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Abstract: Convolutional Neural Networks (CNNs) have achieved remarkable results in the 

computer vision field. However, the newly proposed network architecture has deeper network layers 

and more parameters, which is more prone to overfitting, resulting in reduced recognition accuracy 

of the CNNs. To improve the recognition accuracy of the model of image recognition used in CNNs 

and overcome the problem of overfitting, this paper proposes an improved data augmentation 

approach based on mosaic algorithm, named Dynamic Mosaic algorithm, to solve the problem of the 

information waste caused by the gray background in mosaic images. This algorithm improves the 

original mosaic algorithm by adding a dynamic adjustment step that reduces the proportion of gray 

background in the mosaic image by dynamically increasing the number of spliced images. Moreover, 

to relieve the problem of network overfitting, also a Multi-Type Data Augmentation (MTDA) 

strategy, based on the Dynamic Mosaic algorithm, is introduced. The strategy divides the training 

samples into four parts, and each part uses different data augmentation operations to improve the 

information variance between the training samples, thereby preventing the network from overfitting. 

To evaluate the effectiveness of the Dynamic Mosaic algorithm and the MTDA strategy, we 

conducted a series of experiments on the Pascal VOC dataset and compared it with other 

state-of-the-art algorithms. The experimental results show that the Dynamic Mosaic algorithm and 

MTDA strategy can effectively improve the recognition accuracy of the model, and the recognition 

accuracy is better than other advanced algorithms. 
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1. Introduction  

Deep learning is a data-driven technique whose main purpose is to learn patterns and 

expressions in training samples, and is widely used in the field of computer vision [1–3], and 

trajectory outlier detection [4,5]. A recent study [6] has shown that the performance of deep learning 

models is logarithmically related to the number of training samples, which means that the larger the 

number of training samples, the better the generalization of the resulting model, and the better the 

performance. When the training samples are relatively small, overfitting is easy to occur in the actual 

application process [7,8]. Figure 1 depicts the visualization results of model error and epoch for ideal 

and overfitting cases. Among them, Figure 1(a) is the training process in an ideal situation. As the 

experiment proceeds, the error rates of both the train set and the test set are decreasing. Figure 1(b) 

shows the training process in the case of overfitting. The error rate of the test set first decreases and 

then increases with the iteration of the epoch. This is because the network memorizes the detailed 

features of the training samples, but these detailed features cannot be generalized [9,10]. Diversified 

training samples can prevent network overfitting [11,12], but the collection and production of 

training samples require a high cost, so low-cost and simple data augmentation [13,14] methods have 

become a more common choice for preventing network overfitting. In addition, data augmentation 

has the effect of reducing the sensitivity of the model to images and avoiding the unbalanced 

distribution of positive and negative samples [15], which is an effective method to improve the 

overall performance of the model. 

 

(a)                                    (b) 

Figure 1. Comparison of the training process in the ideal and overfitting cases. (a) The 

ideal training process. (b) The training process of overfitting. The blue curve represents 

the error rate of the test set has a clear inflection point, which means that the model 

performs poorly on the test set relative to the training set. 

Traditional data augmentation methods use random left-right flipping and cropping for training 

samples [16], which increases the diversity of training samples, and changes the brightness, 

saturation and contrast of images through color jitter. With the development of CNN, new network 

architectures have been proposed, such as AlexNet [17], VGG-16 [18], ResNet [19], DenseNet [20], 

etc. These architectures have deeper network layers, more complex structures and more parameters, 

so the risk of overfitting is also increasing [21]. The before-mentioned data augmentation techniques 

have been unable to effectively suppress the occurrence of overfitting. 

Recently, researchers have done a lot of work in the field of mixed sample data augmentation [22], 
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among which the mosaic [23] algorithm proposed by Alexey et al. has achieved remarkable results. 

The mosaic algorithm mixes four training images and corresponding labels, so the generated mosaic 

images contain four different contexts, which not only allows the model to detect objects outside the 

normal context, but also helps to prevent overfitting of the network and improve the recognition 

accuracy of the model. In addition, since four images are stitched into one image, each layer can 

process the data of four images during the batch normalization calculates activation statistics [24] 

operation. This means that the mini-batch does not need to be very large to achieve good results, 

reducing the performance requirements for training equipment. However, the mosaic algorithm still 

has some shortcomings, the most typical shortcomings include: 1) There may be a large area of gray 

background not overwritten by the spliced images in the generated mosaic images, which will reduce 

the amount of information contained in the mosaic images. 2) Only mosaic images are used to 

participate in the training of the model, resulting in a single view of the training samples, and the 

information differences of the training samples are limited, which is not conducive to the 

generalization of the model. 

Through in-depth research, we first aim to solve the problem of information waste caused by the 

large gray background in mosaic images. As such, this paper proposes a Dynamic Mosaic data 

augmentation algorithm. The Dynamic Mosaic algorithm adds a dynamic adjustment step based on 

the original mosaic [23] algorithm. By dynamically increasing the number of spliced images, it 

reduces the proportion of worthless areas in the mosaic image, and increases the complexity of the 

image content. Second, in order to solve the problem of the network overfitting and a single view of 

training samples, this paper also proposes a Multi-Type Data Augmentation (MTDA) strategy based 

on the Dynamic Mosaic algorithm. The MTDA strategy randomly divides the training samples into 

four groups, and each group of training samples is processed with different data augmentation 

techniques, thereby improving the information variance between the training samples. 

In short, the main contributions of this paper include the following aspects: 

• An improved mosaic data augmentation algorithm is proposed. The Dynamic Mosaic 

algorithm increases the dynamic adjustment step on the basis of the original mosaic algorithm, 

reduces the proportion of the worthless area in the mosaic image, and improves the quality of the 

generated mosaic image. 

• A data augmentation strategy is introduced. The MTDA strategy divides the training sample 

into multiple parts, and each part uses different data augmentation operations to improve the 

information difference between the input images and solve the problem of overfitting caused by a 

single view of the training sample. 

The rest of this paper is organized as follows: In the next section, we give a brief review of 

related work about data augmentation methods. In Section 3, we describe the method proposed in 

this paper in detail. In Section 4, we report the experimental results of the Dynamic Mosaic 

algorithm and the Multi-Type Data Augmentation strategy on the Pascal VOC dataset. Finally, we 

conclude the paper in Section 5. 
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2. Related works 

Data augmentation is an effective regularization [25] method, which can increase the number 

and diversity of training samples to improve the generalization ability of the model and prevent 

network overfitting. This paper divides related work into four categories: traditional data 

augmentation methods, data disrupting methods, unsupervised data augmentation methods and 

mixed sample data augmentation methods. 

In traditional data augmentation methods, all operations focus on the samples themselves, 

mainly based on the data morphology of the image for data augmentation, including flip, rotation, 

crop, zoom and color change, and other operations [26,27]. These techniques have been shown to be 

useful for specific datasets, for example, random cropping and horizontal flipping techniques are 

very helpful for the recognition task of the CIFAR dataset [28]. However, only using these 

transformation methods will result in a single data sample, and cannot effectively suppress the 

occurrence of overfitting [29]. Therefore, researchers have proposed more advanced data 

augmentation methods from other perspectives. 

Data disrupting is also a common data augmentation method, which randomly zeros out a part 

of the image to achieve the purpose of changing the characteristics of the original image. For 

example, the cutout [30] algorithm randomly crops a square patch in the image and replaces it with 

“0” pixels, as shown in Figure 2. Noise is introduced into the image by masking, which makes the 

CNN more robust to noisy images. Furthermore, when the patch masks the main part of the object, 

such as the cat head, in this case, the CNN needs to learn the rest of the cat (such as ears and paws) 

to recognize the object. This method improves the utilization of minor features in the images, which 

is helpful for improving the recognition accuracy of the model. However, the data disrupting method 

will cause the loss of pixel information of the images. 

Input 

 

Flip 

 

Crop Zoom Color change 

Cutout Mixup 

 

Cutmix Mosaic 

 

Dynamic Mosaic 

Figure 2. Visual comparison of different data augmentation techniques. 

Unsupervised data augmentation methods are mainly divided into two categories: 

autoaugment [31] method and GAN [32] method. Autoaugment method generates a data 

augmentation strategy suitable for a specific dataset, but using this method to explore a data 

augmentation strategy takes a lot of time [33,34]. The GAN performs data augmentation operations 

by randomly generating images that are consistent with the distribution of training samples [35], 
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which increases training time by an order of magnitude and performs poorly on non-adversarial 

images in accuracy [36]. 

The idea of mixed sample data augmentation is to use multiple samples to generate new 

samples. For example, the mixup [37] algorithm improves the generalization ability of the model by 

performing convex linear interpolation [38] on two images according to a certain ratio, and then 

fusing them into a new training sample. As seen in Figure 2, however, mixup images are blurry and 

unnatural in the representation of some local features [39]. The cutmix [40] algorithm superimposes 

the cropped region of another input image onto the patch region, which solves the problem of loss of 

pixel information in the cutout algorithm. The mosaic algorithm has a certain similarity with the 

cutmix algorithm in theory. The cutmix algorithm is to crop and stitch the 2 images in the dataset, 

and the mosaic algorithm is to stitch the four images in the dataset into a new image. 

3. Methods 

In this section, we describe, in detail, the Dynamic Mosaic data augmentation algorithm and 

MTDA strategy proposed in this paper. First of all, the Dynamic Mosaic algorithm adds a dynamic 

adjustment step on the basis of the original mosaic algorithm. By dynamically adjusting the number 

of spliced images, the proportion of worthless areas in the mosaic image is reduced and the 

complexity of the image content is increased. In addition, the MTDA strategy uses the mixup 

algorithm and the cutout algorithm on the basis of the Dynamic Mosaic algorithm. Further, the 

training samples are divided into four parts, where each part uses different data augmentation 

operations to increase the information variance between the training samples, thereby preventing the 

network from overfitting. 

3.1. Dynamic Mosaic algorithm 

There are two main purposes of using multiple image stitching: one is to increase the 

complexity of the image content, and the other is to increase the number of target objects in the 

image [41]. Both ways can motivate the trained model to have better detection performance and 

generalization ability. The idea of the mosaic algorithm is to randomly select four images, takes parts 

of them and stitches them into a mosaic image, and the excess part will be discarded. The mosaic 

algorithm mainly includes five image processing steps: First, randomly select the indices of four 

images and form the K ∈ {1,2,3,4}. Second, initialize the mosaic image. It should be noted that the 

size of the mosaic image is twice the size of the input image. For example, the shape of the input 

image is 640 × 640 × 3, then the shape of the created mosaic image should be 1280 × 1280 × 3. 

Third, use a random function to obtain a center point splicing coordinate (xc,yc
) on the created 

mosaic image. Fourth, place the spliced images into the mosaic image in the order of upper left, 

upper right, lower left and lower right around the center point splicing. Finally, the periphery of the 

mosaic image is cropped to obtain a mosaic image with a shape of 640×640×3. An example of the 

mosaic algorithm is shown in Figure 3. 

The original mosaic image is always composed of four spliced images, but it is affected by the 

position of the center point splicing and the size of the spliced image itself. When the position of the 

center point splicing is close to the border of the mosaic image or the size of the spliced image itself 

is small, the spliced image cannot overwrite the entire area, and a large area of gray background is 

easy to appear in the generated mosaic image, as shown in Figure 4. The gray background is created 
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when the mosaic image is initialized and appears in the mosaic image because it is not overwritten 

by the spliced image. There are no valuable target objects in the gray background, so when a large 

area of gray background appears in the mosaic image, it reduces the amount of information contained 

in the mosaic image. To solve the above problems, the Dynamic Mosaic algorithm is proposed. By 

dynamically increasing the number of spliced images and overwriting the “worthless” gray 

background with new images, the problem of information waste caused by the appearance of gray 

background can be solved. Moreover, the Dynamic Mosaic algorithm can increase the complexity of 

the image content and increase the number of target objects in the image to a certain extent. 

 

Figure 3. An example of the mosaic algorithm. By splicing four images, not only is the 

diversity of training samples increased, but the number of target objects is also increased. 

In the Dynamic Mosaic algorithm, the number of spliced images is not a fixed value, but is 

determined by judging the distance from the border of spliced images to the border of the mosaic 

image after each stitching operation is completed; among them, this distance is represented by pad
h
 

and pad
w

. When the distance from the border of spliced image to the border of the mosaic image 

exceeds the threshold τ, the Dynamic Mosaic algorithm will acquire another image from the dataset 

and overwrite it on a gray background, which we call the re-acquired image the respliced image. The 

coordinates of the upper left and lower right corners of the respliced image in the mosaic images are 

represented by (ai,bi) and (ci,di), and the positions of the coordinates (ai,bi) and (ci,di) are affected by 

pad
h
 and padw . When pad

h
 ≥ τ and padw ≤ τ, the calculation process of the upper left corner 

coordinate (ai,bi) of the respliced image is shown in Eq (1). 

ai= {
max(xc-w2 , 0) , i=1,3

            xc,           i=2,4
 

bi= {
max(y

c
+h1+h2 , 0) , i=1,2

             y
c
-h1,           i=3,4

                          (1) 
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The calculation process of the lower right corner coordinate (ci,di) of the respliced image is shown in 

Eq (2). 

ci= {
            xc,          i=1,3

min(xc+w2 , s) , i=2,4
 

di= {
            y

c
+h1,         i=1,2

max(y
c
-h1-h2 ,-s) , i=3,4

                          (2) 

 

Figure 4. An example of the Dynamic Mosaic algorithm. The blue part represents the 

proportion of the spliced image, and the gray part represents the proportion of the 

“worthless” gray background. By increasing the number of images involved in spliced, 

the problem of information waste caused by the appearance of large-area gray 

backgrounds can be solved. 

where, xc and y
c
 are the abscissa and ordinate of the center point splicing respectively, h1 and w1 

are the length and width of the spliced image, h2 and w2 are the length and width of the respliced 

image, s is the size of the mosaic image, i from 1 to 4 represents the upper left, upper right, lower left 

and lower right of the mosaic image, respectively, max(a, b) means taking the maximum value 

among a and b, and min(a, b) means taking the minimum value among a and b. 

When padh ≤ τ and padw ≥ τ, the calculation process of the upper left corner coordinate (ai,bi) 

of the respliced image is shown in Eq (3). 

ai= {
max(xc-w1-w2 , 0) , i=1,3

            xc+w1,          i=2,4
 

bi= {
max(y

c
+h2 , 0) , i=1,2

            y
c
,           i=3,4

                            (3) 

The calculation process of the lower right corner coordinate (ci,di) of the respliced image is shown in 

Eq (4). 
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ci= {
            xc-w1,           i=1,3

min(xc+w1+w2 , s) , i=2,4
 

di= {
           y

c
,           i=1,2

max(y
c
-h2 ,-s) , i=3,4

                            (4) 

When padh ≥ τ and padw ≥ τ, we will compare the magnitude of the padh and padw values 

and perform the dynamic adjustment step only in the larger dimension. When padh < τ and padw < τ, 

we will not perform the dynamic adjustment step. In the Dynamic Mosaic algorithm, we do not 

completely remove the gray background in the mosaic image, because, in the prediction stage, the 

input image will be filled with a grey background to fit the dimensions of the input layer. Therefore, 

retaining a small amount of gray background in the training samples will help the model learn to 

ignore the gray background. A specific description of the Dynamic Mosaic algorithm is given in the 

pseudocode below. 

Pseudocode 1: Dynamic Mosaic data augmentation algorithm 

1: Input：Image Iorig, Labels Lorig, hyperparameter τ 

2: function AugmentMosaic (Image Iorig, Labels Lorig) 

3:   xc, 𝑦c=random.uniform (β
1
, β

2
) 

4:   Creating mosaic images Idm.size (2*s, 2*s).color (114) 

5:   for i = 1, 2, …, k do 

6:     Idm[(xa1i, ya1i), (xa2i, ya2i)]←Iorig[(xb1i, yb1i), (xb2i, yb2i)] 

7:     padw=|xa1i-xb1i|, padh=|ya1i-yb1i| 

8:     if(padw ≥ τ or padh ≥ τ) 
9:       Idm[(rxa1i, rya1i), (rxa2i, rya2i)]←Iorig[(rxb1i, ryb1i), (rxb2i, ryb2i)] 

10:    Labels Ldm←Labels Lorig 

11:  end for 

12:  clip Images Idm, Labels Ldm 

13: end function 

14: Output Images Idm, Labels Ldm 

3.2. Multi-Type data augmentation strategy 

Although the information difference of each image is improved by means of the Dynamic 

Mosaic algorithm, the information variance between images is not greatly improved. This may cause 

the model to have higher recognition accuracy when recognizing images with similar distributions of 

testing samples and training samples, but when the distributions of testing samples and training 

samples do not match, the recognition accuracy of the model will not meet the needs of the task. 

In order to improve the information variance between training samples, this paper proposes the 

MTDA strategy. The MTDA strategy randomly divides the input image into four parts, and uses 

different data augmentation methods for each part of the image. Finally, the obtained training 

samples include original image, mosaic image, mosaic-mixup image and mosaic-cutout image. 

Among them, the mosaic image is generated after using the Dynamic Mosaic algorithm, the 

mosaic-mixup image is generated after the Dynamic Mosaic and mixup algorithms, and the 
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mosaic-cutout image is generated after using the Dynamic Mosaic and cutout algorithms. An 

example of the MTDA strategy is shown in Figure 5. For the convenience of representation, the four 

types of images are represented by Dog, Ddm, Dmm and Dmc, respectively, where the relationship 

between the augmented output image Dout and the four types of images can be represented as 

Dout=DogUDdmUDmmUDmc, and the ratios of the number of samples in them are W1:W2:W3:W4. 

The Dmm image is superimposed with the mixup algorithm based on the Dynamic Mosaic 

algorithm. The mixup algorithm performs convex linear interpolation on the two images according to 

a certain ratio, and then fuses them into a new sample. An example of the mixup algorithm is shown 

in Figure 6, and the calculation process is shown in Eq (5). 

 

Figure 5. An example of Multi-Type Data Augmentation strategy. The MTDA strategy 

uses different types of training samples, which increases the information variance 

between training samples, so it can better prevent network overfitting. 

x=λxi+(1-λ)xj 

y=λy
i
+(1-λ)y

j
                                 (5) 

λ∈Beta(β,β) 

where xi and xj represent the two images involved in the fusion, y
i
 and y

j
 represent the labels 

of the two images, x and y represent the mixed images and labels after fusing the xi and xj 

images. λ and β are real numbers, and λ∈[0, 1], β∈(0,∞), λ conforms to the Beta distribution. 

The Dmm image contains, not only the spatial blending feature after using the Dynamic Mosaic 

algorithm, but also the pixel blending feature after using the mixup algorithm, which is very 

helpful for improving the recognition accuracy of objects. The mixup algorithm, however, 

sometimes generates local features that do not exist in the original image, resulting in excessive 

adversarial interference. Therefore, the MTDA strategy uses four different types of images as 

training samples to participate in the training of the model, and the Dmm image is only used as 

part of the input image. This method not only solves the problem of excessive adversarial 

interference, but also the diverse training samples can prevent the network from overfitting, 

making the model perform better in challenging recognition and detection tasks. 
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The Dmc image first uses the Dynamic Mosaic data augmentation algorithm, and then uses the 

cutout algorithm on this basis. The idea of the cutout algorithm is to randomly select a center point in 

the image, and then use a patch to mask the image around the center point. This operation is a 

continuous dropout of input pixels to prevent the overfitting, and encourages the network to utilize 

information from the entire image rather than relying on a small subset of specific visual features. By 

superimposing the Dynamic Mosaic and cutout algorithms, it not only increases the complexity of 

the training sample content, but also enables the network to better combine the context around the 

noise and focus on some local secondary features. A specific description of the MTDA strategy is 

given in the pseudocode below. 

 

Figure 6. An example of the mixup algorithm. The two images are fused together by 

convex linear interpolation, which improves the linear representation between training 

samples. 

Pseudocode 2: Multi-Type Data Augmentation strategy 

1: Input：Image Iorig, Labels Lorig, hyperparameter W2, W3, W4 

2: function MTDAstrategy (Image Iorig, Labels Lorig) 

3:   bool mosaic= random.random()<W2 

4:   if (mosaic) 

5:     Images Imtda, Labels Lmtda = loadmosaic (self, index) 

6:     if (random.random()<W3) 

7:       Images Imtda, Labels Lmtda=mixup(*loadmosaic (self, random.randint(0, self.n-1))) 

8:     elif (random.random()<W4) 

9:       Images Imtda, Labels Lmtda= cutout (image, labels) 

10:  else Images Imtda, Labels Lmtda=loadimage (self, index) 

11: end function 

12: Output Images Imtda, Labels Lmtda 

In addition, we also verify the performance of the models combined with different data 

augmentation methods. Among them, the strategy combining the four data augmentation methods 

achieved the best performance. For the specific experimental results, please refer to Table 6 in 

Chapter 4.4.2. 
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4. Experiment 

In this section, we first introduce the datasets used in the experiments and the evaluation metrics 

we adopted. Then, we describe the experimental environment of this paper and the parameter 

configuration in the experiment. In addition, we present the experimental results, analyze the data 

and give our conclusions. Finally, we discuss some interesting findings derived from the 

experimental data. 

4.1. Datasets 

In this paper, we conducted experiments and evaluate the Dynamic Mosaic algorithm and 

MTDA strategy on the Pascal VOC [42] dataset. The Pascal VOC dataset contains a total of 20 

classes, which can be divided into four main categories: vehicles, household, animals and other. The 

specific classes are shown in Table 1. The Pascal VOC dataset contains two subsets: Pascal VOC 

2007 and Pascal VOC 2012. Since the test set of Pascal VOC 2012 is not public, this paper uses the 

train set of Pascal VOC 2007 and Pascal VOC 2012 as the train set of the experiments, which 

contains 16551 images. The test set of Pascal VOC 2007 is used as the test set of our experiments, 

which contains 4952 images. 

Table 1. The Pascal VOC classes. 

Vehicles Household Animals Other 

Aeroplane Bottle Bird Person 

Bicycle Chair Cat 

 

Boat Dining table Cow 

Bus Potted plant Dog 

Car Sofa Horse 

Motorbike TV/Monitor Sheep 

Train   

4.2. Evaluation metrics 

To evaluate the performance of the proposed algorithms, this paper uses precision, recall, F1 

score and mean Average Precision (mAP) as evaluation metrics to measure the recognition accuracy 

of the detection model. Among them, precision represents the correct proportion of the results 

predicted by the model, recall represents the proportion of the real target that the model predicts 

correctly. The calculation processes of precision and recall are shown in Eqs (6) and (7). 

precision=
TP

TP+FP
                               (6) 

recall=
TP

TP+FN
,                                 (7) 

where TP represents True Positive, which means the positive examples are correctly classified, FP 

represents False Positive, indicating that negative examples are incorrectly classified as positive 
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examples, and FN represents False Negative, which means that positive examples are incorrectly 

classified as negative examples. F1 score takes into account the precision and recall of the model, and 

can be regarded as a harmonic average of the precision and recall of the model. The calculation 

process of F1 score is shown in Eq (8). 

F1=2*
precision*recall

precision+recall
                               (8) 

mAP is the average of all classes of AP, the larger the mAP value, the higher the recognition 

accuracy of the model. The calculation process of mAP is shown in Eq (9). 

mAP=
1

N
∑ APi

N
i=1 ,                               (9) 

where N is a constant representing the number of classes in the dataset, and APi represents the 

average accuracy for class i. In addition, unless otherwise specified, the default AP value is obtained 

when IoU=0.5. 

4.3. Experiment environment and parameter configuration 

All the experiments were performed on a desktop computer with the CPU Intel(R) Xeon(R) 

Gold5117, memory 128G, GPU NVIDIA Tesla V100, 16G video memory. The software 

configuration of the experimental platform is as follows: the operating system is Ubuntu18.04 

(64-bit), the CUDA version is 10.2, the Python version is 3.8.3, and the open source neural network 

framework of Pytorch 1.10.0. 

This paper uses YOLOv5s [43] as the detection model. In order to ensure the fairness of the 

experimental results, the model is trained from scratch for each experiment. The input image size is 

640 × 640 × 3, the batch_size is 32, the initial learning rate is 0.01, the threshold τ for the dynamic 

adjustment method is 480, the β in mixup data augmentation is 8 and W1:W2:W3:W4=1 : 1 : 1 : 1. 

All experiments used a warm-up strategy for the first 3 epochs and a cosine annealing strategy [44] 

from the 4
th

 epoch. 

4.4. Experimental results and analysis 

In this section, we first present and analyze the experimental results of the Dynamic Mosaic 

algorithm, which mainly includes the comparison of the experimental results of the Dynamic Mosaic 

algorithm and the mosaic algorithm, and the comparison of the experimental results of the Dynamic 

Mosaic algorithm and other state-of-the-art algorithms. Then, we show and analyze the experimental 

results of the MTDA strategy, which mainly include the comparison of the experimental results 

before and after the use of the MTDA strategy, the comparison of the experimental results of the 

MTDA strategy and different data augmentation strategy, and the comparison of the experimental 

results of different training sample combinations in the MTDA strategy. 

4.4.1. Experimental results and analysis of Dynamic Mosaic 

Increasing the complexity of the training sample background and the number of objects in the 

training sample is a reliable way to improve the detection performance and generalization ability of 
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the model. The mosaic image generated by the original mosaic algorithm only contains the pixel 

information of four spliced images and is affected by the position of the center point splicing and the 

size of the spliced image itself, and the area not overwritten by the spliced image will be occupied by 

“worthless” gray areas. According to the Dynamic Mosaic algorithm proposed in Section 3, by 

dynamically increasing the number of spliced images based on the original mosaic algorithm, the 

proportion of worthless regions in the mosaic image can be reduced, thereby improving the 

recognition accuracy of the model. 

To demonstrate the effectiveness of the Dynamic Mosaic data augmentation algorithm, we 

conducted experiments on the Pascal VOC dataset. It should be noted that we selected the maximum 

value of mAP in 300 epochs, and recorded the precision and recall at the same time, and obtained the 

F1 score by calculating the harmonic average of precision and recall. The experimental results are 

shown in Table 2. 

Table 2. Experimental results of the Dynamic Mosaic algorithm and the mosaic algorithm. 

Scheme Method P (%) R (%) F1 (%) mAP (%) 

A Original 76.03 65.05 70.11 71.19 

B Mosaic 78.99 73.15 75.96 79.01 

C Dynamic Mosaic (Our) 80.13 72.92 76.36 79.73 

 

Figure 7. Comparison of experimental results of different schemes. Although the 

evaluation metrics recall of the Mosaic Scheme is slightly higher than that of the Dynamic 

Mosaic Scheme, compared with the Original and Mosaic Schemes, the Dynamic Mosaic 

Scheme has different degrees of improvement in the evaluation metrics precision, F1 score 

and mAP. This is because the Dynamic Mosaic data augmentation algorithm adds a 

dynamic adjustment step based on the mosaic algorithm, which solves the problem of 

information waste in the original mosaic algorithm, and increases the complexity of the 

image content, so that the detection model has better generalization ability. 

Among them, Scheme A does not use the data augmentation algorithm, and only uses the 

original image as the training sample to participate in the training of the model. Compared to Scheme 

B and Scheme C using data augmentation algorithms, Scheme A performs poorly. This shows that 

using a suitable data augmentation algorithm can improve the recognition accuracy of the model. 
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Scheme B uses the mosaic data augmentation algorithm. Compared with Scheme A, the evaluation 

metrics of Scheme B have been greatly improved, and the highest recall has been achieved among 

the three schemes. Scheme C uses the Dynamic Mosaic data augmentation algorithm proposed in 

this paper. It can be seen from the experimental results that, although the recall of Scheme C is lower 

than that of Scheme B, Scheme C has different degrees of improvement in the evaluation metrics 

precision, F1 score and mAP. Among them, the evaluation metrics precision is improved by 1.14%, 

which indicates that using the Dynamic Mosaic data augmentation algorithm during the training 

process can improve the generalization ability of the detection model, thereby reducing the detection 

error rate of the model for some difficult samples. In addition, the F1 score and mAP are improved by 

0.4 and 0.72%, respectively, compared with the Scheme B, which indicates that the detection model 

using the Dynamic Mosaic data augmentation algorithm has better comprehensive performance. In 

order to more intuitively see the difference of the performance of each scheme, this paper draws the 

experimental results of each scheme, as shown in Figure 7. 
In order to demonstrate the advancement of the Dynamic Mosaic data augmentation algorithm, 

this paper selects the more advanced algorithms for comparison, including cutmix [40], mixup [37] 

and mosaic9 [45] algorithms. The cutmix and mixup algorithms have been introduced in Chapter 2, 

so here we introduce the mosaic9 algorithm. The mosaic algorithm splices four images to generate a 

new image, and the mosaic9 algorithm splices nine images into a new image. The mosaic9 algorithm 

improves the recognition ability of the model in complex backgrounds and improves the accuracy of 

small objects recognition. The experimental results of all schemes are shown in Table 3. It can be 

seen that the training time of Scheme A using the original image is the shortest, which is 14.2 hours, 

and the training time of Scheme D is the longest, which is 25.6 hours. Scheme F, using the Dynamic 

Mosaic algorithm, achieves the highest recognition accuracy of 79.73%, and Scheme B has the 

lowest recognition accuracy of 69.62%. Compared with the mosaic algorithm before the 

improvement, although the training time of the Dynamic Mosaic data augmentation algorithm is 

increased by 0.7 hours, the recognition accuracy is improved by 0.72%. The experimental results 

show that compared with other advanced algorithms, the Dynamic Mosaic algorithm, proposed in 

this paper, has advantages in recognition accuracy. 

Table 3. Comparison of recognition accuracy and training time of different algorithms. 

Scheme Method mAP (%) Training time (h) 

A Original 71.19 14.2 

B CutMix 69.62 15.4 

C Mixup 77.33 17.8 

D Mosaic9 78.97 25.6 

E Mosaic 79.01 15.7 

F Dynamic Mosaic (Our) 79.73 16.4 

Figure 8 shows the detection examples of the mosaic algorithm and the Dynamic Mosaic 

algorithm on the Pascal VOC dataset. The first line is to use the original images as training samples 

without data augmentation. It can be seen from the detection examples that the confidence of the 

Original Scheme for the target prediction is relatively poor. For example, the confidence of the 

people in the second group of images is only 0.15. In addition, there are cases of missed detection in 
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the Original Scheme, such as the cat in the first group of images are not recognized. The second line 

is the scheme using the mosaic algorithm. It can be seen from the detection examples that the Mosaic 

Scheme has a false detection, for example, as the yellow dog in the third group of images is falsely 

identified as a sheep and has a confidence of 0.49. Also, the dog's leg is falsely identified as a cow 

and has a confidence of 0.46. The third line is the scheme using the Dynamic Mosaic algorithm 

proposed in this paper. The Dynamic Mosaic Scheme has no missed detection or false detection, and 

has higher confidence than the Original Scheme and the Mosaic Scheme, for example, as the 

confidence of cats in the first group of images increased from 0.37 to 0.56, and the confidence of 

horses in the second group of images increased from 0.37 to 0.70. 

 

 

 

Figure 8. Comparison of detection examples of different data augmentation schemes. The 

detection example comes from the test set of Pascal VOC 2007. It can be seen from the 

detection results that the detection model using the Dynamic Mosaic algorithm can 

recognize the target object more accurately, and there is no missed detection or false 

detection. 

4.4.2. Experimental results and analysis of MTDA strategy 

Only using mosaic images that have been generated by the Dynamic Mosaic algorithm to 

participate in the training of the model will cause the training samples to maintain a single view, 

which limits the difference in information, and is not conducive to the generalization of the model. 

According to the MTDA strategy proposed in Section 3, by randomly dividing the training samples 
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into four parts, each part of training samples is processed with different data augmentation operations, 

which will increase the information variance between the training samples, and is beneficial to the 

generalization of the model and improves the recognition accuracy of the model. 

To demonstrate the effectiveness of the MTDA strategy, we conducted experiments on the 

Pascal VOC dataset. The experimental results are shown in Table 4. Scheme A only uses the 

Dynamic Mosaic algorithm, and Scheme B additionally uses the MTDA strategy based on Scheme A. 

It can be seen, from the experimental results, that each evaluation metrics of Scheme B have been 

greatly improved. Among them, precision increased by 1.71%, recall increased by 3.53%, F1 score 

increased by 2.69% and mAP increased by 3.68%. This is because the MTDA strategy divides the 

input image into four parts, and the samples of each part are processed with different data 

augmentation methods, which improves the information variance between training samples. In 

addition, the diverse training samples can improve the generalization and robustness of the model 

and prevent the network overfitting, so that the model can have better recognition effect on complex 

and difficult objects. 

Table 4. Comparison of experimental results before and after using the MTDA strategy. 

Scheme Method P (%) R (%) F1 (%) mAP (%) 

A Dynamic Mosaic 80.13 72.92 76.36 79.73 

B Dynamic Mosaic + MTDA 81.84 76.45 79.05  83.41 

In order to demonstrate the advancement of the MTDA strategy, this paper selects the data 

augmentation strategy in YOLOv5 as the Baseline Scheme for comparison in our study. The main 

idea of the Baseline Scheme is to increase the probability of using the mixup algorithm based on the 

mosaic images, as the main purpose is to provide richer training samples, thereby preventing the 

network overfitting. In the Baseline Scheme, the probability of using mosaic algorithm is 0.66, and 

the probability of using mixup algorithm is 0.5. Since the input image contains the original image 

and the mixed image, it takes 500 epochs for the model to reach convergence, and the rest of the 

parameters are the same as the first part. The experimental results are shown in Table 5. 

Table 5. Comparison of results of different data augmentation strategies. 

Scheme Method P (%) R (%) F1 (%) mAP (%) 

A Baseline 79.43 75.96 77.66  81.54 

B MTDA (Our) 81.84 76.45 79.05  83.41 

Compared with the Baseline Scheme, the MTDA Scheme has achieved great improvements in 

various evaluation metrics. Among them, the precision of the model is increased by 2.41%, the recall 

is increased by 0.49%, the F1 score is increased by 1.39% and the mAP is increased by 1.87%. This 

is because the MTDA strategy uses more types of data augmentation methods than the data 

augmentation strategy in YOLOv5. In addition, the MTDA strategy does not use all data 

augmentation methods at the same time, but divides the input image into four different parts, and 

performs different data augmentation processing on each part, improving the information variance 

between training samples. Therefore, the model can achieve better performance in more complex 
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detection environments. 

In order to further observe the changes of AP values of each class in the Baseline Scheme and 

the MTDA Scheme, this paper studied the P-R curves of the two schemes, as well as the AP and 

mAP values of each class, as shown in Figure 9. Compared with the Baseline Scheme, the AP value 

of all class of the MTDA Scheme has increased. Especially, as the AP value of some classes is low in 

the Baseline Scheme, the AP value in the MTDA Scheme is greatly improved. For example, the AP 

value of potted plant increased by 4.3% from 55.8 to 60.1%, and the AP value of boat increased by 

3.9% from 69.6 to 73.5%. In addition, the AP values of some classes are already relatively high in 

the Baseline Scheme, but the AP values are still improved in the MTDA Scheme. For example, the 

AP value of aeroplane increased by 1.8% from 90.5 to 92.3%, and the AP value of bicycle increased 

by 1.4% from 90.7 to 92.1%. 

 

(a)                                     (b) 

Figure 9. (a) The P-R curve of the Baseline Scheme, and (b) the P-R curve of the MTDA 

Scheme. The thin curve in the figure represents the P-R curve of each class AP, the 

thicker blue curve is the P-R curve of mAP, and the corresponding curve color and AP 

value of each class are given in the rectangle box on the left. 

In order to explore the influence of different image combination methods in the MTDA strategy 

on the recognition accuracy of the model, this paper conducted multiple sets of comparative 

experiments. The experimental results are shown in Table 6. Dog represents the original image, Ddm 

represents the mosaic image generated by the Dynamic Mosaic algorithm, Dmm  image is 

superimposed on the basis of the Dynamic Mosaic algorithm and uses the mixup algorithm and Dmc 

image first uses the Dynamic Mosaic algorithm, and then uses the cutout algorithm on this basis. In 

addition, the proportion of different images in the training samples is the same. 

In the process of exploring the influence of different combinations of Dog, Ddm, Dmm and 

Dmc images on the recognition accuracy of the model, we found two interesting phenomena. First, 

when comparing Schemes A, B, C and D, it can be observed that the trained model has better 

performance when Dmm or Dmc images are included in the data augmentation strategy. The reason 

for this phenomenon is that the Dmm and Dmc images use the mixup [37] data augmentation 

algorithm and cutout [30] data augmentation algorithm on the basis of the mosaic images, so that the 

training samples can generate more transformations, which is important for inducing the robustness 

of the model. In addition, comparing Schemes B, C and Schemes E, F, we also find that the model 

containing Dmc images have higher recognition accuracy than the model containing Dmm images 
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when other images in the data augmentation strategy are the same. We believe that, compared with 

the mixup algorithm, the cutout algorithm introduces noise into the image through mask, which can 

increase the diversity of training samples and make the CNN more robust. 

Table 6. Comparison of experimental results of different training sample combinations in 

MTDA strategy. 

Scheme 
Training samples 

F1 (%) mAP (%) 
Dog Ddm Dmm Dmc 

A     75.59 78.56 

B     77.78 81.31 

C     77.68 81.63 

D     78.12 82.00 

E     77.66 81.54 

F     78.07 82.07 

G     79.04 83.38 

H     79.05 83.41 

 

 

 

Figure 10. Comparison of detection examples of different data augmentation strategies. 

The detection example comes from the test set of Pascal VOC 2007. It can be seen from 

the detection examples that the detection model using the Multi-Type Data Augmentation 

strategy has no missed detection or false detection, and can locate and recognize the 

target object more accurately. 
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Figure 10 shows the detection examples of the three different schemes, namely the Original 

Scheme without data augmentation strategy, Baseline Scheme using data augmentation strategy in 

YOLOv5, and MTDA Scheme using Multi-Type Data Augmentation strategy. It can be seen from the 

detection examples that the Original Schemes and Baseline Schemes have problems of false 

detection and inaccurate positioning. For example, the Original Schemes and Baseline Schemes in 

the second group of images mistake the bird as a person, and the bounding box of the Original 

Schemes and Baseline Schemes in the third group of images only encircles the dog’s head. In 

contrast, the MTDA Scheme proposed in this paper has no problems of false detection and inaccurate 

positioning, and has higher confidence. 

4.5. Discussion 

In order to summarize the experimental results of this paper and emphasize the advantages of 

the Dynamic Mosaic algorithm and the MTDA strategy in recognition accuracy, we have compiled 

the experimental results of the Dynamic Mosaic algorithm and the MTDA strategy, as shown in 

Table 7. 

Table 7. Comparison of Dynamic Mosaic algorithm and MTDA strategy with existing 

algorithms and strategies. 

Scheme Method P (%) R (%) F1 (%) mAP (%) 

A Original 76.03 65.05 70.11 71.19 

B Mosaic [23] 78.99 73.15 75.96 79.01 

C Dynamic Mosaic 80.13 72.92 76.36 79.73 

D Baseline [43] 79.43 75.96 77.66  81.54 

E Dynamic Mosaic + MTDA 81.84 76.45 79.05  83.41 

By analyzing the above experimental results, we obtained some interesting findings: 1) The 

Precision of the detection model using the Dynamic Mosaic algorithm has been greatly improved 

compared with the mosaic algorithm. This shows that the detection model using the Dynamic Mosaic 

algorithm has better generalization ability, and can reduce the detection error rate of the model for 

some difficult samples. 2) Compared with the model without the MTDA strategy, the MTDA strategy 

proposed in this paper can improve the robustness of the model and enable the model to have better 

detection results when facing complex and difficult objects. Generally, the detection model using the 

MTDA strategy has better comprehensive performance. 3) The Dynamic Mosaic algorithm and 

MTDA strategy proposed in this paper only improve the quality of training samples, without 

changing the structure of the network itself. Therefore, the Dynamic Mosaic algorithm and MTDA 

strategy will increase the training cost to improve the accuracy of object detection, but will not 

increase the complexity of the original model. 

5. Conclusions 

In this paper, we firstly proposed the Dynamic Mosaic algorithm for data augmentation. Based 

on the original mosaic algorithm, this algorithm adds a dynamic adjustment step, which solves the 

problem of information waste caused by the large, gray background in the generated mosaic image, 
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and improves the complexity of the content in the mosaic image. In addition, this paper proposed the 

Multi-Type Data Augmentation (MTDA) strategy based on the Dynamic Mosaic algorithm to relieve 

the problem of network overfitting. This strategy divides the training samples into four parts, and 

uses different data augmentation methods to process the training samples of each part, which 

improves the information variance between the training samples, and prevents the network from 

overfitting. Finally, to evaluate the effectiveness of the method, we conducted a series of experiments 

on the Pascal VOC dataset, and the experimental results show that the Dynamic Mosaic algorithm 

improves mAP by 0.72% compared with the previous methods, and the MTDA strategy improves 

mAP by 1.87% compared with other methods. However, we also found that the recognition accuracy 

of the model for small objects decreased after using the MTDA strategy. This is because the small 

objects in the training samples will be partially shielded after using the mixup algorithm and the 

cutout algorithm, which is not conducive to the recognition of small objects. In future work, we hope 

to solve the problem of decreasing recognition accuracy of small objects by adjusting the ratio of the 

number of four types of images. 

Acknowledgments 

This research is jointly supported by the National Natural Science Foundation of China 

(62072414), and the key scientific and technological project of the Henan Province (212102210104, 

222102210071). 

Conflict of interest 

We declare that we have no conflicts of interest to report regarding this study. 

References 

1. A. Belhadi, Y. Djenouri, G. Srivastava, D. Djenouri, J. C. W. Lin, G. Fortino, Deep learning for 

pedestrian collective behavior analysis in smart cities: a model of group trajectory outlier 

detection, Inform. Fusion, 65 (2021), 13–20. https:// doi.org/10.1016/j.inffus.2020.08.003  

2. G. Vallathan, A. John, C. Thirumalai, S. K. Mohan, G. Srivastava, J. C. W. Lin, Suspicious 

activity detection using deep learning in secure assisted living IoT environments, J. 

supercomput., 77 (2021), 3242–3260. https://doi.org/10.1007/s11227-020-03387-8 

3. Y. Djenouri, G. Srivastava, J. C. W. Lin, Fast and accurate convolution neural network for 

detecting manufacturing data, IEEE Trans. Ind. Inform., 17 (2020), 2947–2955. 

https://doi.org/10.1109/TII.2020.3001493 

4. A. Belhadi, Y. Djenouri, J. C. W. Lin, A. Cano, Trajectory outlier detection: algorithms, 

taxonomies, evaluation and open challenges, ACM Trans. Manage. Inform. Syst., 11 (2020), 1–

29. https://doi.org/10.1145/3399631 

5. A. Belhadi, Y. Djenouri, G. Srivastava, D. Djenouri, A. Cano, J. C. W. Lin, A two-phase 

anomaly detection model for secure intelligent transportation ride-hailing trajectories, IEEE 

Trans. Intell. Trans. Syst., 22 (2020), 4496–4506. https://doi.org/10.1109/TITS.2020.3022612 

https://doi.org/10.1007/s11227-020-03387-8
https://doi.org/10.1109/TII.2020.3001493
https://doi.org/10.1145/3399631
https://doi.org/10.1109/TITS.2020.3022612


7213 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7193–7216. 

6. C. Sun, A. Shrivastava, S. Singh, A. Gupta, Revisiting unreasonable effectiveness of data in 

deep learning era, in Proceedings of the IEEE international conference on computer vision, 

(2017), 843–852. https://doi.org/10.1109/ICCV.2017.97 

7. R. Takahashi, T. Matsubara, K. Uehara, Data augmentation using random image cropping and 

patching for deep CNNs, IEEE Trans. Circuits Syst. Video Technol., 30 (2019), 2917–2931. 

https://doi.org/10.1109/TCSVT.2019.2935128 

8. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning (still) 

requires rethinking generalization, Commun. ACM, 64 (2021), 107–115. https://doi.org/ 

10.1145/3446776 

9. M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks. in European 

conference on computer vision, (2014), 818–833. https://doi.org/10.1007/978-3-319-10590-1_53 

10. L. M. Zintgraf, T. S. Cohen, T. Adel, M. Welling, Visualizing deep neural network decisions: 

Prediction difference analysis, preprint, arXiv:1702.04595. 

11. L. Schmidt, S. Santurka, D. Tsipras, K. Talwar, A. Madry, Adversarially robust generalization 

requires more data, Adv. Neural Inform. Process. Syst., 31 (2018). 

https://doi.org/10.48550/arXiv.1804.11285 

12. J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, et al., Deep learning 

scaling is predictable, preprint, arXiv:1712.00409. 

13. D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber, Flexible, high 

performance convolutional neural networks for image classification, in Twenty-second 

international joint conference on artificial intelligence, (2011), 1237–1242. 

14. D. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image 

classification, in IEEE conference on computer vision and pattern recognition, (2012), 3642–

3649. https://doi.org/10.1109/CVPR.2012.6248110 

15. C. Shorten, T. M. Khoshgoftaar, A survey on image data augmentation for deep learning, J. Big 

Data, 6 (2019), 1–48. https://doi.org/10.1186/s40537-019-0197-0 

16. D. Han, J. Kim, J. Kim, Deep pyramidal residual networks. in Proceedings of the IEEE 

conference on computer vision and pattern recognition, (2017), 5927–5935. 

https://doi.org/10.1109/ cvpr.2017.668 

17. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional 

neural networks, Adv. Neural Inform. Process. Syst., 6 (2017), 84–90. https://doi.org/10.1145/ 

3065386 

18. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image 

recognition, preprint, arXiv:1409.1556. 

19. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of 

the IEEE conference on computer vision and pattern recognition, (2016), 770–778. 

20. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional 

networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, 

(2017), 4700–4708 

21. S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural 

networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, 

(2017), 1492–1500. https://doi.org/10.1109/CVPR.2017.634 



7214 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7193–7216. 

22. Y. Tokozume, Y. Ushiku, T. Harada, Between-class learning for image classification, in 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 

5486–5494. https://doi.org/10.48550/arXiv.1711.10284 

23. A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, Yolov4: Optimal speed and accuracy of object 

detection, preprint, arXiv:2004.10934. 

24. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal 

covariate shift, in International conference on machine learning PMLR, (2015), 448–456. 

25. J. Kukačka, V. Golkov, D. Cremers, Regularization for deep learning: A taxonomy, preprint, 

arXiv:1710.10686. 

26. J. Niu, Y. Chen, X. Yu, Z. Li, H. Gao, Data augmentation on defect detection of sanitary 

ceramics, in IECON The 46th Annual Conference of the IEEE Industrial Electronics Society, 

(2020), 5317–5322. https://doi.org/10.1109/IECON43393.2020.9254518 

27. A. Jurio, M. Pagola, M. Galar, C. Lopez-Molina, D. Paternain, A comparison study of different 

color spaces in clustering based image segmentation, in International conference on information 

processing and management of uncertainty in knowledge-based systems, (2020), 532–541. 

https://doi.org/10.1007/978-3-642-14058-7_55 

28. A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, Handb. Syst. 

Autoimmune Dis., 2009. 

29. F. J. Moreno-Barea, F. Strazzera, J. M. Jerez, D. Urda, L. Franco, Forward noise adjustment 

scheme for data augmentation, in IEEE symposium series on computational intelligence (SSCI), 

(2018), 728–734. https://doi.org/10.1109/SSCI.2018.8628917 

30. T. DeVries, G. W. Taylor, Improved regularization of convolutional neural networks with cutout, 

2017, preprint, arXiv:1708.04552. 

31. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, Autoaugment: Learning augmentation 

policies from data, preprint, arXiv:1805.09501. 

32. J. Gui, Z. Sun, Y. Wen, D. Tao, J. Ye, A review on generative adversarial networks: Algorithms, 

theory, and applications, IEEE Trans. Knowl. Data Eng., 2021. 

https://doi.org/10.1109/TKDE.2021.3130191 

33. D. Ho, E. Liang, X. Chen, I. Stoica, P. Abbeel, Population based augmentation: Efficient 

learning of augmentation policy schedules, in International Conference on Machine Learning, 

(2019), 2731–2741. https://doi.org/10.48550/arXiv.1905.05393 

34. S. Lim, I. Kim, T. Kim, C. Kim, S. Kim, Fast autoaugment, Adv. Neural Inform. Process. Syst., 

32 (2019). 

35. M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, Synthetic data augmentation 

using GAN for improved liver lesion classification, in IEEE 15th international symposium on 

biomedical imaging (ISBI), (2018), 289–293. https://doi.org/10.1109/ISBI.2018.8363576 

36. A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, P. Liang, Adversarial training can hurt 

generalization, preprint, arXiv:1906.06032. 

37. H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk minimization, 

2017, preprint, arXiv:1710.09412. 

38. R. Takahashi, T. Matsubara, K. Uehara, Ricap: Random image cropping and patching data 

augmentation for deep cnns, in Asian conference on machine learning, (2018), 786–798. 



7215 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 7193–7216. 

39. H. Guo, Y. Mao, R. Zhang, Mixup as locally linear out-of-manifold regularization, in 

Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 3714–3722. 

https://doi.org/ 10.48550/arXiv.1809.02499 

40. S.Yun, D. Han, S. J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train 

strong classifiers with localizable features, in Proceedings of the IEEE/CVF international 

conference on computer vision, (2019), 6023–6032. 

41. C. Summers, M. J. Dinneen, Improved mixed-example data augmentation, in IEEE Winter 

Conference on Applications of Computer Vision (WACV), (2019), 1262–1270. 

42. M. Everingham, S. M. Eslami, L. Van Gool, C. K. Williams, J. Winn, A. Zisserman, The pascal 

visual object classes challenge: A retrospective, Int. J. Comput. Vision, 111 (2015), 98–136. 

https://doi.org/10.1007/s11263-014-0733-5 

43. J. Glenn, S. Alex, B. Jirka, ultralytics/yolov5:v5.0 – YOLOv5 -P6 1280 models, 2021. Available 

from: https://github.com/ultralytics/yolov5. 

44. I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts, preprint, 

arXiv:1608.03983. 

45. W. Hao, S. Zhili, Improved mosaic: Algorithms for more complex images, in Journal of Physics: 

Conference Series, 1684 (2020), 012094. https://doi.org/ 10.1088/1742-6596/1684/1/012094 

Appendix 

In order to make it easier for readers to find and understand the meaning of the symbols in the 

paper, Table A1 lists each symbol and its meaning in the order in which the symbols appear. 

Table A1. Symbols appearing in this paper and their meanings. 

Symbols Meanings 

(xc,yc
) The center point splicing coordinates of mosaic image 

pad
h
 The length from the border of spliced images to the border of the mosaic image 

pad
w

 The width from the border of spliced images to the border of the mosaic image 

τ The threshold for spliced images to borders of mosaic images 

(ai,bi) The coordinates of the upper left corner of the respliced image in the mosaic image 

(ci,di) The coordinates of the lower right corner of the respliced image in the mosaic image 

h1 The length of the spliced image 

w1 The width of the spliced image 

h2 The length of the respliced image 

w2 The width of the respliced image 

s The size of the mosaic image 

max(a, b) Taking the maximum value among a and b 

min(a, b) Taking the minimum value among a and b 

Dog The original image in the training sample 

Ddm The mosaic image generated after the Dynamic Mosaic algorithm 

Dmm The mosaic-mixup image generated after the Dynamic Mosaic and mixup algorithm 

Dmc The mosaic-cutout image generated after the Dynamic Mosaic and cutout algorithm 

Dout The output image after data augmentation 

W1 The ratio of the number of original images to the number of output images 
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Symbols Meanings 

W2 The ratio of the number of mosaic images to the number of output images 

W3 The ratio of the number of mosaic-mixup images to the number of output images 

W4 The ratio of the number of mosaic-cutout images to the number of output images 

xi, xj Two images that are subjected to convex linear interpolation in the mixup algorithm 

y
i
, y

j
 The label of the image being performed convex linear interpolation 

x The mixed image generated after the mixup algorithm 

y The label of the mixed image generated after the mixup algorithm 

λ A real number, λ ∈ [0, 1] and conforms to the Beta distribution 

β A real number, β ∈ (0,∞) 

P Representative the evaluation metrics precision 

R Representative the evaluation metrics recall 

©2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


