38.41 

RC105 27330 2533.0 32.04 27941 2594.1 27.86 31874 2987.4 31.58 

RC201 26819 2491.9 27.86 27753 2575.3 30.75 30853 2875.3 33.27 

RC202 26493 2439.3 27.69 26671 2477.1 27.13 29583 2758.3 34.64 

RC203 26277 2427.7 27.83 28689 2678.9 31.69 30212 2791.2 31.77 

RC204 26167 2416.7 27.67 27273 25373 27.07 29025 2692.5 36.65 

RC205 26927 2492.7 28.35 27064 2516.4 27.57 29294 2729.4 32.72 

5. Simulation experiment and analysis 

5.1. Model data 

In this paper, the city of Handan in northern China is selected for the study. Thirty identified 
closed management community points and one emergency supplies distribution center are simulated 
and chosen in a 70 × 70 km prevention and control area of Handan city. The information on the location 
coordinates of each demand point, the demand for emergency supplies, the time window information, 
and the service time is shown in Table 7. Since there is an incubation period for the novel coronavirus, 
the suspected patient location will be sealed and managed based on the presence of alleged patient 
cases. The government department requires the first large-scale nucleic acid testing to be conducted 
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on the same day, and the suspected patient will be sealed and managed at home. The community health 
care worker will conduct nucleic acid testing at home and upload the test results of all nucleic acids in 
the area through the CDC. The location is judged to be the initial demand point based on whether there 
are positive patients. Figure 6 shows the location distribution of the initial demand points. 

Table 7. Initial demand point information table. 

No.      X (km)     Y (km) Demand (box) Time Window(h) Service Time(h) 

1 35 35 0 1:00–23:00 22 

2 41 49 10 5:00–6:30 0.25 

3 35 17 7 5:30–7:00 0.24 

4 55 45 13 5:40–6:40 0.48 

5 10 43 9 5:50–6:50 0.2 

6 55 60 26 6:00–7:00 0.63 

7 30 60 6 6:00–7:20 0.35 

8 20 65 12 6:10–7:10 0.23 

9 50 35 9 6:20–7:20 0.33 

10 30 25 13 6:30–8:00 0.5 

11 15 10 20 6:40–7:50 0.37 

12 30 5 8 6:30–8:10 0.4 

13 10 20 19 6:50–9:20 0.45 

14 5 30 2 7:00–9:00 0.6 

15 20 40 12 7:00–8:30 0.55 

16 15 60 27 7:10–9:40 0.7 

17 45 65 9 7:30–9:50 0.65 

18 45 20 11 7:40–10:00 0.8 

19 45 10 18 7:50–10:20 0.75 

20 55 5 29 8:10–9:30 0.41 

21 65 35 3 8:30–10:30 1 

22 65 20 6 8:50–10:20 0.66 

23 45 30 17 8:50–9:40 0.85 

24 35 40 16 8:40–10:00 0.9 

25 41 37 16 9:00–10:40 0.88 

26 64 42 19 9:00–10:10 0.54 

27 40 60 21 9:20–11:00 0.63 

28 31 52 27 9:30–10:50 0.64 

29 35 69 13 9:40–10:30 0.75 

30 53 52 11 10:00–11:50 0.87 

31 65 55 14 10:10–11:50 0.96 

The initial planning phase was classified based on the data from the first day’s first nucleic acid 
test results. Due to the existence of the incubation period of the virus, which may lead to undetected 
results of the first round of nucleic acid testing, additional positive patients appear through the second 
round of nucleic acid testing, and the patient area needs to be quarantined. The new demand point 
information is based on the second round of nucleic acid test results conducted the day before and the 
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latest data statistics shown by the CDC, which is divided into new demand points according to the 
location of new positive patients. At 4:30, all the vehicles scheduled for distribution started their tasks 
from the emergency material distribution center with a full load. The dynamic information receiving 
window of the day was opened to receive two kinds of dynamic demand requests: the increase of demand 
points and the increase or decrease of demand quantity of the initial demand points that appeared in the 
emergency material distribution. The dynamic demand information is shown in Table 8. 

 

Figure 6. Initial demand point location distribution map. 

Table 8. Dynamic demand information table. 

Receiving 

time 
NO. 

Change 

type 

X 

(km) 

Y 

(km) 

Demand 

(box) 

Time Window 

(h) 

Service Time 

(h) 

4:38 32 New 63 65 3 7:10–9:00 0.89 

4:50 12 Add 30 5 12 6:30–8:10 0.4 

5:00 7 Add 30 60 10 6:00–7:20 0.35 

5:36 14 Add 5 30 5 7:00–9:00 0.6 

5:45 21 Add 65 35 4 8:30–10:30 1 

5:58 33 New 52 27 5 9:30–11:30 0.94 

6:13 18 Add 45 20 13 7:40–10:00 0.8 

6:36 22 Add 65 20 11 8:50–10:20 0.66 

6:57 17 Add 45 65 10 7:30–9:50 0.65 

7:08 24 Add 35 40 26 8:40–10:00 0.9 

7:23 27 Add 40 60 31 9:20–11:00 0.63 
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5.2. Model parameter 

The parameters involved in the vehicle route optimization model under dynamic real-time 
demand established by the SFSSA algorithm are 𝑃𝐷 = 0.2, 𝑆𝐷 = 0.1, 𝑆𝑇 = 0.8, 𝜔௠௔௫ = 1, 𝜔௠௜௡ = 0.4, 
the number of iterations is 100, the population size is 5000, the start-up cost of each emergency vehicle 
is 100 RMB/vehicle; the maximum capacity of each emergency vehicle carrying goods is 100 boxes; 
the average vehicle driving speed is 60km/h; the unit route cost of emergency vehicles is 10 RMB/km; 
emergency distribution vehicles can arrive at the distribution demand point in advance, but not in delay, 
and the penalty cost of delayed arrival is 100 RMB/h. The solution to the algorithm is computed 
programmatically using MATLAB R2020b running on a 64-bit host with an Intel(R) Core(TM) i5-
11400H @ 2.70 GHz and Windows 11. 

5.3. Result analysis 

5.3.1. Initial planning result 

Based on the previous introduction of dynamic real-time demand information divided into an 
initial demand point distribution scheme and a dynamic demand distribution scheme, the SFSSA 
algorithm is adopted for solving. The results are compared and analyzed with the SSA algorithm and 
GA algorithm. The parameters of the comparison algorithm are set: PD of the SSA algorithm is 0.2, 
SD is 0.1, ST is 0.8, the number of iterations is 100, and the population size is 1000. The crossover 
probability of the algorithm is 0.9, the variance probability is 0.09, the number of iterations is 100, and 
the population size is 5000. The initial demand point information in Table 4 is imported into MATLAB 
and compared with both the SSA algorithm and GA algorithm in five aspects: vehicle total load rate, 
fixed cost, route cost, distance traveled, and penalty cost, respectively, and the comparison results are 
shown in Table 9. the SFSSA initial phase distribution scheme is shown in Table 10. the SSA initial 
phase distribution scheme is shown in Table 11. the GA initial distribution phase scheme is shown in 
Table 12. 

Table 9. Initial phase algorithm effectiveness comparison results. 

Algorithm Total load rate 
Fixed cost 
(yuan) 

Route cost 
(yuan) 

Distance 
(km) 

Penalty cost 
(yuan) 

SFSSA 100% 95% 86% 80% 62% 500 5176.249 517.6249 0 

SSA 100% 98% 97% 80% 48% 500 5239.169 523.9169 0 

GA 97% 90% 86% 76% 74% 500 5821.094 582.1094 0 

According to the results shown in Tables 9–12, according to the planned distribution route scheme, 
the emergency distribution vehicles are fully loaded according to the algorithm for suitable matching 
vehicles, all of which transport the materials reasonably to the demand point. Since the initial phase 
delivery vehicles are five vehicles, the fixed cost of the vehicles is the same, both 500 yuan. In the 
distribution of materials to each demand point, the algorithm is different in the distribution scheme, so 
the planned distribution route is different, which causes the distance and distance of the driving route 
and the cost difference of the driving route. The SFSSA algorithm finally solves the vehicle travel 
distance of 517.6249 km, and the SSA algorithm finally solves the vehicle travel distance of 523.9169 
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km. The GA algorithm finally solves the vehicle travel distance of 582.1094 km. The SFSSA algorithm 
has advantages over the other two in planning the shortest distribution route problem. The SFSSA 
algorithm driving route cost is 5176.249 yuan, the SSA algorithm driving route cost is 5239.169 yuan, 
GA algorithm driving route cost is 5821.094 yuan, so the SFSSA algorithm driving route cost is also 
the least. The penalty costs are all 0 yuan. The optimal distribution roadmap in the initial phase of the 
SFSSA algorithm is shown in Figure 7. the optimal distribution roadmap in the initial phase of the SSA 
algorithm is shown in Figure 8. the optimal distribution roadmap in the initial phase of the GA 
algorithm is shown in Figure 9. 

Table 10. SFSSA initial phase distribution program. 

Vehicle Distribution route 
Vehicle effective 

distribution quantity (cases) 
Vehicle payload rate 

1 1→25→26→9→21→22→20→19→1 100 100% 

2 1→10→13→11→12→3→18→23→1 95 95% 

3 1→2→27→29→17→7→28→1 86 86% 

4 1→24→4→31→6→30→1 80 80% 

5 1→15→8→16→5→14→1 62 62% 

Table 11. SSA initial phase distribution program. 

Vehicle Distribution route 
Vehicle effective 

distribution quantity 
Vehicle payload rate 

1 1→25→9→26→21→22→20→19→1 100 100% 

2 1→30→4→31→6→29→8→17→1 98 98% 

3 1→15→16→5→14→13→11→12→1 97 97% 

4 1→24→28→7→27→2→1 80 80% 

5 1→23→18→10→3→1 48 48% 

Table 12. GA initial phase distribution program. 

Vehicle Distribution route 
Vehicle effective 

distribution quantity  
Vehicle payload rate 

1 1→15→16→5→14→11→13→12→1 97 97% 

2 1→24→23→22→21→26→4→25→1 90 90% 

3 1→28→29→27→31→30→1 86 86% 

4 1→2→17→6→7→8→10→1 76 76% 

5 1→9→18→20→19→3→1 74 74% 
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Figure 7. SFSSA algorithm initial phase optimal distribution route diagram. 

 

Figure 8. SSA algorithm initial phase optimal distribution route diagram. 



7510 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7487–7518. 

 

Figure 9. GA algorithm initial phase optimal distribution route diagram. 

5.3.2. Dynamic planning result 

During the dynamic adjustment phase, as shown in Table 8, various dynamic requirements 
information has emerged. According to dynamic information batch optimization criteria and 
emergency material re-optimization strategy for processing, when dynamic requirements information 
appears, determine whether it is a particular emergency. If so, re-align the distribution route 
immediately. Otherwise, Determine whether the batch time has been reached and if so, batch 
processing of all dynamic orders; Otherwise, continue to accept dynamic information. The SFSSA 
dynamic phase distribution scheme is shown in Table 14. The SSA dynamic phase delivery scheme is 
shown in Table 15. The GA dynamic distribution phase program is shown in Table 16. 

Table 13. Dynamic phase algorithm effectiveness comparison results. 

Algorithm Total load rate 
Fixed cost 
(yuan) 

Route 
cost(yuan) 

Distance 
(km) 

Penalty cost 
(yuan) 

SFSSA 100% 97% 95% 91% 88% 500 5615.772 561.5772 0 

SSA 100% 98% 96% 93% 84% 500 5818.303 581.8303 0 

GA 100% 99% 95% 95% 82% 500 6204.163 620.4163 0 
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Table 14. SFSSA dynamic phase distribution program. 

Vehicle Distribution route 
Vehicle effective 

distribution quantity (cases) 
Vehicle payload rate 

1 1→24→23→33→4→30→26→9→1 100 100% 

2 1→6→27→29→17→32→31→1 97 97% 

3 1→2→28→7→8→16→5→1 95 95% 

4 1→25→21→22→20→19→18→1 91 91% 

5 1→10→12→11→13→14→15→3→1 88 88% 

Table 15. SSA dynamic phase distribution program. 

Vehicle Distribution route 
Vehicle effective 

distribution quantity (cases) 
Vehicle payload rate 

1 1→18→19→20→22→21→31→30→1 100 100% 

2 1→23→9→25→4→26→33→3→12→1 98 98% 

3 1→10→11→13→14→16→8→1 96 96% 

4 1→2→6→32→17→27→29→1 93 93% 

5 1→24→28→7→5→15→1 84 84% 

Table 16. GA dynamic phase distribution program. 

Vehicle Distribution route 
Vehicle effective 

distribution quantity (cases) 
Vehicle payload rate 

1 1→10→3→20→22→19→18→9→1 100 100% 

2 1→28→29→27→32→31→30→1 99 99% 

3 1→15→16→14→13→11→12→1 95 95% 

4 1→5→8→7→6→17→2→4→33→1 95 95% 

5 1→24→23→21→26→25→1 82 82% 

Based on the results shown in Table 13, considering the new increase in demand point materials 
and demand point supplies volume increase, according to the dynamic real-time demand for optimal 
processing of the distribution route program, emergency distribution vehicles' total rate according to 
the algorithm for suitable matching vehicles, all the materials will be transported to the demand point 
reasonably. Since the locations of the two newly added demand points are still within the distribution 
range, and the increase in the number of materials at the demand points does not exceed the vehicle 
total load rate, the number of distribution vehicles in the dynamic optimization phase remains at five, 
so the fixed cost of vehicles remains unchanged. Compared with the initial stage of the vehicle total 
rate SFSSA, SSA, GA vehicle utilization rate have significantly improved, SFSSA algorithm vehicles 
1, 2, 3, 4, 5 have reached more than 85%, so reflect the SFSSA algorithm in the dynamic adjustment 
of the optimal route can be in the premise of ensuring the accurate delivery of supplies, service to more 
demand points. As the results shown in Tables 14–16, the SFSSA algorithm finally solves the vehicle 
travel distance of 561.5772 km. The SSA algorithm finally solves the vehicle travel distance of 
581.8303 km. The GA algorithm finally solves the vehicle travel distance of 620.4163 km. It can be 
seen that the SFSSA algorithm in planning the shortest distribution route problem compared to The 
SFSSA algorithm has certain advantages over the other two algorithms. The driving route cost of the 
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SFSSA algorithm is 5615.772 yuan, the driving route cost of the SSA algorithm is 5818.303 yuan, and 
the driving route cost of the GA algorithm is 6204.163 yuan. Figures 10–12 show the optimal 
distribution route diagram of the dynamic phase of the SFSSA algorithm, the optimal distribution route 
diagram of the dynamic phase of the SSA algorithm, and the optimal distribution route diagram of the 
GA algorithm, respectively.  

 

Figure 10. SFSSA algorithm dynamic phase optimal distribution route diagram. 

 

Figure 11. SSA algorithm dynamic phase optimal distribution route diagram. 
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Figure 12. GA algorithm dynamic phase optimal distribution route diagram. 

5.3.3. Comparative analysis of results 

To validate the effectiveness of the proposed SFSSA algorithm in resolving the regional 
emergency material distribution problem, comparative experiments were chosen to examine the 
performance of the SSA algorithm and the GA algorithm in determining the issue during the initial and 
dynamic planning stages. In the initial phase, according to the analysis of the initial results above, the 
SFSSA algorithm has a shorter distance and lower cost than the SSA algorithm and GA algorithm in 
terms of distribution route distance and route cost. This paper considers the impact of an incubation 
period in the epidemic area, resulting in increased demand and new demand points in the epidemic 
area. According to the above, the SFSSA algorithm compares the results of the distribution scheme in 
the initial and dynamic planning phases. In terms of vehicle utilization, according to the rational 
arrangement of emergency supplies by emergency distribution centers, five emergency vehicles are 
also used for delivery due to the dynamic real-time requirements phase change. However, vehicle 
utilisation increased by 9.6% during the dynamic planning phase. In this way, a dynamically adjusted 
optimal route can serve more demand points, improve vehicle utilization and reduce unnecessary waste 
of resources. 

At the same time, according to the results of the dynamic planning phase above, the vehicle load 
rate is equal, and the fixed vehicle cost is RMB 500 for vehicle use. The cost of the vehicle delay 
penalty was zero since there was no delay in distribution throughout the transportation procedure. 
Regarding route cost, the SFSSA algorithm is 202.531 Yuan and 588.391 Yuan less than the SSA and 
GA algorithms. Similarly, in terms of distance traveled, the SFSSA algorithm is 20.2531 km and 
58.8391 km less than the SSA and GA algorithms. The SFSSA algorithm is 3.48% lower than the SSA 
algorithm. It is 9.48% lower than the GA algorithm. Therefore, according to the real-time changes in 
material demand points and demand in the affected areas, to respond to the needs of the epidemic 
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regions promptly, the service requirements arrangements for the initial and dynamic planning phases 
have been arranged more rationally. We have achieved the goal of effectively reducing delivery costs 
and increasing vehicle load rates. To a certain extent, government spending can be reduced for the 
government emergency management department in response to emergency material distribution links 
to provide specific reference opinions. 

6. Conclusions, limitations, and future research 

In this paper, we study the emergency material distribution route problem with dynamic real-time 
demand using the regional small-scale epidemic situation problem as an example. We develop a 
mathematical model for the emergency material distribution route optimization problem by 
considering some practical constraints such as the shortest driving route, fixed cost, delayed delivery 
penalty cost, minimization of route cost, time window restriction, and vehicle total load rate. Based on 
this, an SFSSA algorithm is used to optimize the distribution route of emergency supplies under 
dynamic real-time demand. Finally, the epidemic data of Handan city is selected to generate simulation 
experiments and compared with the SSA algorithm and GA algorithm. The experimental results 
demonstrate that, compared to other algorithms, the SFSSA algorithm has the lowest vehicle route and 
route cost, which increases the effectiveness of emergency supplies distribution and can significantly 
lower transportation costs, highlighting the SFSSA algorithm’s advantages in solving dynamic vehicle 
route problems. The emergency relief distribution route plan, which takes into account the real-time 
dynamic demand, not only responds to the dynamic demand of the epidemic area in real-time but also 
improves the government’s efficiency in emergency relief distribution, reduces the financial 
expenditure and provides decision support for the relevant enterprises in formulating the emergency 
relief distribution plan, which is of practical value. 

Limitations at this stage of the paper： 
It is important to take a more all-encompassing approach to the issue of the dynamic vehicle route. 

This paper only considers objective and specific quantitative factors such as the quantity and cost of 
supplies, and the starting point is in considering the government side as the central point, without 
considering the humanistic care-oriented factors, such as the psychological changes of the residents in 
the infected areas; and the occurrence of unexpected events, including the problem of emergency 
vehicle breakdown and whether the drivers can complete the distribution work; as well as the influence 
of external environmental conditions and other factors, lacking a careful consideration of more 
elements. 

In terms of the solution algorithm, we try to apply the SFSSA algorithm to solve the problem. 
Since the vehicle route problem is an NP-hard problem, we try to solve it with the new intelligent 
algorithm. However, the superiority of the algorithm still needs further improvement. Many vehicle 
route problems are still handled in the previous literature by conventional intelligence algorithms 
such as the GA algorithm, ACO method, PSO algorithm, etc. In this study, we attempt to address the 
issue using the SFSSA algorithm, an upgraded intelligent algorithm; nonetheless, the method's 
improvement still has to be strengthened. 

Future directions of this article： 
Consider the problem of vehicle running speed when considering the dissatisfaction of residents 

in infected areas waiting for supplies, only a uniform rate is considered in this paper, and the vehicle 
speed change can be considered to improve the speed of supplies distribution. 
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Consideration is given to using a multiple of vehicles and warehouses to distribute products in 
order to increase distribution efficiency. Consider using the backup vehicle for distribution if the 
primary vehicle breaks down or the driver is unable to finish the distribution task. 

To improve the efficiency of material distribution, we consider using multiple vehicles and 
warehouses to distribute materials. Vehicle breakdowns and drivers failing to complete the distribution 
work will affect the distribution efficiency, and we are considering enabling spare vehicles for 
distribution. 

The SFSSA algorithm's solution performance may yet be improved by more development effort. 
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