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Abstract: An original mathematical model describing the photo fermentation process is proposed. The 
model represents the first attempt to describe the photo fermentative hydrogen production and 
polyhydroxybutyrate accumulation, simultaneously. The mathematical model is derived from mass 
balance principles and consists of a system of ordinary differential equations describing the biomass 
growth, the nitrogen and the substrate degradation, the hydrogen and other catabolites production, and 
the polyhydroxybutyrate accumulation in photo fermentation systems. Moreover, the model takes into 
account important inhibiting phenomena, such as the self-shading and the substrate inhibition, which 
can occur during the evolution of the process. The calibration was performed using a real experimental 
data set and it was supported by the results of a sensitivity analysis study. The results showed that the 
most sensitive parameters for both hydrogen and PHB production were the hydrogen yield on substrate, 
the catabolites yield on substrate, and the biomass yield. Successively, a different experimental data 
set was used to validate the model. Performance indicators showed that the model could efficiently be 
used to simulate the photo fermentative hydrogen and polyhydroxybutyrate production by 
Rhodopseudomonas palustris. For instance, the index of agreement of 0.95 was observed for the 
validated hydrogen production trend. Moreover, the model well predicted the maximum PHB 
accumulation in bacterial cells. Indeed, the predicted and observed accumulated PHB were 4.5 and 4.8%, 
respectively. Further numerical simulations demonstrated the model consistency in describing process 
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inhibiting phenomena. Numerical simulations showed that the acetate and nitrogen inhibition 
phenomena take place when concentrations are higher than 12.44 g L-1 and lower than 4.76 mg L-1, 
respectively. Finally, the potential long term hydrogen production from accumulated 
polyhydroxybutyrate in bacterial cells was studied via a fast-slow analysis technique. 

Keywords: photo fermentation; ordinary differential equations; sensitivity analysis; calibration and 
validation; fast-slow analysis 
 

1. Introduction 

During the last few years, third generation biorefinery processes, converting waste materials into 
multiple valuable products, have attracted increasing attention. In particular, industries and researches 
are focusing on integrated biological systems for the production of bioenergy and biopolymers. This 
new waste management approach is environmental-friendly and makes two contributions toward 
reducing greenhouse gas (GHG) emissions and replacing fossil fuels [1]. 

Among different processes and configurations, photo fermentation (PF) represents one of the 
most suitable alternatives. Indeed, Purple Non Sulfur Bacteria (PNSB) are able to contextually produce 
hydrogen (H2) and polyhydroxybutyrate (PHB) in a single stage process, therefore reducing production 
costs and management issues [2]. In addition, PF provides almost complete degradation of organic 
compounds from the treated wastewater [3]. However, PF is affected by many process conditions (e.g., 
type and concentration of carbon and nitrogen source [4–6], light availability [4,6,7], temperature [6,7], 
pH [6,7], presence of inhibiting substances [5,6]) which need to be considered for the effective 
optimization of hydrogen and PHB production. Moreover, more studies are still required to completely 
clarify the process mechanism and its efficiency under different environmental conditions. 

In this context, the use of mathematical models is helpful to effectively control the PF process. 
Mathematical models can simulate the influence of different environmental and operational conditions 
and limit the load of the experimental tests, which are costly and time demanding [8,9]. In addition, 
the application of mathematical modeling to complex biological processes, such as fermentation [10], 
microbial electrolysis [11], anaerobic digestion, and bio photolysis [12], allows to identify and explore 
the most relevant dynamical interactions of bacteria competing for substrates and space in the same 
reaction environment. These aspects are crucial for the correct management and/or design of 
bioreactors aimed at producing value-added chemicals or biogas [13,14]. 

Due to the multiple effects of the process conditions on biological kinetics, PF is a complex 
process to model [15]. Over the past few years, different methodologies have been adopted for the 
mathematical definition of the PF process. An extensive review of such models is provided in 
Policastro et al. [16]. The most frequently applied equations are based on the Monod’s equation and 
its modification [17]. The Luedeking-Piret model, the Gompertz equation and their modifications have 
been adopted as well [18,19]. Recently, nitrogen (N) and phosphorous (P) recovery from domestic 
wastewater by PNSB has been described using a novel ADM1-based mechanistic model [20]. 

Despite the increasing attention of the scientific community on valuable biological routes to 
accumulate PHB and produce biohydrogen, there is a lack of mathematical models describing the 
concomitant hydrogen and PHB generation achievable in PF processes. Therefore, the aim of this work 
is the development of a novel and complete mathematical model able to describe the photofermentative 
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bioconversion of organic compounds in both hydrogen and PHB, by PNSB. In particular, the model 
has been specialized for organic acids conversion by Rhodopseudomonas palustris, operating in batch 
conditions, and under continuous illumination conditions. 

The model definition and its study were carried out based on the following steps: 
1) based on biological evidence revealing PF mechanisms in natural and industrial environments, 

a system of ordinary differential equations able to reproduce the PF process has been defined; 
2) a local sensitivity analysis for selected parameters has been performed as a supporting tool 

for the calibration of the mathematical model; 
3) the model has been calibrated and validated using different lab scale experimental data sets; 
4) the model predictions have been further investigated quantitatively to test the model 

consistency in describing relevant mechanisms; 
5) finally, a fast-slow analysis technique has been carried out to investigate the additional H2 

production from accumulated PHB in bacterial cells. 

2. Photo fermentation mechanisms and process conditions 

The model has been defined based on the current knowledge of the PF biological mechanisms. 
PNSB are able to concomitantly produce hydrogen and PHB when photoheterotrophic growth occurs. 
Under this condition, PNSB get electrons and carbon from reduced organic compounds, such as acetate 
and other organic acids, alcohols, and carbohydrates. The substrate is converted to hydrogen, other 
catabolites, new microorganisms and PHB intercellular granules [21]. The pathway toward hydrogen 
production is supported by the ATP-dependent nitrogenase enzyme. The required ATP is synthetized 
by using light as energy source. Therefore, light availability and intensity notably influence the PF 
process. Previous studies have showed that high light intensities result in the partial inhibition of the 
hydrogen production ability [22]. In addition, excessively high biomass concentrations avoid the 
penetration of light into the cultivation system due to the self-shading phenomenon [23]. Consequently, 
the decrease in light availability inhibits the ATP formation and reduces the hydrogen yield. The ATP 
formation can be inhibited by excessively alkaline or acidic pH [24]. The incubation temperature is another 
relevant factor, which influences bacteria growth, hydrogen production and PHB accumulation [21]. 

Substrate characteristics and concentration also has a major effect on PNSB activities. In 
particular, high substrate concentrations lead to the accumulation of acids in the reaction environment, 
inhibiting the process [25]. Moreover, the presence of high ammonia concentrations or toxic 
compounds (e.g., phenols) in the culture system decreases the nitrogenase activity leading to the partial 
or complete inhibition of PNSB [26]. The availability of nutrients is of primary concerns as well. In 
particular, nitrogen is required for cell synthesis. It has been demonstrated that, nitrogen availability 
can regulate growth phases of the PNSB specie Rhodopseumonas palustris [27]. In presence of both 
carbon and nitrogen sources, bacteria can perform high growth rates (exponential phase). Subsequently, 
the stationary phase occurs without significant nitrogen depletion, and the biomass concentration is 
maintained by the presence and consumption of the carbon sources [27]. Experimental evidence 
demonstrates that hydrogen production takes place in all growth phases. However, Rhodopseudomonas 
palustris use more energy for anabolic reactions during the exponential phase, while shift their 
metabolism to catabolic reactions during the stationary phase [27,28]. 

Concerning mechanisms leading to the contextual hydrogen and PHB production, usually PHB 
synthesis occurs along with hydrogen production, when microorganisms are forced to live under stress 
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conditions, such as nutrient scarcity or other nonoptimal environmental conditions [29]. In 
Rhodopseudomonas palustris and mixed PNSB cultures, it has been observed that the PHB synthesis 
prevented bacteria from experiencing the stress condition, and retained H2 production [30,31]. Moreover, 
PNSB use PHB as a reserve for their survival when the carbon substrate became scarce. Therefore, the 
PHB depletion is usually observed when organic substrates reach low concentration levels [31]. 

3. Model assumptions and description 

The PF process is governed by many biotic and abiotic conditions and the metabolic mechanisms 
occurring in photobioreactors are not completely elucidated. The definition of a mechanistic 
mathematical model able to adequately reproduce real PF data requires to adopt simplifications to 
avoid the over-parametrization of the problem. Several authors have developed different mathematical 
models, considering the effect of a limited number of factors [16]. The selection of these factors was 
usually based on the specific application. For instance, the effect of light intensity has been included 
by Gadhamshetty at al. [19], in the logistic equation and the Luedeking-Piret model. Moreover, Sevinc 
et al. [18] considered the light intensity effect, modifying the previously introduced first order kinetic. 
The self-shading phenomenon and the substrate inhibition have been taken into account in several 
previous models, using various kinetic equations [19,32]. However, other authors considered the effect 
of pH and temperature in Monod type kinetics [15]. In addition, Puyol et al. [20] considered the 
ammonia inhibition phenomenon in a mechanistic model describing the nutrient removal process from 
wastewater by PNSB. 

In the present work, a mathematical model able to describe hydrogen and PHB production by 
Rhodopseudomonas palustris at a lab scale is presented. The model is formulated for a stirred tank 
reactor fed in batch mode to reproduce the most common experimental set-up of PF literature. The 
concentration of this PNSB species has been related to the contextual production of H2 and PHB by 
using a classical Monod-Michaelis-Menten scheme regulated by substrate availability. The general 
ODEs framework adopted for the evolution of a generical substrate (𝑆), microbial species (𝑋), and 
product (𝑃) over time is written as: 

 ௗௌௗ௧ = −𝜈௠௔௫ ௌ௄ೄାௌ  𝑋, (1) 

 ௗ௑ௗ௧ = 𝑌 𝜈௠௔௫ ௌ௄ೄାௌ  𝑋, (2) 

 ௗ௉ௗ௧ = (1 − 𝑌)  𝜈௠௔௫ ௌ௄ೄାௌ  𝑋, (3) 

where 𝜈௠௔௫  is the degradation rate of the substrate 𝑆 , 𝐾ௌ  is the semi saturation constant, and 𝑌 
represents the yield of the biomass on the substrate. 

The model included the most relevant factors influencing the biological process during PF batch 
tests, such as the self-shading and the substrate inhibition phenomenon. The ammonia inhibition and 
the presence of toxic compounds influencing Rhodopseudomonas palustris metabolism have been 
neglected. Due to the operating conditions usually adopted for PF indoor batch tests, a constant pH, 
temperature, and light intensity level have been considered. Consequently, the effects of these factors 
on PF performance have been omitted. To allow the model calibration and the chemical oxygen 
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demand (COD) balance closure, the variable “catabolites” has been added to the model. This variable 
accounts for all the residual catabolites which were not detected by experimental analysis. The 
Rhodopseudomonas palustris growth has been described by using an original inhibition-like function 
able to regulate the biomass yield when the nitrogen source is relatively low. The model takes into 
account the concomitant PHB accumulation and hydrogen production due to microbial activity. Under 
substrate starvation, the model is able to account for the typical PHB depletion occurring in PF 
experiments. Indeed, the consumed PHB can be used for biomass maintenance and to produce an 
additional fraction of hydrogen and other catabolites. 

4. Model equations and numerical integration 

The mathematical model consists of a system of 6 ordinary differential equations (ODEs). The 
equations describe the biomass growth, the substrates consumption, the PHB accumulation, the 
hydrogen production, the production of other catabolites, and the nitrogen depletion connected to the 
biomass growth. Nonlinear Monod-like kinetic functions have been introduced, and a first order kinetic 
has been used for biomass decay. The biomass growth and the substrate and nitrogen depletion are 
described by Eqs (4)–(6): 

 ௗ௑ௗ௧ = 𝑌 𝐼ே (∑ 𝑓௜ଷ௜ୀଵ + 𝑓ସ 𝐼௉) 𝑋 𝐼ௌ௖௢ௗ 𝐼௅ − 𝐾ௗ 𝑋, (4) 

 ௗேௗ௧ = −𝑌 𝐼ே (∑ 𝑓௜ଷ௜ୀଵ + 𝑓ସ 𝐼௉) 𝑋 𝐼ௌ௖௢ௗ 𝐼௅ 𝑁௕௔௖, (5) 

 ௗௌ೔ௗ௧ = −𝑓௜ 𝑋 𝐼𝑠௖௢ௗ 𝐼௅, (6) 

where 𝑋 , 𝑁 , and 𝑆௜, 𝑖 = 1, 2, 3,  are the microbial biomass, the nitrogen, and the substrates 
concentration, respectively. 𝑌 denotes the biomass yield and 𝐼 are limiting/inhibition functions. 𝑓௜ 
are the Monod type kinetics, where 𝑖 = 1, 2, 3 represent 3 different organic substrates for PNSB. 𝑓ସ 
is the Monod-like function for PHB concentration. Finally, 𝐾ௗ is the biomass decay coefficient, and 𝑁௕௔௖  is the nitrogen content of bacteria. Eqs (4)–(6) describe the PHB evolution, the hydrogen 
production, and catabolites accumulation over time as: 

 ௗ௉ு஻ௗ௧ = −𝑓ସ 𝑋 𝐼௉ 𝐼ௌ௖௢ௗ 𝐼௅ + (1 − 𝑌 𝐼ே) ൫∑ ൫1 − 𝐹௜ − 𝐹௖௔௧೔൯ 𝑓௜ଷଵ + ൫1 − 𝐹௣൯ 𝑓ସ 𝐼௉൯ 𝑋 𝐼ௌ௖௢ௗ 𝐼௅, (7) 

 ௗுమௗ௧ = (1 − 𝑌 𝐼ே) ൫∑ 𝐹௜ 𝑓௜ଷଵ + 𝐹௣ 𝑓ସ 𝐼௉൯ 𝑋 𝐼ௌ௖௢ௗ 𝐼௅, (8) 

 ௗ஼௔௧ௗ௧ = (1 − 𝑌 𝐼ே) ൫∑ 𝐹௖௔௧೔ 𝑓௜ଷଵ + ൫1 − 𝐹௣൯ 𝑓ସ 𝐼௉൯ 𝑋 𝐼ௌ௖௢ௗ 𝐼௅, (9) 

where 𝐹௜ denotes the hydrogen yield on the different substrates, 𝐹௖௔௧೔ denotes the hydrogen yield on 

catabolites, and 𝐹௣ represents the hydrogen yield on PHB. Note that Eq (7) is defined by two different 
terms: the first describes the PHB consumption, and the second one accounts for the PHB accumulation 
in PNSB cells. The Monod functions 𝑓௜, 𝑖 = 1, 2, 3, and 𝑓ସ have been expressed as: 
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 𝑓௜ = 𝜈௜೘ೌೣ  ௌ೔௄ೄ೔ାௌ೔ , 𝑖 = 1, 2, 3, (10) 

 𝑓ସ = 𝜈௉೘ೌೣ  ௉భ௄ುభା௉భ, (11) 

where 𝜈௜೘ೌೣ and 𝜈௉೘ೌೣ are the substrates and PHB consumption rates, respectively. 𝐾ௌ೔, 𝑖 = 1, 2, 3, 

and 𝐾௉భ are the half saturation constants for substrates and PHB, respectively. 
As reported in the ADM1 (Batstone et al., 2022), non-competitive inhibition functions have been 

applied for inhibitory phenomena. Specifically, 𝐼ௌ௖௢ௗ and 𝐼௅ are functions which take into account 
the excess of substrates, and the self-shading phenomenon, respectively. They are expressed as: 

 𝐼ௌ௖௢ௗ = ௄ೄ೎೚೏௄ೄ೎೚೏ା∑ ௌ೔యభ , (12) 

 𝐼௅ = ௄ಽ௑ା௄ಽ, (13) 

where 𝐾ௌ௖௢ௗ and 𝐾௅ are the COD and the light inhibition constants. 𝐼௉ is the PHB consumption function occurring under substrate starvation, which accounts for the 
PHB concentration decrease in PNSB cells occurring when organic substrates are in low concentrations. 
It reads as: 

 𝐼௉ = ௄ು௄ುା∑ ௌ೔యభ . (14) 𝐼ே is the nitrogen inhibition function, allowing for the switch between the exponential growth phase 
and the stationary phase. Differently from the other inhibition functions, a secondary substrate inhibition 
function has been used as reported in Eq (15): 

 𝐼ே = ே௄ಿାே, (15) 

where 𝐾ேis the nitrogen inhibition constant. 
Simulations were carried out using Matlab (MATLAB R2020b, The MathWorks Inc., Natick, MA). 

The ODEs system was solved by ODE15s tool. The model has been verified to allow for the COD 
balance closure. Therefore, the amounts of substrates, biomass, hydrogen, PHB, and other catabolites 
have been properly reported in mgCOD L-1. Nitrogen unit has been expressed as mgN L-1. 

All the model outputs have been finally converted in standard units consistently with experimental 
data. Unit conversions have been calculated for substrate, biomass, hydrogen, and PHB, using theoretical 
COD values (mgCOD mg-1), estimated using Eq (16): 

 𝐶௡𝐻௔𝑂௕𝑁௖ + (ଶ௡ା଴.ହ௔ିଵ.ହ௖ି௕)ଶ 𝑂ଶ → 𝑛𝐶𝑂ଶ +  𝑐𝑁𝐻ଷ +  ௔ିଷ௖ଶ 𝐻ଶ𝑂. (16) 

The model output of biomass represents the active biomass. Active biomass has been converted to 
total suspended solid (TSS) content, gTSS L-1, using the Rhodopseudomonas palustris chemical 
composition CH1.8O0.38N0.18 reported in [34]. The total biomass has been calculated accounting for the 
PHB concentration incorporated in the microbial biomass. The PHB theoretical COD value has been 
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calculated using its monomeric formula C4H6O2. The PHB output has been successively expressed as 
a percentage of the total biomass. Hydrogen production has been expressed in terms of volume (mL L-1) 
under 1 atm and 25 °C. 

5. Calibration and sensitivity analysis 

The model has been calibrated using experimental data published by Chen et al. [28]. The 
experiment considered for the model calibration has been conducted using acetate as carbon source 
and glutamate as nitrogen source. Lab-scale serum bottles (200 mL total volume) were fed with 100 
mL of culture medium and inoculated with Rhodopseudomonas palustris WP3-5. Reactors were 
flushed with argon gas and then incubated at 32 °C, under continuous illumination (6000 lux). Biomass 
growth, acetic acid concentration, hydrogen production, PHB content, and soluble COD were 
periodically analysed. 

Based on the selected data set, the initial conditions of the modelled variables were fixed at: 𝑋଴ = 261 mgCOD L-1; 𝑆ଵ,଴ = 2703.79 mgCOD L-1; 𝑆ଶ,଴ = 0; 𝑆ଷ,଴ = 0; 𝑁଴ = 4.672 mgN L-1; 𝑃𝐻𝐵଴ = 3.74 mgCOD L-1; 𝐻ଶ,଴ = 0; 𝐶𝑎𝑡଴ = 0. 
Concerning the model parameters, Table 1 reports all the adopted coefficients in this study. Nbac 

was calculated as the percentage of nitrogen over biomass from the experimental data used for the 
calibration. Based on PF modeling literature, the parameters whose value varied in a broad range or 
were completely absent in other studies were calibrated using a trial-and-error method to fit 
experimental data. In detail, the model was run several times by modifying each value, until the model 
properly reproduced experimental data. The selected parameters were calibrated individually. Once 
the first parameter was calibrated, another parameter was allowed to vary. The algorithm ended when 
a reasonable fitness with experimental data was reached [35]. This method is highly recommended for 
the calibration of mathematical models with parameters varying in a wide range [36]. The order of 
parameters for the calibration procedure was selected based on a Local Sensitivity Analysis (LSA) 
study. In detail, parameters with higher sensitivity indexes where calibrated first. LSA is able to 
investigate the effect of a single parameter variation on a specific model output [37]. The influence of 
a varying parameter is studied by computing the output variable (named quantity of interest) first-order 
partial derivative over time with respect to the considered parameter. For each parameter, the maximum 
or the minimum value of the obtained partial derivatives was used as Sensitivity Index (SI), depending 
on which one is higher in absolute terms [38]. The sensitivity Index was estimated as follows: 

 𝑊௜,௝(𝑡, 𝐶, 𝑢) = ఋ஼೔(௧,஼,௨)ఋ௨ೕ , (17) 

 𝑆𝐼௜,௝ = ൞ max௧ఢሾ଴,ఛሿ 𝑊௜,௝(𝑡, 𝐶, 𝑢)   𝑖𝑓   ฬ max௧ఢሾ଴,ఛሿ𝑊௜,௝ฬ ≥ ฬ min௧ఢሾ଴,ఛሿ𝑊௜,௝ฬmin௧ఢሾ଴,ఛሿ 𝑊௜,௝(𝑡, 𝐶, 𝑢)   𝑖𝑓   ฬ max௧ఢሾ଴,ఛሿ𝑊௜,௝ฬ < ฬ min௧ఢሾ଴,ఛሿ𝑊௜,௝ฬ, (18) 
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where 𝑆𝐼௜,௝ is the 𝑗௧௛ parameter sensitivity with respect to the 𝑖௧௛ output state variable at time 𝑡 

and 𝑊௜,௝ is the value of the partial derivative of the 𝑖௧௛ output state variable with respect to the 𝑗௧௛ 

parameter at the instant time 𝑡. 𝐶௜ is the 𝑖௧௛ chosen output state variable concentration, 𝐶 is the 

vector of the state variables concentration, 𝑢௝  is the 𝑗௧௛  investigated parameter value, 𝑢  is the 

vector of the model parameters and 𝜏 is the final instant time. 
Hydrogen production and PHB accumulation were set as model output for Eq (17), and the 

analyzed parameters were: 𝑌, 𝜈௠௔௫௣, 𝐾ௌ, 𝐾௉ଵ, 𝐾ே, 𝐹ଵ, 𝐹௣, 𝐹௖௔௧భ and 𝐾௉. The sensitivity analysis 
was performed by setting the previously mentioned initial condition. The initial values of the 
investigated parameters were set by varying them arbitrarily to fit experimental data. The Matlab 
function sens_sys [39] coupled with the ODE15s solver were used to perform the numerical analysis. 
To verify the accuracy of the model calibration, the following performance indicators were determined: 
the mean absolute error (MAE), its normalized form (NMAE), the modelling efficiency (ME), the 
index of agreement (IoA) and the fractional mean bias (FB). Such indexes are reported as: 

 𝑀𝐴𝐸 = ∑ |௉೔ିை೔|೔ಿసభ ே , (19) 

 𝑁𝑀𝐴𝐸 = ெ஺ாைത , (20) 

 𝑀𝐸 = 1 − ∑ (௉೔ିை೔)మ ೔ಿసభ∑ (௉೔ିைത)మ ೔ಿసభ , (21)

 𝐼𝑜𝐴 = 1 − ∑ (௉೔ିை೔)మ ೔ಿసభ∑ (| ௉೔ିைത|ା|ை೔ିைത|)మ ೔ಿసభ , (22) 

 𝐹𝐵 = ௉തିைതభమ(௉തାைത), (23) 

where 𝑃௜ and 𝑂௜ denote the 𝑖௧௛ predicted value and the 𝑖௧௛ observed value, respectively. N is the 

number of observed values, 𝑃 and 𝑂 indicates the predicted and observed mean values [13]. 

The aim of the PF process is to maximize the production of hydrogen from a given substrate with 
a stable biological process. Moreover, PHB accumulation represent a further advantage, allowing for 
the integrated production of bioenergy and biopolymers [40]. Therefore, hydrogen production and 
PHB accumulation were chosen as model outputs to perform the sensitivity analysis. The results of the 
sensitivity indexes for each investigated parameter are shown in Figure 1 in log scale. 
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Figure 1. Sensitivity index in log scale of calibrated parameters using as model outputs: 
(a) hydrogen production and (b) PHB accumulation. 

Results showed that the most sensitive parameters for both hydrogen and PHB outputs were the 
hydrogen yield on substrate (𝐹ଵ), the catabolites yield on substrate (𝐹௖௔௧భ) and the biomass yield (𝑌). 
Such results are in accordance with the sensitivity analysis performed by Gadhamshetty et al. [19], 
who developed a kinetic model describing cell growth, substrate consumption, and hydrogen evolution 
using Luedeking-Piret and logistic equations. In the mentioned work, the most sensitive parameters 
were found to be the yield coefficient of product formation and the maximum cell concentration. Such 
analogies remark the crucial role of biomass growth and product yields on the products formation 
prediction. The main difference between hydrogen and PHB outputs was the role of the hydrogen yield 
on PHB (𝐹௣). As expected, hydrogen production was sensitive to this parameter. Conversely, as PHB 
is not produced from the consumed PHB, 𝐹௣ does not affect PHB accumulation. 

The SI values for all model outputs (𝑋, 𝑃𝐻𝐵, 𝐻ଶ, and 𝐶𝑎𝑡) of kinetic parameters (𝑌, 𝜈௉೘ೌೣ, 𝐾ௌభ, 𝐾ே, and 𝐾௉భ) and model parameters (𝐹ଵ, 𝐹௣, 𝐹௖௔௧భ, and 𝐾௉) are reported in Figure 2. Regarding 
kinetic parameters, all model outputs were more sensitive to 𝑌  compared to other parameters. 
However, the most relevant effect of 𝑌 was observed on the 𝑋 variable. 𝐾ே was found to affect 
hydrogen and catabolites production, as well. However, the effect of 𝐾ே  on such outputs is less 
marked compared to the effect of 𝑌. Concerning SI of model parameters (Figure 2(b)), hydrogen and 
catabolites production were sensitive to 𝐹ଵ and 𝐹௖௔௧భ, respectively. In particular, 𝐹ଵ and 𝐹௖௔௧భ SI 
were about three times higher compared to 𝑌  and, therefore, the most sensitive. Aside from the 
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previously mentioned study by Gadhamshetty et al. [19], the present work represents the first 
application of this procedure to a kinetic model describing the PF process. Therefore, a further 
comparison with literature is not possible. 

 

Figure 2. Sensitivity index referred to 𝑋, 𝑃𝐻𝐵, 𝐻ଶ, and 𝐶𝑎𝑡. (a) kinetic parameters, (b) 
model parameters. 

Table 1 reports the values of all model parameters. Where possible, a literature value or range has 
been reported. 

Table 1. Model parameters. 

Symbol Units Parameter name Estimation Value Literature 
value/range 

Ref 

νmax1 d-1 Substrate consumption rate Literature 6.12 6.12 [17] 
νmaxp d-1 PHB consumption rate Calibrated 7 - - 
Ks mgCOD L-1 Substrate half saturation constant Calibrated 18,000 10,000–19,000 [17] 
Kp1 mgCOD L-1 PHB half saturation constant Calibrated 10,000 - - 
KN mgCOD L-1 Nitrogen inhibition constant Calibrated 0.9 - - 
Kd d-1 Biomass decay coefficient Literature 0.09 0.09 [20] 
Y mgCOD mgCOD-1 Biomass yield Calibrated 0.85 0.37–0.85 [15,41]
F1 mgCOD mgCOD-1 Hydrogen yield on substrate Calibrated 0.585 - - 
Fp mgCOD mgCOD-1 Hydrogen yield on PHB Calibrated 0.580 - - 
Fcat1 mgCOD mgCOD-1 Catabolites yield on substrate Calibrated 0.39 - - 
KL mgCOD L-1 Light inhibition constant Literature 17,000 17,000 [19] 
KScod mgCOD L-1 COD inhibition constant Literature 10,000 10,000 [42] 
KP mgCOD L-1 PHB consumption constant Calibrated 100 - - 
Nbac mgN mgTSS-1 Nitrogen content of bacteria Calculated 

from data 
0.01 - - 

Due to the lack of similar models in the literature, only 𝑌  and 𝐾ௌభ  can be compared with 
literature ranges. The 𝐾ௌభ  value of 18,000 mgCOD L-1 is in agreement with the literature range 
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reported by Obeid et al. [17]. The 𝑌  value of 0.85 is the maximum value of the literature range, 
varying between 0.37 and 0.85 (Table 1). Nevertheless, in the present model, 𝑌 was multiplied by the 𝐼ே  function, which lowered the biomass yield after nitrogen depletion. From experimental evidence, 
the first growth phase of Rhodopseudomonas palustris is characterized by a prevalence of anabolic 
reactions. After nitrogen depletion, biomass does not increase anymore. In this stationary phase, non-
growing Rhodopseudomonas palustris increases the products yields from the substrate by shifting from 
the glyoxylate shunt to the tricarboxylic acid cycle [43]. Consequently, the biomass growth represents 
a crucial aspect in modelling the PF conducted by Rhodopseudomonas palustris. Indeed, the 
accumulation of microorganisms during different growth phases should be linked to the production 
rates, related to the specific products of the biological process. Most of the previous reported models 
described the PF process by modelling the biomass growth, the substrate consumption and the 
hydrogen production as independent mechanisms [16]. To date, the only attempt to define a 
mathematical model able to link the growth of Rhodopseudomonas palustris and the related product 
spectrum is represented by Zhang et al. [27]. To account for diverse product rates related to different 
growth phases, these authors developed a mathematical model based on two separate modules. Each 
module described different growth phases (exponential growth phase and stationary phase) and they 
were combined using switch functions. 

In the present model, the introduction of the 𝐼ே function successfully allowed to describe the 
switch between the biomass growth phase and the stationary phase, linked to the product formation in 
both phases. Figure 3 and Table 2 report simulation results of the calibration and performance 
indicators, respectively. 

From Figure 2, it is clear that the model fits properly the experimental data in the different growth 
phases. In addition, Table 2 indicates that the NMAE and FB error indexes were lower than 5% for 𝑆 
and 𝐻ଶ. The same variables have ME and IoA value greater than 98%. This confirm that the model 
could efficiently fit the substrate consumption and hydrogen production. Concerning the variables 𝑋 
and 𝐶𝑎𝑡, ME and IoA indicators were high (> 85%). However, the NMAE and FB values were lower 
than 7%. The negative FB value for the variable 𝑋 indicates that the model underestimates biomass 
production. However, from Figure 3 it is possible to notice that the biomass concentration value at the 
end of the fermentation process was well predicted. Indicators also show that the model does not fit 
very well nitrogen consumption (𝑁 ). Low performance indicators are due to the great difference 
between the observed and predicted values at day 2. The result could be due to the indirect nitrogen 
measure of the observed value, which has been conducted analysing the glutamate concentration using 
a glutamate assay kit. Probably, the very high glutamate consumption in the medium during the first 
two days of fermentation did not correspond to the nitrogen assimilation by biomass. Indeed, 
experimental evidences report that Rhodopseudomonas palustris are able to store nitrogen from 
glutamate as an intracellular nitrogen source. Consequently, once the glutamate is depleted in the 
medium, bacteria continue to grow for a short period, using their nitrogen reserve [27]. 

From Figure 3(d), during the first phase of the process, the model underestimated the PHB 
production, as confirmed by performance indicators. Moreover, the predicted PHB consumption, 
usually detected at the late stage of photo fermentation process [3], was not evident from experimental 
data. It is worth mentioning that the PHB analytical determination is more difficult and less accurate 
compared to other observation in laboratory tests. Moreover, the PHB accumulation value are very 
low and were reported as a percentage of the dry weight. Consequently, the accuracy level of measures 
and the model fitting further decreased. Of course, this result underline that further research efforts on 
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the mechanisms leading to PHB accumulation in PNSB are still required. Nevertheless, the maximum 
PHB accumulation has been well predicted by the presented model (Figure 3). 

  

  

  

Figure 3. Calibration: Measured and simulated outputs. 
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Table 2. Calibration performance indicators. 

Variable NMAE ME IoA FB 
X 0.0641 0.857 0.993 -0.066 
S 0.0478 0.983 0.996 0.019 
PHB 0.212 0.189 0.771 -0.236 
H2 0.0469 0.991 0.997 -0.022 
Cat 0.0629 0.985 0.996 0.047 
N 0.417 0.789 0.949 0.239 

6. Validation of the model 

The model was validated using hydrogen and PHB experimental data reported by Toulopakis et 
al. [29]. From the mentioned study, a data set obtained using acetic acid as substrate and 
Rhodopseudomonas sp. as microorganism was selected. Based on experimental conditions, the initial 
conditions of the model were modified as follows: 𝑋଴ = 567 mgCOD L-1; 𝑆ଵ,଴ = 4248 mgCOD L-1; 𝑆ଶ,଴ = 0; 𝑆ଷ,଴ = 0; 𝑁଴ = 9.5 mgN L-1; 𝑃𝐻𝐵଴ = 25 mgCOD L-1; 𝐻ଶ,଴ = 0; 𝐶𝑎𝑡଴ = 0. 
Moreover, the total duration of experiments decreased from 12 to 8 days. 

To verify the accuracy of the model validation, the previously described performance indicators 
were determined according to Eqs (19)–(23). Specifically, the mean absolute error (MAE), its 
normalized form (NMAE), the modelling efficiency (ME), the index of agreement (IoA) and the 
fractional mean bias (FB) were determined for validation purposes. 

Figure 4 and Table 3 report simulation results of the validation procedure and validation 
performance indicators, respectively. 

  

Figure 4. Validation: Measured and simulated outputs. 
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Table 3. Validation performance indicators. 

Variable NMAE ME IoA FB 
PHB 0.201 -1.57 0.025 -0.090 
H2 0.269 0.867 0.957 0.237 

The results showed that the model can predict, with an acceptable fitting, the hydrogen production 
trend. However, the model slightly overestimates the cumulative production, as the predicted and 
observed values at the end of the fermentation process were 2737 and 2300 mL L-1, respectively. The 
model PHB trend was not in agreement with experimental data. As reported for the calibration results, 
PHB analytical determination is the most critical in terms of accuracy and PHB production is reported 
as percentage of the dry weight. However, even in this case, the model predicted very well the 
maximum PHB accumulation. At the end of the fermentation process, the predicted and observed PHB 
accumulations were 4.5 and 4.8%, respectively. All considered, such results confirm that the model 
can be used to predict hydrogen and PHB production. 

7. Additional numerical simulations 

As aforementioned, the PF process can be affected by inhibitions mechanisms. Among them, the 
substrates inhibition and the self-shading phenomenon represent the most significative. Therefore, a 
numerical study was conducted to test the effect of such mechanisms on the process. In detail, two 
numerical simulation sets were performed, with different initial concentrations of substrate (S = 2.488, 
S1/2 = 1.244, S2 = 4.976, S5 = 12.440, S10 = 24.880, S20 = 49.760, and S50 = 124.440 gCOD L-1) 
and different initial concentrations of nitrogen (N = 4.76, N1/2 = 2.38, N2 = 9.52, N5 = 23.8, N10 = 
47.6, N20 = 95.2, and N50 = 238 mg L-1). Figure 5 show the results of the simulation conducted with 
different substrates concentrations. 

S represent the substrate concentration of the experimental data used for the calibration. As it can 
be observed from results, a lower concentration (S1/2) determines the lowering of all products 
(hydrogen, catabolites and PHB). Slower biomass growth and nitrogen consumption can be observed 
as well. Conversely, the increase of the substrate concentration (S2 and S5) leads to higher values of 
all products. In particular, under the concentration S5, the substrate is not completely consumed at the 
end of the fermentation time of 12 days. Consequently, the consumption of PHB is not observed 
anymore. As previously remarked, this phenomenon only takes when organic substrates are present at 
low concentrations. The further increase of the substrate concentration (from S10 to S50) determines 
a lowering of hydrogen, PHB, and catabolites production, due to the substrate inhibition phenomenon. 
However, in terms of both hydrogen and PHB generation, the simulation with S10 concentration is 
still preferred compared to the initial value of S. Due to the high substrate concentration, the S20 
scenario leads to a higher PHB concentration with respect to the S condition. On the other hand, 
hydrogen and catabolites productions are lower. For S20 and S50, the substrate inhibition is evident 
even in terms of biomass generation and nitrogen consumption. According to numerical simulations, 
the substrate inhibition takes place when acetate concentration is higher than 12.440 gCOD L-1. Such 
value represents the best condition to maximize both hydrogen and PHB. 
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Figure 5. Numerical simulations of initial substrate concentration variation. 

In Figure 6 the second set of simulation is reported. In this case, simulations were performed by 
varying the initial nitrogen concentration in bioreactors. The condition indicated with N1/2 represents 
a nitrogen starvation condition. Indeed, due to the lower biomass concentration, the substrate uptake, 
the hydrogen, and catabolites productions are quite low. Conversely, PHB accumulation increases. The 
observed PHB accumulation is due to the lower substrate consumption, leading to a limited PHB 
depletion phenomenon observed. From N2 to N50, it is possible to observe a progressive inhibition of 
the whole process, due to the high biomass concentration and the occurrence of the self-shading 
phenomenon. Moreover, it is possible to observe that the maximum biomass concentration does not 
exceed the value of about 1200 mgTSS L-1. Such a value is comparable to results observed in 
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experimental studies [29,44]. According to the performed simulations, the best initial nitrogen 
concentration for hydrogen production is 4.76 mgN L-1. On the other hand, to increase the PHB 
accumulation, the lower value of 2.38 mgN L-1 is advisable. The self-shading phenomenon strongly 
affects the process when the initial nitrogen concentration is 4.76 mgN L-1, which correspond to the 
final biomass concentration of about 600 mgTSS L-1. 

 

  

  

Figure 6. Numerical simulations of initial nitrogen concentration variation. 
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8. Fast-slow analysis for hydrogen production 

The contextual PHB accumulation by PNSB opens an additional question related to the effective 
maximization of H2 production from the organic compound 𝑆ଵ. Indeed, the subsequent bioconversion 
of the accumulated PHB in H2 leads to a multi-timescale problem where the fast-variables quickly tend 
towards their steady-states which leads to the stationary phase of the accumulated biomass 𝑋 and the 
almost complete nutrient degradation for anabolic reactions. The dynamics of the remaining variables 
(e.g., the slow-variables) occur on a longer time-scale [45]. This is represented by the additional H2 
produced by PNSB from PHB indicating the multi-timescale behaviour. The standard methodology to 
reduce this system is to make steady-state assumptions on the fast variables and explore the dynamics 
in the long-time scale [46]. To highlight this biological behaviour in the current system, the complete 
system of Eqs (4)–(9) was considered. 

This was first simplified assuming that catabolites 𝐶𝑎𝑡 were not formed in ideal conditions, and 
bacteria can exclusively produce PHB and H2 from the organic substrate. As a consequence, 𝐹௖௔௧భ = 0, 𝐹௣ = 1, and Eq (9) leads to ௗ஼௔௧ௗ௧ = 0. Based on experimental evidence and two-timescale assumption, 

the biomass production was supposed to reach a steady condition 𝑋=𝑋෠ and Eq (4) was simplified in ௗ௑ௗ௧ = 0, with consequent ௗேௗ௧ = − 𝐾ௗ 𝑋෠, given by Eq (5). The system reduced to 

 ௗேௗ௧ = −𝐾𝑑𝑋෠, (24) 

 ௗௌభௗ௧ = −𝜈ଵ೘ೌೣ ௌభ௄ೄభାௌభ 𝑋,෡  (25) 

 ௗ௉ு஻ௗ௧ = −𝜈௉೘ೌೣ ௉ு஻௄ುಹಳା௉ு஻ ௄ು௄ುାௌభ 𝑋෠ + ቀ1 − 𝑌 ே௄ಿାேቁ (1 − 𝐹ଵ) 𝜈ଵ೘ೌೣ ൬ ௌభ௄ೄభାௌభ൰ 𝑋෠, (26) 

 ௗுమௗ௧ = ቀ1 − 𝑌 ே௄ಿାேቁ ൬𝐹ଵ 𝜈ଵ೘ೌೣ ௌభ௄ೄభାௌభ + 𝜈௉೘ೌೣ ௉ு஻௄ುಹಳା௉ு஻ ௄ು௄ುାௌభ൰ 𝑋෠. (27) 

If nitrogen N→0, as it is usually added in its stoichiometric amount for biomass accumulation 
(anabolic reactions), the system further reduces to 

 ௗௌభௗ௧ = −𝜈ଵ೘ೌೣ ௌభ௄ೄభାௌభ 𝑋෠, (28) 

 ௗ௉ு஻ௗ௧ = −𝜈௉೘ೌೣ ௉ு஻௄ುಹಳା௉ு஻ ௄ು௄ುାௌభ 𝑋෠ + (1 − 𝐹ଵ) 𝜈ଵ೘ೌೣ ൬ ௌభ௄ೄభାௌభ൰ 𝑋෠, (29) 

 ௗுమௗ௧ = ൬𝐹ଵ 𝜈ଵ೘ೌೣ ௌభ௄ೄభାௌభ + 𝜈௉೘ೌೣ ௉ு஻௄ುಹಳା௉ு஻ ௄ು௄ುାௌభ൰ 𝑋෠. (30) 

This system captures the dynamics of the full system on the long-time scale and can be treated as 
a dynamical system that depends on additional parameters such as the steady-state concentration, 𝑋෠ 
and other determining constants from the fast variables. By adding the latter equations, it is evident 

that ௗௌభௗ௧ + ௗ௉ு஻ௗ௧ + ௗுమௗ௧ = 0 , where 𝑆ଵ , 𝑃𝐻𝐵 , and 𝐻ଶ  are general positive functions for biological 
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meanings, as they represent the concentrations of these components. The system is further reduced in 
two equations by using 𝑆ଵ = −(𝑃𝐻𝐵 + 𝐻ଶ) + 𝑐, where 𝑐 is a positive constant 𝑐 > 𝑃𝐻𝐵 + 𝐻ଶ. The 
reduced system was further studied numerically by using the fermentation results of the complete 
model after 9 d (Figure 3) as initial condition for biomass and PHB concentration. Figure 7 shows 
simulation results in terms of H2 production and PHB degradation over time. 

   

Figure 7. Hydrogen and PHB profiles in the reduced model. 

The benefit of the fast-slow analysis is the tractability of the reduced system. It is well known that 
dynamical systems are substantially more well-behaved in two dimensions [46], hence the numerical 
simulations are in some sense generic representations of the dynamics of the full system. From 
numerical results, the complete PHB is reached after 10 days of simulation, which is technically not 
feasible as the estimated increase of hydrogen production is around 1%. Moreover, the accumulated 
PHB can be further extracted to produce bioplastics from microbial cells, leading to an additional 
value-added route for the exhausted photo fermentative biomass. 

9. Conclusions 

A novel mathematical model has been calibrated and validated on experimental data reporting 
hydrogen and PHB production by Rhodopseudomonas palustis. Results demonstrated that the 
proposed system of ODEs, accounting for the main process mechanisms and limiting/inhibition factors, 
is suitable to effectively describe the process. Among model parameters, the yields represent the most 
sensitive ones and have to be carefully calibrated. From numerical simulations, it emerged that the 
model is consistent to simulate the substrate and self-shading inhibition phenomena. Other 
environmental effects can be simply added for future applications, by including other inhibition 
functions to the current structure of the model. The present model describes the process from a 
biochemical point of view, but it can be modified to reproduce continuous reactors by adding 
information related to influent/effluent volumes and components concentrations for designing 
purposes. It allows for the prediction of the maximum hydrogen and/or PHB production without the 
need of costly and time-consuming experiments. Further perspectives include the modification of the 
model to extend it to more complex case studies, such as the PF of waste substrates by mixed 
phototrophic cultures. 
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