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Abstract: The main objective in the one-dimensional cutting stock problem (1D-CSP) is to minimize 
material costs. In practice, it is useful to focus on auxiliary objectives, one of which is to reduce the 
number of different cutting patterns. This paper discusses the classical integer IDCSP, where only one 
type of stock object is included. Meanwhile, the demands of various items must be precisely satisfied 
in the constraints. In other words, no overproduction or underproduction is allowed. Therefore, to solve 
this issue, a variable-to-constant method based on a new mathematical model is proposed. In addition, 
we integrate the approach with two other representative methods to demonstrate its effectiveness. Both 
benchmark instances and real instances are used in the experiments, and the results show that the 
methodology is effective in reducing patterns. In particular, in terms of the solutions to the real-life 
instances, the proposed approach presents a 31.93 to 37.6% pattern reduction compared to other similar 
methods (including commercial software). 
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1. Introduction 

The classical one-dimensional cutting stock problem (1D-CSP) is a typical combinatorial 



7454 

Mathematical Biosciences and Engineering   Volume 20, Issue 4, 7453-7486. 

optimization problem. In the 1D-CSP, there are m items with lengths (l1..., lm) and demands (d1, d2..., 
dm) that are cut from the stock objects of length L to minimize the material cost. The first notable 
research result in solving the 1D-CSP was based on the simplex column generation method [1]. In 
most of the existing studies, it is challenging to optimize the material cost and setup cost 
simultaneously, and fewer patterns lead to higher material costs [2–5].  

In practice, the position of the cutting tool in the cutter must be adjusted every time before another 
cutting pattern is switched. Therefore, the time cost of adjusting the position of the cutting tool in the 
machine equipment cannot be ignored [6–8].  

The algorithm proposed to solve the 1D-CSP model is called the variable-to-constant (VTC) 
algorithm. The demands of the items in the model must be precisely satisfied. It solves the 1D-CSP in 
two stages. In the first stage, it uses a column generation method to obtain the lower bound (LB), which 
is the minimum value of the number of stock objects used (material cost). In the second stage, VTC is 
used to generate the cutting patterns and to obtain a new objective function value. If the objective 
function value is less than or equal to the LB, the calculation is stopped. Otherwise, the calculation is 
continued by iterating m times or 2m times (each new cutting pattern generated is considered one 
iteration) to obtain a feasible initial solution. In parallel, the new method is fused with two authoritative 
methods in the literature to verify the validity of the methodology proposed in this paper. 

1.1. Literature review 

For cutting problems, López de Lacalle et al. [9] proposed a technical model to estimate the value 
of cutting forces, providing manufacturers with the opportunity to reduce production and delivery 
times. Approaches for determining the integer solution to the 1D-CSP (the demand is met exactly) fall 
into two main categories: heuristic approaches construct a good cutting pattern and use it as much as 
possible (constructive heuristics) and heuristic approaches round the relaxation solution (residual 
heuristic). Hinxman et al. [10] provided a detailed description of constructive heuristics, such as the 
first-fit decreasing (FFD) algorithm. The core of FFD is to first place the largest item into the pattern 
with the highest possible number of cutting patterns and no more than the demand. If the largest item 
no longer fits that cutting pattern, the second largest item is selected, and so on. The greedy heuristic 
follows the same philosophy as the FFD heuristic, but without prioritizing the largest items to construct 
the new cutting pattern. Later, Ongkunaruk et al. [11] modified the FFD heuristic to solve the bin 
packing problem (BPP). In 2009, the FFD and greedy heuristics were further modified to allow the 
redesign of cutting patterns with undesirable residues [12]. Specifically, such cutting patterns are not 
large enough to continue to be used or not small enough to be accepted as waste. In the same year, 
Poldi and Arenales [13] proposed three versions of greed-based residual heuristic rounding techniques, 
namely, GRH1, GRH2 and GRH3. Their core ideology is also based on using the relaxation solution 
to obtain the approximate integer solutions. In contrast, Cui et al. [14] solved the one-dimensional 
cutting problem for multiple stock objects in two stages. The first stage uses a pattern-set generation 
algorithm to generate patterns and combine them with column generation techniques to solve the 
residual problems. In the second stage, to further reduce the material cost indicator, the ILP model is 
solved using the CPLEX solver as a way to obtain a solution for stage two. The best solution for both 
phases is selected. In their second-stage solution method, overproduction occurs. 

Recently, new research has been conducted to advance the development in this field. For example, 
a modified greedy heuristic (MGH) was proposed to optimize material cost [15]. It shows more 
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promising integer solutions than other methods but does not obtain the best cutting pattern (losing to 
the GRH algorithm in terms of pattern reduction). One thing in common among these methods is that 
they are all based on the slack solution of the column generation method to perform rounding to obtain 
the integer solution. 

Here, we also give an overview of the literature on the cutting stock problem with setup cost 
(CSP-S). The sequential heuristic procedure of Haessler [16] was one of the first methods to deal with 
the CSP-S. It is essential to address the CSP-S in order to find the optimal trade-off between the 
numbers of objects and patterns [17–20]. Other SHP-based approaches can be found; for example, 
Mobasher and Ekici [21] proposed two local search algorithms and a column generation-based heuristic 
algorithm for CSP-S in order to minimize the total production cost, including material and setup costs. 
Cui et al. [4] presented a heuristic algorithm to deal with the CSP-S in two stages. In the first stage, 
they first used the heuristic to generate cutting patterns. In the second stage, based on the optimizer 
solver, a bi-objective optimization model of material and setup costs was developed to further reduce 
the setup cost. Martin et al. [22] modified Haessler’s sequential heuristic procedure, but only individual 
instances were tested better than the other methods, and most instances were tested to perform poorly. 
Lately, Martin et al. [5] proposed a pattern-based pseudo-polynomial ILP formulation to solve the CSP-
S, which depends on an upper bound on the maximum frequency of each pattern in the cutting scheme. 
We must emphasize one point: The current research works for solving the CSP-S allow for 
overproduction (Ax ≥ d) in their models. In contrast, in the mathematical model developed in this study, 
the demand must be exactly satisfied (Ax = d). 

A problem associated with pattern reduction is the pattern minimization problem (PMP). This is 
a problem of minimizing the number of patterns with a finite number of objects, and it is a nonlinear 
integer programming problem. It is well known that the PMP was proven to be a hard NP problem by 
McDiarmid [23]. Some exact methods for solving the PMP exist in the literature, and the solutions of 
these algorithms have met the demand exactly without overproduction [24–28]. Vanderbeck [24] 
reformulated the PMP model by using the Dantzig-Wolfe decomposition principle and adapted it to 
integer programming. The authors did this by dualizing the relevant nonlinear constraints in a 
Lagrangian fashion, and the problem was decomposed into K identical subproblems. They solved these 
subproblems to generate new columns. The experiments indicated that this exact algorithm reduced 
the number of setups by an average of 63% compared to the initial solution to the standard cutting 
problem. Alves and de Carvalho [26] further improved the model proposed by Vanderbeck [24] by 
adding a constraint on the total waste to the subproblem. This allows the number of column-generated 
subproblems (knapsack problems) to be solved to be significantly reduced. They treated the LP-
optimal solution as an arc-flow formulation with an integer variable and used the branch-and-price-
and-cut algorithm to solve the master problem. However, because of the branching constraint and the 
fact that the demand is exactly satisfied, the solution is forced to exceed the maximum waste of the 
optimal 1D-CSP solution. In Alves et al. [27], the authors developed a CP model to derive two tighter 
LBs for the PMP. They also used the CP model to derive some efficient inequalities to deal with the 
hard constraints. From the experimental results of the 16 tested real-life cases, only three had worse 
LBs than those of Vanderbeck [24]. Three others had tighter LBs, while the remaining 10 cases had 
the same LBs. The above-mentioned developers of the three exact algorithms for solving the PMP did 
not report material usage cost in the experiments they conducted. Afterward, Mobasher and Ekici [8] 
briefly stated that the main drawback of the PMP model (Vanderbeck’s model) is the weak LP 
relaxation bound. In addition, this compact model has to meet the demand exactly without allowing 
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overproduction. This may increase the amount of material used and the number of different patterns used. 
In conclusion, several of the above-mentioned exact methods for solving PMP models that have 

appeared thus far are computationally time-consuming (2 h per instance). In particular, their solution 
accuracy is very low for larger demands or problems with dimensionality greater than 20. However, 
the current literature shows that several residual heuristics can solve the 1D-CSP model with a single 
objective of material cost very well and with a short computational time. In their models, the demands 
are precisely satisfied. The shortcoming of the current solutions for such a 1D-CSP is that the cutting 
pattern cannot be reduced [15]. 

1.2. Our contributions 

In this paper, the solution algorithm (VTC) for the 1D-CSP is developed by considering the 
requirements of item production in practical applications (the demands for the items must be met 
precisely). The authors provide important contributions in this domain. They rely on a mathematical 
model that is built to obtain the solution. In our approach, the feasible solution for the 1D-CSP is 
obtained by updating the established mathematical model once for each generated cutting pattern. Our 
approach attempts to form a linear relationship between the patterns and the variables by fixing one of 
the decision variables as a constant. Meeting the demand precisely is not conducive to the reduction 
of cutting patterns and minimization of material cost [8]. Two sets of well-known benchmark examples 
from the literature and a set of real instances are used to evaluate the advantages or disadvantages of 
the algorithms. The results indicate that the implementation of the new approach using a generic ILP 
solver (Gurobi) is able to obtain the optimal solution for the 1D-CSP in some instances and to acquire 
fewer cutting patterns. 

2. Problem definition and mathematical formulations 

In this section, we formally describe the 1D-CSP define some necessary notations and solve its 
relaxation solution by using the column generation approach. 

2.1. Problem description 

A 1D-CSP in which the demands are precisely met consists of the following parts: given an 

unlimited number of identical stock objects of length L (e.g., lengths of wood, aluminum alloy, rolls 

of paper), the mission is to cut id  pieces of items of length li for Ii  = {1..., m} to meet the quantities 

produced for the various items, keeping the number of stock objects used to a minimum. To simplify 

the model, we use p  to define a pattern and its index. We also use P  to denote a set of patterns and 

the indices of the patterns. In the 1D-CSP, a pattern p   is represented by a column vector 
t

mpippp aaaa ),,,,1 （  , where ipa   denotes the number of items i   in the cutting pattern p  . The 

pattern p  is required to fulfill 

                    Lla i

m

i
ip 

1

,                                                                        (1) 
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 ,i
ip da 0 and integer ),,( mi 1 .                                                     (2) 

We define an integer decision variable by px  with each Pp , referring to the number of cutting 
patterns p  used. id  represents the quantity corresponding to item i . Therefore, the main objective of 
the classic 1D-CSP is generally to minimize material cost (the number of objects used), and its 
mathematical model can be formulated as 

Minimize                                                                      (3) 

s.t.                                                             (4) 

 and integer ( ).                                                            (5) 

2.2. Column generation 

Let us briefly describe the relaxed solution model for Eqs (3)–(5), where we simply remove the 
integer constraints. Furthermore, an initial feasible solution Pp    can be easily achieved by 
initialization (e.g., through the use of heuristics to obtain this solution). Equations (3)–(5) then become 

Minimize                                                                  (6) 

s.t.                                                        (7) 

, and .                                                              (8) 

The optimization problem described by Eqs (6)–(8) is called the restricted master problem (RMP). 
The RMP can provide the basis matrix B   of the current iteration to update 1B   in the objective 
function of the subproblem. The computation stops when the objective function value in Eq (9) is 
greater than zero. Otherwise, a new column pp  can be generated iteratively to reduce the objective 
function value in Eq (6), and it is added to the RMP. The resulting basis matrix B  is updated. The 
subproblem thus solved is as follows: 

           Minimize  pB aBc 11    ),,( 11Bc                                           (9) 

     s.t.    Lla i

m

i
ip 

1

                                                                       (10) 

   ,i
ip da 0  an integer ),,( mi 1 .                                             (11) 


Pp

xp

i
pip dx

Pp
a 


  mi ,...,1

0px Pp


Pp

x p

i
pip dx

Pp

a 


  mi ,...,1

0px Pp
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In (9), Bc  is a row vector with m columns and all its elements are one. B  is a matrix with m rows 
and m columns. t

mpppp aaaa ),,,(  11   denotes a variable cutting pattern, expressed as a column 
vector. In (10), ipa indicates the number of items i in a cutting pattern p , and il  refers to the length of 
item i . L is expressed as the length of the stock object. Constraint (11) prevents the number of items i 
in the cutting pattern p  from exceeding the total number demanded. 

3. Solution methods 

3.1. Our methodology for generating columns 

In this section, we first build a new mathematical model and then solve it by using a new method 
called VTC. The new model for the 1D-CSP instances is built by fixing one of the decision variables 
as a constant. This enables a linear relationship between the decision variables and the columns (cutting 
patterns), which facilitates cutting pattern reduction. The main features of VTC are as follows. 

1) In terms of pattern reduction, the solution quality of the method for some instances is much 

better than the solution quality of the standard 1D-CSP model. The demands id (i = 1..., m) in (4) are 

exactly satisfied. 

2) In terms of constraints, the number of constraints is forced to increase after fixing one of the 

decision variables. Obtaining the solution is more time-consuming, which is not true for low-demand 

problems. 

3) After fixing a decision variable as a constant, all decision variables ),,( mxxx 1 and the new 

column t
mpippp aaaa ),,,,( 1  form a linear relationship. The objective function is transformed into a 

linear objective function related to the variable vector pa . 
To conveniently describe the solution process of the method in this paper, we first represent (1)–

(5) in matrix form. 

               Minimize  cxxf )(                                                           (12) 

                   s.t.    dAx                                                                       (13) 

                              Lla p                                                                       (14) 

           ),,(, mida i
ip 10  , an integer                                (15) 

                         
,0x  an integer.                                                            (16) 

In (12), t
nxxx ),( 1 indicates the column vector of decision variables, and c = (1..., 1) is a row 

vector containing n columns, where all elements are equal to one. The column vector pa  is a vector of 

variables, which we denote as t
mpippp aaaa ),,,,( 1 . Constraint (16) enables all decision variables 

to be nonnegative integers. Constraint (13) enables the quantity of all items to be precisely as required 

(i.e., demands are met exactly). A represents an m  n matrix in which each column is a cutting pattern. 

Its right end is a demand vector t1 ),,( mddd  , expressing the number of different items produced. 


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l=(l1..., lm) represents a row vector, where li denotes the size of the ith item. L designates the length of 

the stock object. Constraints (14) and (15) indicate that the elements in the cutting pattern pa  have to 

satisfy ,Llala mpp  m11   and ),,(, mida i
ip 10  , an integer. 

3.1.1. Mathematical modeling 

To solve the optimization problem described in Section 3.1, we reconstruct the model of the 1D-

CSP. We consider only m decision variables, i.e., their number is equal to the number of item types. 

Each iteration, which generates a new column, also represents the generation of a new cutting pattern 

. Let us introduce a vector of integer column variables ap which, for each Pp , gives the number 

of items cut for each type of item in the cutting pattern p . Furthermore, we assume that the 1D-CSP 

for the kth iteration with m decision variables and m items is established by generating the kth column. 

Consequently, we express the mathematical model at each iteration in terms of the matrix and the 

vector. 
The following notations are used to describe it: 

 objective value (total number of stock objects used) 

 decision variable, which is currently fixed as a constant 

 
column vector obtained by performing the elementary row transformation of a matrix on the 
demand vector 1-kd  

 column vector obtained by forcing the kth element of kd  to be 0 

 matrix obtained by performing the elementary row transformation of a matrix on matrix 2ks

 vector obtained by forcing all elements of the kth row of the matrix 1-ks  to 0 

 row vector constructed from the k
th row of ks  

 row vector representing the dimensions of the m items 
ap cutting pattern p  currently being solved 

 row vector with m columns and element values equal to one 

 number of item types 

 objective optimal LB, which can be obtained from the column generation algorithm 

 cutting scheme corresponding to the generation of the kth column 

The 1D-CSP model described is remodeled as  

Minimize mxxxxf  21)(  

GpkkG xastdtx  )( 1-                                     (17) 

 s.t.    01-  Gpkk xasd                                                                (18) 

Lla p                                                                               (19) 

1pssa                                                                             (20) 

p

)(xf

Gx

kd

kd

1-ks

1-ks

ss

l

t
m

K
kA
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,),,,( t
mpippp aaaa 1  i

ip da 0  , an integer                                         (21)  

 


















1

1

0 s , 

















md

d

d 

1

0 , 

















1

1

0 A                                            (22) 

In the above model, the number of iterations k = 1, 2, 3..., n, where each iteration produces a new 
column and an objective function value. kd and 1-ks  are distinct from the previous iterations at each 

iteration. That is, the objective function and constraints need to be updated for each iteration. 
Equation (17) indicates that the objective is to minimize the material cost (the number of objects used), 
where Gx  is equal to the value of the decision variable corresponding to column k at the previous 

iteration. Constraint (18) means that all decision variables are constrained to be greater than or equal 
to zero, except for the decision variable corresponding to column k. Constraint (19) limits the size of 
the space where the item is placed in the pattern ap. Equation (20) is an equation constraint that arises 
after fixing a decision variable corresponding to the kth column as a constant Gx . Equation (22) gives 
the initial matrices 0s , A0 and 0d  created at the beginning iteration. 

In an effort to determine an efficient solution to the above optimization problem, we present below 
the computational procedure that implements the new mathematical model constructed. The solution 
procedure is shown below. 

Step 1: Input the initialization matrix for 000 Ads ,,  and set k = 1. Additionally, sort the items, i.e., 

mlll  ,,21  or mlll  ,,21 . 

Step 2: Update the objective function and constraints by 1-ksss,  and kd . ss can be obtained by 

forcing the elements in row one to zero in matrix 1-ks . 

Step 3: Let the decision variable kx  be a constant Gx . 

Step 4: Use the Gurobi solver to solve the kth mathematical model to obtain pa . 

Step 5: Go to Step 6 if )()( 2or1  mkandKxf ; otherwise, stop the calculation. 

Record all cutting patterns produced and their decision variables. 

Step 6: Compute 1-ks , ap and ssap, and apply their results as the kth column in . 

Step 7: Perform elementary row transformation on matrix A   while performing the same 

transformation on matrix 1-ks  and matrix kd  as that performed on matrix A . 

Step 8: Let ,1 kk  and return to Step 2. 
Step 5 indicates that the method does not necessarily solve for the optimal solution. Each 

generation determines a cutting pattern ap (Steps 2–8). For each cutting pattern solved, the objective 

),,(),,,,,,( minmmk  1110 

A
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function and constraints need to be updated once (Step 2). Steps 6 and 7 depict a matrix elementary 
row transformation after each updated column in A. In Step 1, different sequencing may result in 
different VTC calculations. The experiments conducted later in this paper rank the items from largest 
to smallest before solving. 

3.1.2. Numerical example 

In this section, we present a simple example to illustrate the solution process of the VTC method 
proposed in this paper. 

Example. Consider an instance of the 1D-CSP with m = 4 items and demand vector d0 = 
(d1,d2,d3,d4) = (6,10,8,5)T. Assume that L = 300, l = (l1, l2, l3, l4) = (150, 50, 40, 10) and row vector t = 

(1, 1, 1, 1). We also assume that the column vector 























p

p

p

p

p

a

a

a

a

a

4

3

2

1

. Before the iterative calculation, the 

following matrix is first initialized. 
We let 





















1000

0100

0010

0001

0A .                                                    (23) 

Meanwhile, we set  

 





















1000

0100

0010

0001

0s .                                                     (24) 

Using (12)–(16), we obtain the following objective problem: 

Minimize 43210 xxxxxf )( .                                           (25) 

This is subject to  





























































5

8

10

6

1000

0100

0010

0001

4

3

2

1

00

x

x

x

x

dxA

                

.                        (26) 

As a result,  
 

58106 4321  xxxx ,,,                                                   (27) 

and                                                           .)( 29581060 xf                                                    (28) 

Concurrently, the LB K =  9.5  = 6 is obtained by the column generation method, which is the 
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minimum material cost. This can be used as a condition for whether the iterative calculation is stopped. 
Since Kxf )(0 , the calculation continues, and the next step involves generating new columns. 

Iteration 1 (Column 1 is generated):  
Replacing column 1 of 0A  in (26) with the unknown column vector pa  and using (12)–(14), we 

obtain the following objective problem: 

Minimize  43211 xxxxxf )( .                                              (29) 

This is subject to  































































5

8

10

6

100

010

001

000

4

3

2

1

4

3

2

1

11

x

x

x

x

a

a

a

a

dxA

p

p

p

p

,                                              (30) 

and 

,Llalalala pppp  44332211                                                   (31)  

    508010060 4321  pppp aaaa ,,, , an integer,                             (32) 

  0000 4321  xxxx ,,, .                                                         (33)  

To simplify the tedious calculation of the matrix, we can express the first column in matrix 1A  as  

p

p

p

p

p

p

p

p

p
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a

a

a

a

a

a

a

a
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.                                             (34)  

Fixing the decision variable 1x  to 6, we obtain  

,pax 22 610                                                                  (35) 

,pax 33 68                                                                    (36) 

,pax 44 65                                                                    (37) 

.11 pa                                                                             (38) 
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Let 
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 ; then, by observing the relationship between Eqs (30) and 

(34), (35)–(37) can be transformed into 
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.                                    (39) 

Now, substituting Eqs (35)–(37) into (29), the objective function can be written as follows: 

                                                    Minimize  43211 xxxxxf )(         

                       = )( ppp aaa 432629                                           (40) 

                                                                            )( past 0629  . 

The constraints are as follows: 

                ,0610 22  pax                                                       (41) 

,068 33  pax                                                         (42) 

  ,065 44  pax                                                        (43) 

,Llalalala pppp  44332211                                                   (44) 

50801001 3321  pppp aaaa ,,, , an integer.                   (45) 

Constraints (41) to (44) are converted into matrix and vector forms: 
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                         (46) 

  Lala pp  104050150                                                       (47)  
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The Gurobi solver is used to solve the above optimization problem. Therefore, we obtain 

. 

Accordingly, xA1  is 
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Iteration 2 (Column 2 is generated):  

Similarly, replacing column 2 of 1A  in Eq (48) with the unknown column vector ap and using 

Eqs (12)–(14), we obtain the following objective problem:  

            Minimize  43212 xxxxxf )( .                                           (49) 

This is subject to  































































5

8

10

6

100

011

001

001

4

3

2

1

4

3

2

1

22

x

x

x

x

a

a

a

a

dxA

p

p

p

p

,                                            (50) 

               Llalalala pppp  44332211 ,                                                 (51) 

 508010060 3321  pppp aaaa ,,, , an integer,                               (52) 

                0000 4321  xxxx ,,, .                                                         (53) 

Next, we formulate Eq (50) as (54) and simultaneously perform the same operation on matrix 1s , 

with the following result. Thus, 
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,                                      (54)  

and then, 0s  in Eq (24) becomes 1s  in (55): 

1752460111 143214321  )(;,,,;,,, xfxxxxpapapapa



7465 

Mathematical Biosciences and Engineering   Volume 20, Issue 4, 7453-7486. 
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At this point, fixing the decision variable 2x  to 4, we obtain  

          ,pax 11 46                                                              (56) 

     ),( paax p 133 42                                                   (57) 

              ,pax 44 45                                                             (58) 

.)( 4412  pp aa                                                      (59) 
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. Then, Eqs (56)–(58) can be expressed as 
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.                                  (60)  

Through Eqs (56)–(58) and (49), the objective function is easily formulated as 

Minimize 43212 xxxxxf )(  

= )( pp aa 43417                                                  (61) 

                     = )( past 1417  . 

The constraints are as follows: 

                ,046 11  pax                                                    (62) 
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,)( 042 133  pp aax                                                   (63) 

  ,045 44  pax                                                         (64) 

,Llalalala pppp  44332211                                                     (65) 

,)( 4412  pp aa                                                              (66)  

508010060 4321  pppp aaaa ,,, , an integer.                                (67) 

Constraints (62)–(65) are converted into matrix and vector forms: 
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,                                (68) 

  Lala pp  104050150 .                                                         (69)  

Using row 2 of matrix 2s  as a row vector ss, such that )0,0,1,1(ss , (66) is as follows: 

  1001112  pppp ssaaaa )( .                                             (70) 

The Gurobi solver is used to solve the above optimization problem. Therefore, we obtain 

 

In this way, xA2  can be written as 
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Iteration 3 (Column 3 is generated):  
Since f2(x) > K, the calculation continues to produce the next column. The objective optimization 

problem is formulated as 

.)(;,,,

;,,,

91242

1121

24321

4321


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xfxxxx

papapapa
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Minimize  43213 xxxxxf )( .                                                   (72)  

This is subject to 
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,                                            (73) 

                Llalalala pppp  44332211 ,                                                             (74) 

 508010060 3321  pppp aaaa ,,, , an integer,                              (75)  

           0000 4321  xxxx ,,, .                                                              (76) 

The next step of expressing (73) as (77) while performing the same elimination operation as that 

performed for matrix 2s  results in the following: 
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Then, 1s  in (55) becomes 2s  in (78): 



























1011

0101

0011

0012

2s .                                                           (78) 

As such, fixing the decision variable 3x  to 2 gives   

)( pp aax 211 222  ,                                                      (79) 

     )( paax p 122 24  ,                                                       (80) 

             )( ppp aaax 1244 21  ,                                                 (81) 
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2213  )( pp aa .                                                            (82) 

Then, let 
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.                (83) 

For this iteration, the objective function can be represented as follows: 

Minimize  43213 xxxxxf )(            

                       = )( ppp aaa 421229                                                  (84) 

                                                                      = )( past 229  . 

The constraints are as follows: 

              ,)( 0222 211  pp aax                                              (85) 

                  ,)( 024 122  paax p                                               (86) 

  ,)( 021 1244  ppp aaax                                        (87) 

,Llalalala pppp  44332211                                                 (88) 

,)( 2213  pp aa                                                       (89)  

508010060 4321  pppp aaaa ,,, , an integer.                             (90)   

Constraints (85) to (88) are represented in matrix and vector forms: 
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   Lala pp  104050150 .                                                (92) 
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Using row 3 of matrix 3s  as a row vector ss, such that )0,1,0,1(ss , (89) is as follows: 

  .)( 1010113  pppp ssaaaa                                         (93) 

The Gurobi solver is used to solve the above optimization problem. Therefore, we obtain 
   

             

Note that )(2 xf  has the same result as )(3 xf  and that xA3  is the same as xA2 ; Thus, xA3  is as 

follows: 
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Iteration 4 (Column 4 is generated):  
Because f3(x) > K, the calculation continues. The objective optimization problem is described as 

follows: 

Minimize  43214 xxxxxf )( .                                              (95) 

This is subject to                                                             
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                   Llalalala pppp  44332211 ,                                                       (97) 

 508010060 3321  pppp aaaa ,,, , an integer,                        (98)  

           0000 4321  xxxx ,,, .                                                           (99) 

Consequently, by the matrix elimination operation, Eq (96) can be presented as (100), and the 
result is as follows: 
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Additionally, 2s  in Eq (78) is written as 3s  below: 
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3s .                                                               (101) 

Observing the relationship between the matrix 5A  in Eqs (100) and (101), we conclude that the 

following equation holds: 
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Therefore, after fixing the decision variable 4x  to 1, the expressions for the other variables can 

be written as 

),( pp aax 211 22                                                     (103) 

),( paax p 122 4                                                      (104) 

),( pp aax 133 2                                                      (105) 

11124  )( ppp aaa .                                                (106) 
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The objective optimization problem is as follows: 

Minimize  43214 xxxxxf )(            
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                              = pa39                                                                   (108) 

                                                                          = )( past 39   

The constraints are as follows: 

              ,)( 022 211  pp aax                                             (109) 

                  ,)( 04 122  paax p                                             (110) 

  ,)( 02 133  pp aax                                             (111) 

,Llalalala pppp  44332211                                            (112) 

,)( 11124  ppp aaa                                                  (113) 

508010060 4321  pppp aaaa ,,, , an integer.                      (114) 

Consequently, Eqs (109)–(111) can be represented in matrix and vector forms: 
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   Lala pp  104050150 .                                                   (116) 

Using row 4 of matrix 4s  as a row vector ss, such that )1,0,1,1( ss , the constraint given by (113) 

can be written as 

  .)( 11011124  ppppp ssaaaaa                                      (117) 

The Gurobi solver is used to solve the above optimization problem. Consequently, we obtain 

 

Because 6)(4  Kxf , the calculation is cut off. If Kxf )(4 , we can perform the same 

operation as the above operation and loop to generate a new column; the optimal outcome is as follows: 
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Ax  exactly meets the demand. That is, dAx  . From the results, only two columns are needed 

to reach the optimal integer solution. As the decision variables 1x  and 3x  are zero, columns 1 and 3 

are therefore invalid. In view of practical applications, it is beneficial to reduce the setup cost.  
Note that our solution procedure for generating columns is relaxed with respect to the 

constraints on the decision variables (i.e., the decision variables are not restricted to integers). The 
experimental results show that integer solutions can be obtained. We elaborate further on how to deal 
with this problem. 

3.2. Other approaches 

To produce an ideal or at least acceptable solution, we introduce several heuristics in some well-
known literature. With respect to solving the 1D-CSP, there are two main types of methods, one being 
constructive heuristics, and the other being residual heuristics. 

3.2.1. Constructive heuristics 

Constructive heuristics is a way of determining an integer solution to a one-dimensional cutting 
problem; specifically, it is a way of constructing a good cutting pattern and using as much of it as 
possible [10]. No items are allowed to be overproduced. Two well-known procedures for constructing 
cutting patterns are FFD and greedy approaches. 
The general framework for constructive heuristics is as follows. 
Step 1: Construct a good cutting pattern for a type of stock length. 
Step 2: Among the cutting patterns generated in Step 1, select the one with minimum waste. 
Step 3: Use the cutting pattern in Step 2 as much as possible without overproduction. 
Step 4: Update the demand of the items.  
Step 5: If the demand for each of these items is met precisely, stop. Otherwise, go to Step 1. 
1) FFD heuristic 

The procedure is to prioritize the largest item into the pattern until its demand is met. If the largest 
item cannot be placed, the second largest item is considered for placement, and so on. The cutting 
pattern is completed when all demands of the items have been precisely met. 
2) Greedy heuristic 

In this paper, the greedy procedure consists of solving the knapsack problem in Step 1, which has 
only one type of stock length as a raw material (stock object). The backpack problem appears as follows. 

    Maximize  pp22p11 mmalalal   

 s.t.  Lalalal mm  pp22p11                                     
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iip ra 0 , ipa  integer, mi ,,1 .                                             (118) 

In (118), il  refers to the length of item type i, mi ,,1  and ir  is the residual demand for item type i. 

ir  is updated in Step 4. At the beginning, i
i dr  , and id  is the demand for item i, mi ,,1 . 

3.2.2. Residual heuristics 

Residual heuristics produce an optimal integer solution for the continuous relaxation of (6)–(8). If 
at least one element of the relaxation solution vector is not a nonnegative integer, then we can use the 
residual heuristic for rounding. Otherwise, the relaxation solution is the optimal integer solution. The 
residual heuristics are described before we define a residual problem. 

Definition 1 (Residual problem). Let x  be an approximate integer solution rounded down for x. 

   ),,( mxxx 1 . xAdr   stands for the residual demand. We can formulate the residual problem in 
the form of (6) to (8), where demand d  varies with r . 

Note that the cutting patterns of the optimization problem consist of two parts: the first part 
consists of the cutting patterns (columns) corresponding to the relaxation solution, and the second part 
consists of the cutting patterns generated by the residual problem. 

The general framework for residual heuristics:  
Step 1: Let 0c  and dr c   be the initial data for the beginning residual problem. 
Step 2: Solve the relaxation solution to the residual equation problem by using the column 

generation technique. Assume that the relaxation solution x  comprises all nonnegative integers, and 
then stop. Otherwise, go to Step 3. 

Step 3: Find an approximate integer solution 
c

x . If it is a null vector, go to Step 5. 

Step 4: Update the demand for the residual problem, 
ccc xArr 1  . If 0cr  , then stop. 

Otherwise, go to Step 2. 
Step 5: Solve the remaining residual problem. 
Whether this algorithm is considered good or bad is mainly related to determining how to go 

about rounding through Step 3 and how to solve for the remaining problem through Step 5. 
Nevertheless, Step 2 is even more critical when considering the auxiliary indicator (setup), as it can 
directly affect the number of cutting patterns. There are two main types of Step 3 rounding methods: 
one is downward rounding, as in the FFD and greedy approaches; the other is a downward or upward 
rounding strategy, such as GRH1, GRH2 and GRH3 (see Poldi et al. [13]). Note that the GRH used in 
the experimental tests in this paper refer to GRH1. 

For Step 5, the remaining problem can be solved and made optimal by using some other 
method [29,30]. An integer linear optimization problem (considering the generation of all columns) 
can also be built to solve it. Such approaches, however, allow for overproduction, whereas the 
optimization problem studied in this paper does not allow for overproduction. 

3.3. Our algorithms  

In this section, we fuse the VTC method with the FFD and greedy methods. Thus, two improved 
algorithms (i.e., Residual-VTC-FFD and Residual-VTC-Greedy, respectively) are obtained. The 
effectiveness of the VTC method is verified. More specifically, VTC can be used as described in 
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Section 3.2.2 as a methodology for solving Step 2 and for Step 5. The definition of the residual problem, 
including its associated parameters, is assumed to be identical to that given in Section 3.2.2.  

General framework of our approach: 
Step 1: Let 0c  and dr c   be the initial data for the original residual problem. 
Step 2: Solve the relaxation solution to the residual equation problem by using the VTC technique 

in Section 3.1. Assume that the obtained objective function value f(x) ≤ K (K is defined as an LB of 
the current residual problem). If f(x) > K, the relaxation solution obtained by the column generation 
technique replaces the relaxation solution found via the VTC technique. 

Step 3: Assume that the relaxation solution x is all nonnegative integers, and then stop. Otherwise, 
go to Step 4. 

Step 4: Find an approximate integer solution 
c

x . If it is a null vector, go to Step 6. 
Step 5: Update the demand for the residual problem, 

ccc xArr 1  . If 0cr  , then stop. 
Otherwise, go to Step 2. 

Step 6: Use the VTC and greedy methods to solve the remaining residual problems separately and 
choose the best solution as the final integer solution. 

In Step 6, we prefer the side with the smallest objective function value as the final solution. If 
both have the same objective function value, the side with the lowest cutting patterns is chosen as the 
final solution. Our method differs from the residual heuristic in Steps 2 and 6. The good optimization 
capability of the column generation technique is exploited to compensate for the weak optimization 
capability of the VTC method. The quality of the solution can be improved. The cutting patterns (setups) 
can be reduced while obtaining a satisfactory material cost. 

4. Computational experiments 

We used two different instances, one instance is from a previous study in the literature and the 
other is from an aluminum alloy factory in China. Benchmark instances are used to compare our 
algorithm with the published 1D-CSP algorithms. To solve the 1D-CSP model presented in this paper, 
there are six main published algorithms: FFD, greedy, residual-FFD, residual-greedy, residual-GRH 
and residual-BPP algorithms. These algorithms can be found in Cerqueira et al. [15] and Poldi et al. [13]. 
All experiments were implemented with Python 3.7 installed on a computer with an Intel Core i5-10400 
processor at 2.90 GHz. The calculation time for each instance was limited to 20 s. 

First set of instances: The 17 hard instances given by Wascher and Gau [29] are available at 
http://or.dei.unibo.it/library/bpplib. 

Second set of instances: Foerster and Wäscher [31] used the problem generator CutGen1 to 
randomly generate a set of instances with 18 different classes. 

Third set of instances: The authors collected 20 practical instances of making aluminum doors 
and windows in an aluminum alloy factory (see the Appendix). 

4.1. Results from the first set of instances 

To test several algorithms on more challenging benchmarks, we tested 17 small-scale instances 
that were difficult to solve. These instances were designed by Wascher and Gau [29]. The stock object 
length L = 10,000, and the number of required items varies from 33 to 63. The majority of these items 
tend to have less demand. The minimum requirement of the item is only 1; thus, these instances can 
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be used to estimate the performance of the constructive heuristic and our method. This is because the 
residual problem is a solution process for a lower-demand problem. For this set of instances, the 
number of iterations of our method was set to m, i.e., 1 . 

Table 1. Results of 17 hard instances (L = 10000). 

Name 
Constructive-FFD Constructive-Greedy VTC  
Obj NP Obj NP Obj NP LB 

Waescher TEST0005 33 32 29 27 32 22 28 
Waescher TEST0014 28 28 26 24 30 17 24 
Waescher TEST0022 16 16 15 15 16 11 14 
Waescher TEST0030 31 31 28 27 33 22 27 
Waescher TEST0044 15 15 14 14 16 12 14 
Waescher TEST0049 12 12 11 11 12 9 11 
Waescher TEST0054 15 15 15 15 16 12 14 
Waescher TEST0055A 16 16 15 15 17 10 15 
Waescher TEST0055B 21 21 20 20 21 15 20 
Waescher TEST0058 23 23 21 20 22 14 20 
Waescher TEST0065 18 18 16 16 19 13 15 
Waescher TEST0068 13 13 12 12 13 9 12 
Waescher TEST0075 14 14 13 13 15 12 13 
Waescher TEST0082 31 31 26 25 26 22 24 
Waescher TEST0084 18 18 16 16 17 16 16 
Waescher TEST0095 18 18 16 16 17 12 16 
Waescher TEST0097 13 13 12 12 13 8 12 
Total 335 334 305 298 335 236 295 

The results of three different methods are given in Table 1. The solution results of two well-known 
constructive heuristics and the proposed VTC technique are reported. Column 1 defines the name of 
the instances being tested, and the last column is the ideal optimal value of the objective function value. 
In the table, Obj represents the value of the objective function found, and NP refers to the number of 
different cutting patterns (setups). The last line shows the sum of the counts for all instances. 

The sum of the numbers of different cutting patterns for the VTC solution was significantly 
smaller than that for the other two methods. There is only one instance here, i.e., Waescher_TEST0084, 
where the NP metric did not outperform the other two methods. This indicates that VTC is powerful in 
terms of simplifying setups (reducing the cutting patterns). 

Comparing the FFD and greedy methods, the greedy method was best in terms of optimal 
objective function values, as opposed to our method, which was indistinguishable from FFD. For the 
Waescher_TEST0082 instance, our method obtained the same objective function value as the other 
methods. In this instance, a 12.0% reduction in pattern count could be obtained by using VTC instead 
of the greedy algorithm, and a 29.0% (= 1-22/31) reduction in pattern count relative to FFD was 
observed. Relative to the greedy algorithm, the new solution reduced the number of patterns by a total 
of 20.8%, and a total of 29.3% relative to FFD. 

4.2. Results from the second set of instances 

The second set consists of 18 classes of benchmark instances from Foerster and Wäscher [31]. 
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There are 100 instances in each class, and we only tested the first 10 instances in each class. In 
accordance with Gau and Wäscher [32], the randomly generated instances could be the same as the 
original ones. The characteristics of the instances are shown in Table 2, where d denotes the number 
of item demands, dr represents the average demand and m represents the number of item types. 
Different combinations of v1 and v2 were used to determine the size of items randomly generated in 
the interval [v1L, v2L]. The results of the calculation are shown in Table 3. Obj denotes the average of 

the number of stock objects used. NP indicates the average number of cutting patterns.  stands for 

the average of the ideal objective function values. Using Gap as the distance between the actual 
objective function value and the ideal solution (LB), we report it as a percentage: 
 

                                (119) 

Table 2. Characteristics of instances in Set 2. 

Class m v1 v2 dr 
1 10 0.01 0.2 10
2 10 0.01 0.2 100 
3 20 0.01 0.2 10 
4 20 0.01 0.2 100 
5 40 0.01 0.2 10 
6 40 0.01 0.2 100 
7 10 0.01 0.8 10 
8 10 0.01 0.8 100 
9 20 0.01 0.8 10 
10 20 0.01 0.8 100 
11 40 0.01 0.8 10 
12 40 0.01 0.8 100 
13 10 0.2 0.8 10 
14 10 0.2 0.8 100 
15 20 0.2 0.8 10 
16 20 0.2 0.8 100 
17 40 0.2 0.8 10 
18 40 0.2 0.8 100 

Our objective function considered only the quantity of stock objects used, and the demand for 
each item type had to be met precisely, as in the mathematical model studied by Cerqueira et al. [15]. 
We tested the set of instances with each of the six representative mainstream algorithms, without 
considering the MGH method used by the authors in the literature. This is because the MGH method 
considered the results of two types of stock objects L1 = 1000 and L2 = 1001. 

These 18 different types of instances can be divided into three groups, each containing six types 
of instances and having the same il  range (see Table 2). Specifically, Classes 1 to 6 were treated as 
Group 1, Classes 7 to 12 were treated as Group 2 and Classes 13 to 18 were treated as Group 3. The 
average pattern count and the average number of objects used count for each group of instances are 
reported in Tables 4 and 5, respectively. The algorithms shown in line 1 of Tables 4 and 5 correspond 
to all of the algorithms in Table 3. The fifth row in Tables 4 and 5 shows the average of the three 
previous sets of results. The last row in Table 4 represents the sum of the pattern counts for all instances 
in Table 3. The last row in Table 5 presents the sum of the stock objects used for all instances. 

LB
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Table 3. Results of 10 instances in each one of the 18 classes (L = 1000). 

 Constructive-FFD Constructive-Greedy Residual-FFD Residual-Greedy Residual-GRH Residual-BPP Residual-VTC-FFD Residual-VTC-Greedy  

Class Obj NP Gap Obj NP Gap Obj NP Gap Obj NP Ga

p 

Obj NP Gap Obj NP Gap Obj NP Gap Obj NP Gap  

1 11.7 9.4 2.02 11.5 9.6 7.6 11.5 9.1 0.77 11.4 9.0 0 11.4 8.8 0 11.4 9.0 0 11.4 7.8 0 11.4 7.8 0 11.4 

2 114.8 17.6 3.90 111.9 24.9 1.53 110.4 13.4 0.16 110.2 13.2 0 110.2 12.7 0 110.2 12.9 0 110.5 13.5 0.13 110.3 12.3 0.07 110.2 

3 24.3 20.4 3.64 23.4 20.9 0 23.5 17.2 0.5 23.4 17.4 0 23.4 17.3 0 23.4 17.4 0 23.4 14.9 0 23.4 14.9 0 23.4 

4 238.4 32.8 44.4 229.8 72.1 0.84 227.9 27.0 0.58 227.7 26.8 0 227.7 25.8 0 227.7 25.5 0 227.7 25.1 0 227.7 25.1 0 227.7 

5 44.8 36.7 5.57 42.5 37.6 0.46 43.1 32.3 1.89 42.3 31.5 0 42.3 32.1 0 42.3 32.8 0 42.7 30.4 0.47 42.3 27.1 0 42.3 

6 445.0 64.4 4.39 423.0 134.0 0.37 420.6 49.4 0.10 420.0 48.8 0 420.0 48.1 0 420.0 50.0 0 420.4 47.6 0.08 420.0 48.1 0 420.0 

7 56.1 11.4 10.88 53.4 11.8 5.9 50.7 10.8 0.85 50.3 10.4 0 50.3 10.1 0 50.3 10.1 0 50.3 9.7 0 50.3 9.7 0 50.3 

8 571.8 13.6 9.29 550.2 15.9 6.71 516.5 11.1 0.03 516.3 12.2 0 516.3 11.8 0. 516.3 11.6 0 516.3 11.2 0 516.3 11.2 0 516.3 

9 121.6 20.5 17.87 108.0 22.3 7.51 100.8 19.9 0.08 100.6 19.8 0 100.6 19.7 0 100.6 19.8 0 100.6 19.6 0 100.6 19.6 0 100.6 

10 1211.8 24.5 17.84 996.4 45.3 9.02 1003.

6 

22.1 0.03 1003.2 21.7 0 1003.3 20.1 0.0

2 

1003.2 21.9 0 1003.3 20.9 0.01 1003.

2 

20.8 0 1003.

2 

11 221.6 46.7 22.5 195.7 48.3 12.17 172.2 41.0 0.06 172.1 40.9 0 172.1 40.1 0 172.1 41.2 0 172.1 39.9 0 172.1 39.9 0 172.1 

12 2217.1 52.4 20.32 1941.1 126.0 11.35 1724.

0 

45.6 0.06 1723.4 45.0 0.0

3 

1723.3 44.1 0.0

2 

1723.0 45.6 0.01 1723.4 43.7 0.03 1723.

3 

43.5 0.02 1722.

9 

13 69.7 11.4 10.85 60.0 10.8 3.39 62.7 10.6 0.22 62.6 10.5 0 62.6 10.3 0 62.6 11.2 0 62.6 10.1 0 62.6 10.1 0 62.6 

14 691.6 10.9 10.48 648.4 11.0 4.01 623.8 11.0 0 623.8 11.0 0 623.8 10.9 0 623.8 10.8 0 623.8 10.7 0 623.8 10.7 0 623.8 

15 149.4 23.1 15.75 130.8 21.8 3.38 126.9 20.2 0.16 126.7 20.0 0 126.7 20.1 0 126.7 21.3 0 126.8 20.1 0.09 126.7 20.0 0 126.7 

16 1489.9 24.9 15.83 1305.0 32.3 3.28 1265.

5 

21.1 0.01 1265.4 21.0 0 1265.4 21.1 0 1265.4 21.2 0 1265.4 21.7 0 1265.

4 

21.0 0 1265.

4 

17 280.5 47.8 21.74 239.9 48.2 8.33 220.0 39.1 0.12 219.7 38.8 0 219.7 37.9 0 219.7 38.9 0 219.8 39.4 0.04 219.7 38.8 0 219.7 

18 2802.8 48.1 21.5 2421.8 97.7 9.35 2194.

1 

43.0 0.01 2193.8 42.7 0 2193.8 41.4 0 2193.8 42.8 0 2193.9 43.0 0.01 2193.

8 

42.7 0 2193.

8 

LB
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The six algorithmic solutions had a sum of material costs close to the LB (8892.4), whereas the 
other two constructive heuristics failed to reach optimality. The best performance in terms of material 
cost savings was the R-BPP algorithm. Our solution in terms of material cost was also closer to the 
LB. Remarkably, our method acquired the least number of cutting patterns compared to all other 
methods. This indicates that the algorithm (R-VTC-Greedy) developed can reduce cutting patterns. 

Comparing R-VTC-Greedy and R-Greedy, the sum of the cutting pattern counts of the R-VTC-
Greedy algorithm was smaller than that of the R-Greedy algorithm. As seen in Table 4, the total sum 
of pattern counts decreased by 3.95% (= (1 - 423.3) / 440.7). On average, a 3.92% (= (1 - 23.52) / 24.48) 
reduction in pattern counts could be achieved by the R-VTC-Greedy algorithm. This illustrates that 
the VTC method we developed can improve the solution quality of R-Greedy. 

Comparing R-VTC-FDD and R-FDD, the sum of the cutting pattern counts of R-VTC-FDD was 
smaller than that of R-FDD. From the last row of Table 4, the sum of pattern counts solved by R-VTC-
FDD was reduced by 3.28% (= (1 - 429.3) / 443.9). On average, a 3.92% (= (1 - 23.85) / 24.66) 
reduction in pattern counts could be achieved by R-VTC-FDD. This illustrates that the VTC method 
we developed can also improve the solution quality of R-FDD. 

From the results for the set of instances, the reduction in cutting patterns was not very significant, 
mainly for two reasons. One is that the VTC algorithm developed by the authors currently has difficulty 
in obtaining fewer cutting patterns for a 1D-CSP with higher demands. The second is that the problem 
also leads to a reduction in the optimization capability of VTC when the demand is higher. This can be 
analyzed from the solution for the first set of instances and the solution for the third set of instances 
that follow. 

In our methodology, the number of iterations was set to 2 m to solve this set of instances. We 
limited the computational time to 20 s for each instance, considering the effectiveness of the solution 
for instances with higher dimensionality. 

Table 4. Summary of the first set in terms of the cutting pattern. 

 FFD Greedy R-FFD R-Greedy R-GRH R-BPP  R-VTC-FDD R-VTC-Greedy

Group 1 30.22 49.85 24.73 24.45 24.13 24.57 23.22 22.55

Group 2 28.18 44.93 25.08 25.0 24.32 25.03 24.17 24.12 

Group 3 27.70 36.97 24.17 24.0 23.62 24.37 24.17 23.88 

Average 28.7 43.92 24.66 24.48 24.02 24.66 23.85 23.52 

Total 516.6  790.5 443.9 440.7 432.4  444 429.3 423.3 

Table 5. Summary of the first set in terms of the material cost. 

 FFD         Greedy      R-FFD     R-Greedy     R-GRH      R-BPP   R-VTC-FDD  R-VTC-Greedy   LB 

Group 1 146.5 140.35 139.50 139.17 139.17 139.17 139.35 139.18 139.17

Group 2 733.30 640.80 594.63 594.32 594.30 594.25 594.33 594.30 748.67

Group 3 913.98 800.98 748.83 748.67 748.67 748.67 748.72 748.67 748.67

Average 597.93 527.38 494.32 494.05 494.05 494.03 494.13 494.05 494.02

Total 10762.9   9492.8 8897.8 8892.9 8892.9 8892.5 8894.4 8892.9 8892.4
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4.3. Results for the third set of instances 

In the third set, there were 20 practical instances of industrial on-site processing. Tests on 
aluminum cutting were used to evaluate the performance of the best solutions generated by the new 
methodology for cost (material cost) minimization problems, as well as the usefulness of pattern 
reduction in practical cutting. Within a manufacturing plant, the objects in stock are 6000 cm in length. 
The engineering instances being solved at random were selected. These instances are provided in Table 
A.1 in the Appendix. For this set of instances, the number of iterations for our method was set to m, 
i.e., β = 2. In Table 6, the software Chuangying was developed by China Zibo Zhiying Network 
Technology Co., Ltd., which is a well-known and professional developer of door and window design 
and management software in China. The results of the calculated instances are exhibited in Table 6. To 
facilitate the analysis of the results, we set Obj to the number of objects used, and NP is defined as the 
number of cutting patterns. Gap is the relative optimal gap, expressed as a percentage. Np

VTC, Np
FDD, 

Np
Greedy, Np

Chuangying, Np
Residual-FFD, Np

Residual-Greedy, Np Residual-GRH and Np
 Residual-VTC-Greedy represent the total 

numbers of cutting patterns produced by the different methods. As Table 6 shows, Residual-VTC-
Greedy obtained a more satisfactory solution than several other similar mainstream algorithms. 

The following data were obtained from the last row of the table: 
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They state that, by addressing the 1D-CSP model, the rate of improvement in the cutting pattern 
was 31.93% relative to Chuangying, 36.9% relative to FFD, 37.6% relative to the greedy algorithm, 
35.8% relative to Residual-FFD, 33.1% relative to Residual-Greedy and 32.7% relative to Residual-
GRH. Among the 20 instances reported, only instances 7_6000, 14_6000 and 18_6000 had cutting 
patterns that were not improved by our method. Closer inspection of the results shows that our method 
is effective not only in solving the original problem, but also in solving the remaining problems. For 
example, comparing the results for instances 8, 11, 13, 15, 19 and 20, when VTC failed to obtain the 
optimal objective function value, the cutting patterns could still be reduced in the solution to the 
residual problem at a later stage. 

Figures 1 and 2 display the cutting patterns and their respective corresponding integer decision 
variables obtained by solving instance 1_6000 using our method and the commercial software, 
respectively. The symbol 1*6000*4 stands for the first cutting pattern produced and requires four 
objects to be cut according to that cutting pattern. The length of the object was 6000 cm. As can be 
seen from the graph, the two different methods solved for the same number of objects used, but our 
solution produced only four different cutting patterns, whereas the commercial software produced 
eight different cutting patterns, and the other methods in Table 6 produced even more cutting patterns. 
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Table 6. Results of 20 practical instances (L = 6000). 
 

 

Chuangying           Constructive-FFD          Constructive-Greedy     Residual-FFD            Residual-Greedy        Residual-GRH                   VTC                        Residual-VTC-Greedy 

Name          Obj       NP       Gap       Obj       NP        Gap      Obj        NP    Gap        Obj      NP        Gap       Obj    NP           Gap      Obj       NP       Gap       Obj      NP        Gap      Obj        NP      Gap      

LB 

1_6000 20 8 0 22 11 9.1 20 13 0 21 11 4.8 20 10 0 20 13 0 20 4 0 20 4 0 20 

2_6000 10 10 0 10 9 0 10 10 0 10 9 0 10 9 0 10 9 0 10 3 0 10 3 0 10 

3_6000 8 7 0 10 9 20 8 8 0 8 7 0 8 7 0 8 7 0 8 5 0 8 5 0 8 

4_6000 10 8 0 10 9 0 10 10 0 10 9 0 10 9 0 10 9 0 10 4 0 10 4 0 10 

5_6000 8 7 0 10 8 20 9 8 11 8 7 0 8 7 0 8 7 0 8 3 0 8 3 0 8 

6_6000 18 11 0 22 11 18.2 20 11 10 19 14 5.3 18 13 0 19 11 5.3 18 6 0 18 6 0 18 

7_6000 12 11 8.3 13 9 15.4 12 9 8.3 12 11 8.3 12 11 8.3 12 10 8.3 14 6 0 12 11 8.3 11 

8_6000 6 5 0 7 7 14.3 6 6 0 6 5 0 6 5 0 6 5 0 8 3 25 6 3 0 6 

9_6000 9 9 0 10 9 10.0 9 9 0 10 9 10.0 9 8 0 10 8 10.0 10 5 10 9 8 0 9 

10_6000 9 9 0 10 9 10.0 9 9 0 10 9 10.0 9 8 0 10 8 10.0 10 5 10 9 8 0 9 

11_6000 11 10 0 12 8 8.3 11 10 0 11 8 0 11 8 0 11 8 0 12 3 8.3 11 6 0 11 

12_6000 8 7 0 10 9 20.0 8 8 0 8 7 0 8 7 0 8 7 0 8 5 0 8 5 0 8 

13_6000 8 8 0 9 8 11.1 8 8 0 9 9 11.1 8 8 0 8 8 0 9 5 11.1 8 6 0 8 

14_6000 6 5 0 7 7 14.3 6 6 0 7 7 14.3 6 6 0 6 6 0 8 3 25 6 6 0 6 

15_6000 15 9 0 16 10 6.3 16 12 6.3 15 8 0 15 8 0 15 8 0 18 6 16.7 15 7 0 15 

16_6000 4 4 0 5 4 20.0 4 4 0 4 4 0 4 4 0 4 4 0 4 1 0 4 1 0 4 

17_6000 14 13 0 15 15 6.7 14 14 0 15 15 6.7 14 14 0 14 14 0 14 5 0 14 5 0 14 

18_6000 11 9 0 12 11 8.3 11 10 0 11 11 0 11 11 0 11 10 0 15 7 26.7 11 10 0 11 

19_6000 8 8 0 9 9 11.1 8 8 0 8 8 0 8 8 0 8 8 0 12 3 33.3 8 6 0 8 

20_6000 8 8 0 8 7 0 8 8 0 8 8 0 8 8 0 8 8 0 12 3 33.3 8 6 0 8 

Total 203 166  227 179  207 181  210      176  203      169  206 168  228 85  203 113  202 
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Figure 1. Solution to instance 1_6000 using our method. 

 

Figure 2. Solution to instance 1_6000 using Chuangying software. 

5. Conclusions and future works 

In this paper, we reviewed some heuristics and column generation techniques from the literature. 
A new method called VTC has also been introduced and used to design two other new approaches for 
solving the integer 1D-CSP by successfully integrating it into two residual heuristics. In the first set of 
instances, the proposed VTC algorithm showed pattern reduction performance comparable to that of 
two well-known heuristics. In the second set of instances, a total of 100 well-known instances of 
different types were tested. The test results for the second set of instances showed an improvement of 
the average setup cost compared to several classical algorithms. In the third set of instances, 20 real-
life instances were tested and the setup cost solved by the designed approaches was significantly less 
than that of the other published algorithms. In fact, in some practical applications, pattern reduction is 
essential to reduce the time cost of the setup and adjustment of machinery and equipment. Moreover, 
in practical applications, the demand needs to be met precisely (overproduction is not allowed), which 
helps to save material costs. We all know that overproduction tends to generate material waste. 

This paper opens up new possibilities for future work. Efforts will be made to extend the VTC 
algorithm to address the 1D-CSP with multiple stock lengths and further pattern reduction in the future. 
In addition, the optimization capability and computational time of the new method can continue to 
be improved. 



7482 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7453-7486. 

Acknowledgments  

We are grateful for the incoming comments by the reviewers and editors, and we also appreciate 
the real data provided by Guangdong Weiye Aluminum Factory Co. 

This work was supported in part by the Project of the National Key Research and Development 
Program of China (2021YFC1910402, 2022YFB4703103), National Natural Science Foundation of 
China (62073129, U21A20490, U22A2059) and Hunan Provincial Natural Science Foundation of 
China (2022JJ10020). 

Conflict of interest  

No potential conflict of interest has been reported by the authors. 

References 

1. P. Gilmore, R. E. Gomory, A linear programming approach to the cutting-stock problem, Comput. 
Oper. Res., 9 (1961), 849–859. http://doi.org/10.1287/opre.9.6.849 

2. H. H. Yanasse, M. S. Limeira, A hybrid heuristic to reduce the number of different patterns in 
cutting stock problems, Comput. Oper. Res., 33 (2006), 2744–2756. 
https://doi.org/10.1016/j.cor.2005.02.026 

3. A. C. Cherri, M. N. Arenales, H. H. Yanasse, K. C. Poldi, A. C. G. Vianna, The one-dimensional 
cutting stock problem with usable leftovers-A survey, Eur. J. Oper. Res., 236 (2014), 395–402. 
https://doi.org/10. 1016/j.ejor.2013.11.026 

4. Y. Cui, C. Zhong, Y. Yao, Pattern-set generation algorithm for the one-dimensional cutting stock 
problem with setup cost, Eur. J. Oper. Res., 243 (2015), 540–546. 
https://doi.org/10.1016/j.ejor.2014.12.015 

5. M. Martin, H. H. Yanasse, L. L. Salles-Neto, Pattern-based ILP models for the one-dimensional 
cutting stock problem with setup cost, J. Comb. Optim., 44 (2022), 557–582. 
https://doi.org/10.100 7/s10878-022-00848-z 

6. Y. Cui, Z. Liu, C-Sets-based sequential heuristic procedure for the one dimensional cutting stock 
problem with pattern reduction, Optim. Methods Software, 26 (2011), 55–167. 
https://doi.org/10.1080/10556780903420531 

7. H. H. Yanasse, K. C. Poldi, G. R. L. Cerqueira, Modified KOMBI to reduce the different patterns 
in cutting stock problems, International Federation of Operational Research Societies Melbourne, 
Australia, 2011. 

8. A. Mobasher, A. Ekici, Solution approaches for the cutting stock problem with setup cost, Comput. 
Oper. Res., 40 (2013), 225–235. https://doi.org/10.1016/j.cor.2012.06 

9. L.N. López de Lacalle, Improving the high-speed finishing of forming tools for advanced high-
strength steels (AHSS), Int. J. Adv. Manuf. Technol., 29 (2006), 49–63. 
https://doi.org/10.1016/j.cor.2012.06.007 

10. A. I. Hinxman, The trim-loss and assortment problems: a survey, Eur. J. Oper. Res., 5 (2007), 8–
18. https://doi.org/10.1016/0377-2217(80)90068-5 

11. P. Ongkunaruk, Asymptotic worst-case analyses for the open bin packing problem, Faculty of the 
Virginia Polytechnic Institute, 2005. 



7483 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7453-7486. 

12. A. C. Cherri, M. N. Arenales, H. H. Yanasse, The one-dimensional cutting stock problem with 
usable leftover: a heuristic approach, Eur. J. Oper. Res., 6 (2009), 897–908. 
https://doi.org/10.1016/j.ejor.2008.04.039 

13. K. C. Poldi, M. N. Arenales, Heuristics for the one-dimensional cutting stock problem with limited 
multiple stock lengths, Comput. Oper. Res., 36 (2009), 2074–2081. 
https://doi.org/10.1016/j.cor.2008.07.001 

14. Y. Cui, Y. P. Cui, Z. Zhao, Pattern-set generation algorithm for the one one-dimensional multiple 
stock sizes cutting stock problem, Eng. Optim., 9 (2015), 1289–1301. 
https://doi.org/10.1080/0305215X.2014.969726 

15. G. Cerqueira, S. S. Aguiar, M. Marques, Modified greedy heuristic for the one-dimensional 
cutting stock problem. J. Comb. Optim., 42 (2021), 657–674. https://doi.org/10.1007/s10878-021-
00695-4 

16. R. W. Haessler, Controlling cutting pattern changes in one-dimensional trim Problems, Comput. 
Oper. Res., 23 (1975), 483–493. https://doi.org/10.2307/169698 

17. S. Umetani, M. Yagiura, T. Ibaraki, One-dimensional cutting stock problem to minimize the 
number of different patterns, Eur. J. Oper. Res., 146 (2003), 388–402. 
https://doi.org/10.1016/S0377-2217(02)00239-4 

18. J. Lee, In situ column generation for a cutting-stock problem, Comput. Oper. Res., 34 (2007), 
2345–2358. https://doi.org/10.1016/j.cor.2005.09.007 

19. R. R. Golfeto, A. C. Moretti, L. L. S. Neto, A genetic symbiotic algorithm applied to the cutting 
stock problem with multiple objectives, Adv. Model. Optim., 11 (2009),473–501.  

20. S. A. Araujo, K. C. Poldi, J. Smith, A genetic algorithm for the one-dimensional cutting stock 
problem with setups, Pesqui. Oper., 34 (2014), 165–187.  https://doi.org/10.1590/0101-
7438.2014.034.02.0165 

21. A. Mobasher, A. Ekici, Olution approaches for the cutting stock problem with setup cost, Comput. 
Oper. Res., 40 (2013), 225–235.https://doi.org/10.1016/j.cor.201206.007 

22. M. Martin, A. Moretti, M. Gomes-Ruggiero, L. S. Neto, Modifification of Haessler’s sequential  
heuristic procedure for the one-dimensional cutting stock problem with setup cost, Production, 
28 (2018), e20170105. https://doi.org/10.1590/0103-6513.20170105 

23. C. McDiarmid, Pattern minimisation in cutting stock problems, Discrete Appl. Math., 98 (1999), 
121–130. https://doi.org/10.1016/S0166-218X(99)00112-2 

24. F. Vanderbeck, Exact algorithm for minimizing the number of setups in the one-dimensional 
cutting stock problem, Oper. Res., 48 (2000), 915–926. https://doi.org/10.2307/222998 

25. G. Belov, G. Scheithauer, The number of setups (different patterns) in one-dimensional stock 
cutting, Preprint MATH-NM-15-2003, Department of Mathematics, Dresden University of 
Technology, 2003 

26. C. Alves, J. M. V. De Carvalho, A branch-and-price-and-cut algorithm for the pattern 
minimization problem, RAIRO Oper. Res., 42 (2008), 435–453. 
https://doi.org/10.1051/ro:2008027 

27. C. Alves, R. Macedo, J. V. D. Carvalho, New lower bounds based on column generation and 
constraint programming for the pattern minimization problem, Comput. Oper. Res., 36 (2009), 
2944–2954. https: //doi.org/10.1016/j.cor.2009.01.008 

28. A. Aloisio, C. Arbib, F. Marinelli, On LP relaxations for the pattern minimization problem, 
Networks, 57 (2011), 247–253. https://doi.org/10.1002/net.20422 



7484 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7453-7486. 

29. G. Wascher, T. Gau, Heuristics for the integer one-dimensional cutting stock problem: a 
computational study, Operations-Research-Spektrum, 18 (1996), 131–144. 
https://doi.org/10.1007/BF01539705 

30. M. Delorme, M. Iori, Enhanced pseudo-polynomial formulations for bin packing and cutting stock 
problems, INFORMS J. Comput., 32 (2020), 101–119. https://doi.org/10.1287/ijoc.2018.0880 

31. H. Foerster, G. Wäscher, Pattern reduction in one-dimensional cutting stock problems, Int. J. Prod. 
Res., 38 (2000), 1657–1676. https://doi.org/10.1080/002075400188780 

32. T. Gau, G. Wäscher, CUTGEN1: A problem generator for the one-dimensional cutting stock 
problem, Eur. J. Oper. Res., 84 (1995), 572–579. https://doi.org/10.1016/0377-2217(95)00023-J 

Appendix 

Table A.1. Random real-life instances in the field. 

1_6000          
Length (cm) 1552 1472 1400 1390 620 522 435 359 279 
Demand 12 12 12 4 32 40 32 8 8 
2_6000          
Length (cm) 1700 1690 1420 1130 1100 1080 760 730 720 
Demand 6 2 2 2 8 2 2 2 2 
Length (cm) 560 530 520 510 400 330    
Demand 8 2 12 4 2 20    
3_6000          
Length (cm) 3780 2840 2310 2240 2140 2070 1290 1270 1170 
Demand 2 2 2 3 2 2 1 1 4 
Length (cm) 1150 720 700       
Demand 2 1 1       
4_6000          
Length (cm) 1714 1704 1420 1130 1114 1094 760 730 720 
Demand 6 2 2 2 8 2 2 2 2 
Length (cm) 560 544 534 524 414 330    
Demand 8 2 12 4 2 20    
5_6000          
Length (cm) 1574 1390 1370 620 514 394 390   
Demand 6 4 4 16 14 8 4   
6_6000 
Length (cm) 4730 4720 3100 3040 2800 2740 1285 1270 1012.5 
Demand 2 2 6 4 6 4 4 2 4 
Length (cm) 1007.5 630 405 345 305 245    
Demand 4 8 4 4 4 4    
7_6000          
Length (cm) 2410 1820 1810 1750 1740 1500 1440 1400 1100 
Demand 2 12 6 3 1 2 2 2 2 
Length (cm) 810 740 570 410 340     
Demand 2 1 4 10 5     
8_6000          
Length (cm) 1524 1234 1160 874 765 714 705 620 560 
Demand 2 2 4 10 4 4 4 4 4 
Length (cm) 370 344        
Demand 2 4        
      Continued on next page
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9_6000          
Length (cm) 2140 2120 2110 2100 1640 1330 1180 840 820 
Demand 2 2 4 2 2 4 2 2 2 
Length (cm) 810 800 740 620 500 300    
Demand 4 2 2 10 4 4    
10_6000          
Length (cm) 2154 2134 2124 2114 1640 1330 1180 854 834 
Demand 2 2 4 2 2 4 2 2 2 
Length (cm) 824 814 740 620 500 314    
Demand 4 2 2 10 4 4    
11_6000          
Length (cm) 1280 1140 1050 1030 900 620 580 570 560 
Demand 6 4 4 10 24 2 4 8 2 
Length (cm) 450 340        
Demand  8 4        
12_6000          

Length (cm) 3780 2840 2310 2240 2140 2070 1290 1270 1170 
Demand 2 2 2 3 2 2 1 1 4 
Length (cm) 1150 720 700       
Demand 2 1 1       
13_6000          
Length (cm) 2560 2410 2280 2210 1650 1580 1560 1530 1170 
Demand 2 2 4 3 2 1 2 2 1 
Length (cm) 750 715 630 570      
Demand 1 2 2 2      
14_6000          
Length (cm) 1510 1220 1160 860 765 705 700 620 560 
Demand 2 2 4 10 4 4 4 4 4 
Length (cm) 370 330        
Demand 2 4        
15_6000          
Length (cm) 1960 1900 1890 1870 1850 1830 885 875 530 
Demand 12 12 2 4 4 2 4 4 16 
Length (cm) 460         
Demand 8         
16_6000          
Length (cm) 1271 1151 716 631 571     
Demand 8 4 4 4 4     
17_6000          
Length (cm) 1940 1780 1580 1320 1220 950 910 870 860 
Demand 2 4 4 4 12 6 10 4 6 
Length (cm) 850 735 710 690 620 550 230 210  
Demand 4 8 2 2 8 4 2 2  
18_6000          
Length (cm) 2090 1810 1780 1770 1750 1740 1680 1670 1170 
Demand 4 2 2 2 6 4 2 4 2 
Length (cm) 1080 1040 890 860 820 790 630 570  
Demand 1 1 2 2 3 1 2 4  
19_6000          
Length (cm) 1234 1040 830 800 780 760 694 620 514 
Demand 8 4 2 4 4 4 2 14 18 
Length (cm) 494         
Demand 4         
       Continued on next page
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20_6000          
Length (cm) 1220 1040 830 800 780 760 680 620 500 
Demand 8 4 2 4 4 4 2 14 18 
Length (cm) 480         
Demand 4         
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