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Abstract: Convolutional Neural Networks (CNNs) have achieved remarkable results in the
computer vision field. However, the newly proposed network architecture has deeper network layers
and more parameters, which is more prone to overfitting, resulting in reduced recognition accuracy
of the CNNs. To improve the recognition accuracy of the model of image recognition used in CNNs
and overcome the problem of overfitting, this paper proposes an improved data augmentation
approach based on mosaic algorithm, named Dynamic Mosaic algorithm, to solve the problem of the
information waste caused by the gray background in mosaic images. This algorithm improves the
original mosaic algorithm by adding a dynamic adjustment step that reduces the proportion of gray
background in the mosaic image by dynamically increasing the number of spliced images. Moreover,
to relieve the problem of network overfitting, also a Multi-Type Data Augmentation (MTDA)
strategy, based on the Dynamic Mosaic algorithm, is introduced. The strategy divides the training
samples into four parts, and each part uses different data augmentation operations to improve the
information variance between the training samples, thereby preventing the network from overfitting.
To evaluate the effectiveness of the Dynamic Mosaic algorithm and the MTDA strategy, we
conducted a series of experiments on the Pascal VOC dataset and compared it with other
state-of-the-art algorithms. The experimental results show that the Dynamic Mosaic algorithm and
MTDA strategy can effectively improve the recognition accuracy of the model, and the recognition
accuracy is better than other advanced algorithms.
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1. Introduction

Deep learning is a data-driven technique whose main purpose is to learn patterns and
expressions in training samples, and is widely used in the field of computer vision [1-3], and
trajectory outlier detection [4,5]. A recent study [6] has shown that the performance of deep learning
models is logarithmically related to the number of training samples, which means that the larger the
number of training samples, the better the generalization of the resulting model, and the better the
performance. When the training samples are relatively small, overfitting is easy to occur in the actual
application process [7,8]. Figure 1 depicts the visualization results of model error and epoch for ideal
and overfitting cases. Among them, Figure 1(a) is the training process in an ideal situation. As the
experiment proceeds, the error rates of both the train set and the test set are decreasing. Figure 1(b)
shows the training process in the case of overfitting. The error rate of the test set first decreases and
then increases with the iteration of the epoch. This is because the network memorizes the detailed
features of the training samples, but these detailed features cannot be generalized [9,10]. Diversified
training samples can prevent network overfitting [11,12], but the collection and production of
training samples require a high cost, so low-cost and simple data augmentation [13,14] methods have
become a more common choice for preventing network overfitting. In addition, data augmentation
has the effect of reducing the sensitivity of the model to images and avoiding the unbalanced
distribution of positive and negative samples [15], which is an effective method to improve the
overall performance of the model.
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Figure 1. Comparison of the training process in the ideal and overfitting cases. (a) The
ideal training process. (b) The training process of overfitting. The blue curve represents
the error rate of the test set has a clear inflection point, which means that the model
performs poorly on the test set relative to the training set.

Traditional data augmentation methods use random left-right flipping and cropping for training
samples [16], which increases the diversity of training samples, and changes the brightness,
saturation and contrast of images through color jitter. With the development of CNN, new network
architectures have been proposed, such as AlexNet [17], VGG-16 [18], ResNet [19], DenseNet [20],
etc. These architectures have deeper network layers, more complex structures and more parameters,
so the risk of overfitting is also increasing [21]. The before-mentioned data augmentation techniques
have been unable to effectively suppress the occurrence of overfitting.

Recently, researchers have done a lot of work in the field of mixed sample data augmentation [22],

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7193-7216.



7195

among which the mosaic [23] algorithm proposed by Alexey et al. has achieved remarkable results.
The mosaic algorithm mixes four training images and corresponding labels, so the generated mosaic
images contain four different contexts, which not only allows the model to detect objects outside the
normal context, but also helps to prevent overfitting of the network and improve the recognition
accuracy of the model. In addition, since four images are stitched into one image, each layer can
process the data of four images during the batch normalization calculates activation statistics [24]
operation. This means that the mini-batch does not need to be very large to achieve good results,
reducing the performance requirements for training equipment. However, the mosaic algorithm still
has some shortcomings, the most typical shortcomings include: 1) There may be a large area of gray
background not overwritten by the spliced images in the generated mosaic images, which will reduce
the amount of information contained in the mosaic images. 2) Only mosaic images are used to
participate in the training of the model, resulting in a single view of the training samples, and the
information differences of the training samples are limited, which is not conducive to the
generalization of the model.

Through in-depth research, we first aim to solve the problem of information waste caused by the
large gray background in mosaic images. As such, this paper proposes a Dynamic Mosaic data
augmentation algorithm. The Dynamic Mosaic algorithm adds a dynamic adjustment step based on
the original mosaic [23] algorithm. By dynamically increasing the number of spliced images, it
reduces the proportion of worthless areas in the mosaic image, and increases the complexity of the
image content. Second, in order to solve the problem of the network overfitting and a single view of
training samples, this paper also proposes a Multi-Type Data Augmentation (MTDA) strategy based
on the Dynamic Mosaic algorithm. The MTDA strategy randomly divides the training samples into
four groups, and each group of training samples is processed with different data augmentation
techniques, thereby improving the information variance between the training samples.

In short, the main contributions of this paper include the following aspects:

« An improved mosaic data augmentation algorithm is proposed. The Dynamic Mosaic
algorithm increases the dynamic adjustment step on the basis of the original mosaic algorithm,
reduces the proportion of the worthless area in the mosaic image, and improves the quality of the
generated mosaic image.

« A data augmentation strategy is introduced. The MTDA strategy divides the training sample
into multiple parts, and each part uses different data augmentation operations to improve the
information difference between the input images and solve the problem of overfitting caused by a
single view of the training sample.

The rest of this paper is organized as follows: In the next section, we give a brief review of
related work about data augmentation methods. In Section 3, we describe the method proposed in
this paper in detail. In Section 4, we report the experimental results of the Dynamic Mosaic
algorithm and the Multi-Type Data Augmentation strategy on the Pascal VOC dataset. Finally, we
conclude the paper in Section 5.
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2. Related works

Data augmentation is an effective regularization [25] method, which can increase the number
and diversity of training samples to improve the generalization ability of the model and prevent
network overfitting. This paper divides related work into four categories: traditional data
augmentation methods, data disrupting methods, unsupervised data augmentation methods and
mixed sample data augmentation methods.

In traditional data augmentation methods, all operations focus on the samples themselves,
mainly based on the data morphology of the image for data augmentation, including flip, rotation,
crop, zoom and color change, and other operations [26,27]. These techniques have been shown to be
useful for specific datasets, for example, random cropping and horizontal flipping techniques are
very helpful for the recognition task of the CIFAR dataset [28]. However, only using these
transformation methods will result in a single data sample, and cannot effectively suppress the
occurrence of overfitting [29]. Therefore, researchers have proposed more advanced data
augmentation methods from other perspectives.

Data disrupting is also a common data augmentation method, which randomly zeros out a part
of the image to achieve the purpose of changing the characteristics of the original image. For
example, the cutout [30] algorithm randomly crops a square patch in the image and replaces it with
“0” pixels, as shown in Figure 2. Noise is introduced into the image by masking, which makes the
CNN more robust to noisy images. Furthermore, when the patch masks the main part of the object,
such as the cat head, in this case, the CNN needs to learn the rest of the cat (such as ears and paws)
to recognize the object. This method improves the utilization of minor features in the images, which
is helpful for improving the recognition accuracy of the model. However, the data disrupting method
will cause the loss of pixel information of the images.

nﬂ

Input Flip Crop Zoom Color change

Cutmix Mosaic Dynamic Mosaic

Figure 2. Visual comparison of different data augmentation techniques.

Unsupervised data augmentation methods are mainly divided into two categories:
autoaugment [31] method and GAN [32] method. Autoaugment method generates a data
augmentation strategy suitable for a specific dataset, but using this method to explore a data
augmentation strategy takes a lot of time [33,34]. The GAN performs data augmentation operations
by randomly generating images that are consistent with the distribution of training samples [35],
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which increases training time by an order of magnitude and performs poorly on non-adversarial
images in accuracy [36].

The idea of mixed sample data augmentation is to use multiple samples to generate new
samples. For example, the mixup [37] algorithm improves the generalization ability of the model by
performing convex linear interpolation [38] on two images according to a certain ratio, and then
fusing them into a new training sample. As seen in Figure 2, however, mixup images are blurry and
unnatural in the representation of some local features [39]. The cutmix [40] algorithm superimposes
the cropped region of another input image onto the patch region, which solves the problem of loss of
pixel information in the cutout algorithm. The mosaic algorithm has a certain similarity with the
cutmix algorithm in theory. The cutmix algorithm is to crop and stitch the 2 images in the dataset,
and the mosaic algorithm is to stitch the four images in the dataset into a new image.

3. Methods

In this section, we describe, in detail, the Dynamic Mosaic data augmentation algorithm and
MTDA strategy proposed in this paper. First of all, the Dynamic Mosaic algorithm adds a dynamic
adjustment step on the basis of the original mosaic algorithm. By dynamically adjusting the number
of spliced images, the proportion of worthless areas in the mosaic image is reduced and the
complexity of the image content is increased. In addition, the MTDA strategy uses the mixup
algorithm and the cutout algorithm on the basis of the Dynamic Mosaic algorithm. Further, the
training samples are divided into four parts, where each part uses different data augmentation
operations to increase the information variance between the training samples, thereby preventing the
network from overfitting.

3.1. Dynamic Mosaic algorithm

There are two main purposes of using multiple image stitching: one is to increase the
complexity of the image content, and the other is to increase the number of target objects in the
image [41]. Both ways can motivate the trained model to have better detection performance and
generalization ability. The idea of the mosaic algorithm is to randomly select four images, takes parts
of them and stitches them into a mosaic image, and the excess part will be discarded. The mosaic
algorithm mainly includes five image processing steps: First, randomly select the indices of four
images and form the K € {1,2,3,4}. Second, initialize the mosaic image. It should be noted that the
size of the mosaic image is twice the size of the input image. For example, the shape of the input
image is 640 x 640 x 3, then the shape of the created mosaic image should be 1280 x 1280 x 3.
Third, use a random function to obtain a center point splicing coordinate (x.,y,) on the created
mosaic image. Fourth, place the spliced images into the mosaic image in the order of upper left,
upper right, lower left and lower right around the center point splicing. Finally, the periphery of the
mosaic image is cropped to obtain a mosaic image with a shape of 640x640x3. An example of the
mosaic algorithm is shown in Figure 3.

The original mosaic image is always composed of four spliced images, but it is affected by the
position of the center point splicing and the size of the spliced image itself. When the position of the
center point splicing is close to the border of the mosaic image or the size of the spliced image itself
is small, the spliced image cannot overwrite the entire area, and a large area of gray background is
easy to appear in the generated mosaic image, as shown in Figure 4. The gray background is created
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when the mosaic image is initialized and appears in the mosaic image because it is not overwritten
by the spliced image. There are no valuable target objects in the gray background, so when a large
area of gray background appears in the mosaic image, it reduces the amount of information contained
in the mosaic image. To solve the above problems, the Dynamic Mosaic algorithm is proposed. By
dynamically increasing the number of spliced images and overwriting the “worthless” gray
background with new images, the problem of information waste caused by the appearance of gray
background can be solved. Moreover, the Dynamic Mosaic algorithm can increase the complexity of
the image content and increase the number of target objects in the image to a certain extent.

(xe ye)
center coordinates

(x3,¥3) (X4,Y4)

Figure 3. An example of the mosaic algorithm. By splicing four images, not only is the
diversity of training samples increased, but the number of target objects is also increased.

In the Dynamic Mosaic algorithm, the number of spliced images is not a fixed value, but is
determined by judging the distance from the border of spliced images to the border of the mosaic
image after each stitching operation is completed; among them, this distance is represented by pad,
and pad . When the distance from the border of spliced image to the border of the mosaic image
exceeds the threshold z, the Dynamic Mosaic algorithm will acquire another image from the dataset
and overwrite it on a gray background, which we call the re-acquired image the respliced image. The
coordinates of the upper left and lower right corners of the respliced image in the mosaic images are
represented by («;,b,) and (c;,d;), and the positions of the coordinates («;,b,) and (c;,d;) are affected by
pad, and pad,. When pad, >z and pad, <z, the calculation process of the upper left corner
coordinate (a;,b;) of the respliced image is shown in Eq (1).

:{max(xc-wz ,0),i=1,3
i Xe» i=2,4

max(y +h;th, ,0), =12
b,-={ Gttt 0) (1)

yo-hi, i=3,4
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The calculation process of the lower right corner coordinate (c;,d;) of the respliced image is shown in
Eq (2).

_ { Xc i=1,3
T lmin(x,+w, , 5) , i=2,4

(2)

yc+h1 . =1 ,2
{max(yc-hl-hz ;-5) , i=3,4

Parallel
4 images

Parallel
5 images

Parallel
6 images

Figure 4. An example of the Dynamic Mosaic algorithm. The blue part represents the
proportion of the spliced image, and the gray part represents the proportion of the
“worthless” gray background. By increasing the number of images involved in spliced,
the problem of information waste caused by the appearance of large-area gray
backgrounds can be solved.

where, x. and y_ are the abscissa and ordinate of the center point splicing respectively, #; and w;,
are the length and width of the spliced image, 4, and w, are the length and width of the respliced
image, s is the size of the mosaic image, i from 1 to 4 represents the upper left, upper right, lower left
and lower right of the mosaic image, respectively, max(a, b) means taking the maximum value
among a and b, and min(a, b) means taking the minimum value among a and b.

When pad, <t and pad,, >, the calculation process of the upper left corner coordinate («;,b;)
of the respliced image is shown in Eq (3).

:{max(xc-wl-WZ ,0),i=1,3
' Xtwy, i=2,4

. {max(yc+h2 ,0),i=1,2 3)

Ves i=3,4

The calculation process of the lower right corner coordinate (c;,d;) of the respliced image is shown in
Eq (4).
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_{ Xe-W1, i=1,3

C; . .
olmin(xtwtw, , s) , =24

Ve i=1,2
d= 4
! {max(yc-hz ,-s) ,i=3,4 ()

When pad,, >t and pad,, >, we will compare the magnitude of the pad, and pad, values
and perform the dynamic adjustment step only in the larger dimension. When pad,, <z and pad,, <r,
we will not perform the dynamic adjustment step. In the Dynamic Mosaic algorithm, we do not
completely remove the gray background in the mosaic image, because, in the prediction stage, the
input image will be filled with a grey background to fit the dimensions of the input layer. Therefore,
retaining a small amount of gray background in the training samples will help the model learn to
ignore the gray background. A specific description of the Dynamic Mosaic algorithm is given in the
pseudocode below.

Pseudocode 1: Dynamic Mosaic data augmentation algorithm

1: Input: Image Iy,
2: function AugmentMosaic (Image 1,
3: X, y.=random.uniform (8,, 5,)
4:  Creating mosaic images /4,.size (2*s, 2*s).color (114)

5 fori=1,2, ---,kdo

6: Iim[(xal;, yal), (xa2;, ya2;)]eloig[(xb1;, ybl,), (xb2;, yb2,)]
7

8

9

Labels Ly, hyperparameter z

rigr Labels L)

padw=|xa1i-xb1i|, padh=|yall~-yb1,~|
if(pad,, > 7 or pad, >71)
Idm[(rxali’ ryali)l (rxa2,~, ryazi)](_lorig[(rXbli: rybli)! (rszia rybzl)]

10: Labels Lgy<Labels L,
11: end for
12: clip Images I;,,, Labels Lg4,
13: end function
14: Output Images /4, Labels L4,

3.2. Multi-Type data augmentation strategy

Although the information difference of each image is improved by means of the Dynamic
Mosaic algorithm, the information variance between images is not greatly improved. This may cause
the model to have higher recognition accuracy when recognizing images with similar distributions of
testing samples and training samples, but when the distributions of testing samples and training
samples do not match, the recognition accuracy of the model will not meet the needs of the task.

In order to improve the information variance between training samples, this paper proposes the
MTDA strategy. The MTDA strategy randomly divides the input image into four parts, and uses
different data augmentation methods for each part of the image. Finally, the obtained training
samples include original image, mosaic image, mosaic-mixup image and mosaic-cutout image.
Among them, the mosaic image is generated after using the Dynamic Mosaic algorithm, the
mosaic-mixup image is generated after the Dynamic Mosaic and mixup algorithms, and the

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7193-7216.



7201

mosaic-cutout image is generated after using the Dynamic Mosaic and cutout algorithms. An
example of the MTDA strategy is shown in Figure 5. For the convenience of representation, the four
types of images are represented by Dy, Dgm, Dmm and Dy, respectively, where the relationship
between the augmented output image D, and the four types of images can be represented as
Dy=D g UD 4y UDyy, i UDyy,, and the ratios of the number of samples in them are W,:W,:W5:W,.

The D,,, image is superimposed with the mixup algorithm based on the Dynamic Mosaic
algorithm. The mixup algorithm performs convex linear interpolation on the two images according to
a certain ratio, and then fuses them into a new sample. An example of the mixup algorithm is shown
in Figure 6, and the calculation process is shown in Eq (5).

W;=0.25

Dynamic-
Mosaic

Figure 5. An example of Multi-Type Data Augmentation strategy. The MTDA strategy
uses different types of training samples, which increases the information variance
between training samples, so it can better prevent network overfitting.

x:ixﬁ‘( 1 -j,)xj‘
y=ty+(1-A)y; (5)

AEBeta(f,p)

where x; and x; represent the two images involved in the fusion, y. and Y, represent the labels
of the two images, x and y represent the mixed images and labels after fusing the x; and x;

images. 4 and g are real numbers, and A€[0, 1], f€(0,=2), A conforms to the Beta distribution.
The D, image contains, not only the spatial blending feature after using the Dynamic Mosaic
algorithm, but also the pixel blending feature after using the mixup algorithm, which is very
helpful for improving the recognition accuracy of objects. The mixup algorithm, however,
sometimes generates local features that do not exist in the original image, resulting in excessive
adversarial interference. Therefore, the MTDA strategy uses four different types of images as
training samples to participate in the training of the model, and the D, image is only used as
part of the input image. This method not only solves the problem of excessive adversarial
interference, but also the diverse training samples can prevent the network from overfitting,
making the model perform better in challenging recognition and detection tasks.
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The D,,. image first uses the Dynamic Mosaic data augmentation algorithm, and then uses the
cutout algorithm on this basis. The idea of the cutout algorithm is to randomly select a center point in
the image, and then use a patch to mask the image around the center point. This operation is a
continuous dropout of input pixels to prevent the overfitting, and encourages the network to utilize
information from the entire image rather than relying on a small subset of specific visual features. By
superimposing the Dynamic Mosaic and cutout algorithms, it not only increases the complexity of
the training sample content, but also enables the network to better combine the context around the
noise and focus on some local secondary features. A specific description of the MTDA strategy is
given in the pseudocode below.

Figure 6. An example of the mixup algorithm. The two images are fused together by
convex linear interpolation, which improves the linear representation between training
samples.

Pseudocode 2: Multi-Type Data Augmentation strategy

1:Input: Image /I, Labels L., hyperparameter w,, Wi, W,
2: function MTDAstrategy (Image /s, Labels L)
3:  bool mosaic= random.random()<W,

4: if (mosaic)

5 Images 7,4, Labels L4, =loadmosaic (self, index)

6: if (random.random()<#3)

7 Images 17,4, Labels L,4,=mixup(*loadmosaic (self, random.randint(0, self.n-1)))
8 elif (random.random()<W,)

9 Images 17,4, Labels L.4,= cutout (image, labels)

10: else Images 14, Labels L,.4,=loadimage (self, index)
11: end function
12: Output Images 7,4, Labels L, 4.

In addition, we also verify the performance of the models combined with different data
augmentation methods. Among them, the strategy combining the four data augmentation methods
achieved the best performance. For the specific experimental results, please refer to Table 6 in
Chapter 4.4.2.
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4. Experiment

In this section, we first introduce the datasets used in the experiments and the evaluation metrics
we adopted. Then, we describe the experimental environment of this paper and the parameter
configuration in the experiment. In addition, we present the experimental results, analyze the data
and give our conclusions. Finally, we discuss some interesting findings derived from the
experimental data.

4.1. Datasets

In this paper, we conducted experiments and evaluate the Dynamic Mosaic algorithm and
MTDA strategy on the Pascal VOC [42] dataset. The Pascal VOC dataset contains a total of 20
classes, which can be divided into four main categories: vehicles, household, animals and other. The
specific classes are shown in Table 1. The Pascal VOC dataset contains two subsets: Pascal VOC
2007 and Pascal VOC 2012. Since the test set of Pascal VOC 2012 is not public, this paper uses the
train set of Pascal VOC 2007 and Pascal VOC 2012 as the train set of the experiments, which
contains 16551 images. The test set of Pascal VOC 2007 is used as the test set of our experiments,
which contains 4952 images.

Table 1. The Pascal VOC classes.

Vehicles Household Animals Other
Aeroplane Bottle Bird Person
Bicycle Chair Cat

Boat Dining table Cow

Bus Potted plant Dog

Car Sofa Horse

Motorbike TV/Monitor Sheep

Train

4.2. Evaluation metrics

To evaluate the performance of the proposed algorithms, this paper uses precision, recall, F;
score and mean Average Precision (mAP) as evaluation metrics to measure the recognition accuracy
of the detection model. Among them, precision represents the correct proportion of the results
predicted by the model, recall represents the proportion of the real target that the model predicts
correctly. The calculation processes of precision and recall are shown in Egs (6) and (7).

precision=——— (6)

recall=

T
TP+FN’ (7)

where TP represents True Positive, which means the positive examples are correctly classified, FP
represents False Positive, indicating that negative examples are incorrectly classified as positive
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examples, and FN represents False Negative, which means that positive examples are incorrectly
classified as negative examples. F; score takes into account the precision and recall of the model, and
can be regarded as a harmonic average of the precision and recall of the model. The calculation
process of F; score is shown in Eq (8).

recision*recall
F, =D PECon et (8)
precisiontrecall

mMAP is the average of all classes of AP, the larger the mAP value, the higher the recognition
accuracy of the model. The calculation process of mAP is shown in Eq (9).

mAP= % N AP, (9)

where N is a constant representing the number of classes in the dataset, and AP; represents the
average accuracy for class i. In addition, unless otherwise specified, the default AP value is obtained
when ToU=0.5.

4.3. Experiment environment and parameter configuration

All the experiments were performed on a desktop computer with the CPU Intel(R) Xeon(R)
Gold5117, memory 128G, GPU NVIDIA Tesla V100, 16G video memory. The software
configuration of the experimental platform is as follows: the operating system is Ubuntul8.04
(64-bit), the CUDA version is 10.2, the Python version is 3.8.3, and the open source neural network
framework of Pytorch 1.10.0.

This paper uses YOLOvV5s [43] as the detection model. In order to ensure the fairness of the
experimental results, the model is trained from scratch for each experiment. The input image size is
640 x 640 x 3, the batch_size is 32, the initial learning rate is 0.01, the threshold z for the dynamic
adjustment method is 480, the £ in mixup data augmentation is 8 and W, :W,:W3:W,y=1:1:1:1.
All experiments used a warm-up strategy for the first 3 epochs and a cosine annealing strategy [44]
from the 4™ epoch.

4.4. Experimental results and analysis

In this section, we first present and analyze the experimental results of the Dynamic Mosaic
algorithm, which mainly includes the comparison of the experimental results of the Dynamic Mosaic
algorithm and the mosaic algorithm, and the comparison of the experimental results of the Dynamic
Mosaic algorithm and other state-of-the-art algorithms. Then, we show and analyze the experimental
results of the MTDA strategy, which mainly include the comparison of the experimental results
before and after the use of the MTDA strategy, the comparison of the experimental results of the
MTDA strategy and different data augmentation strategy, and the comparison of the experimental
results of different training sample combinations in the MTDA strategy.

4.4.1. Experimental results and analysis of Dynamic Mosaic

Increasing the complexity of the training sample background and the number of objects in the
training sample is a reliable way to improve the detection performance and generalization ability of
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the model. The mosaic image generated by the original mosaic algorithm only contains the pixel
information of four spliced images and is affected by the position of the center point splicing and the
size of the spliced image itself, and the area not overwritten by the spliced image will be occupied by
“worthless” gray areas. According to the Dynamic Mosaic algorithm proposed in Section 3, by
dynamically increasing the number of spliced images based on the original mosaic algorithm, the
proportion of worthless regions in the mosaic image can be reduced, thereby improving the
recognition accuracy of the model.

To demonstrate the effectiveness of the Dynamic Mosaic data augmentation algorithm, we
conducted experiments on the Pascal VOC dataset. It should be noted that we selected the maximum
value of mAP in 300 epochs, and recorded the precision and recall at the same time, and obtained the
F1 score by calculating the harmonic average of precision and recall. The experimental results are
shown in Table 2.

Table 2. Experimental results of the Dynamic Mosaic algorithm and the mosaic algorithm.

Scheme Method P (%) R (%) F1 (%) MAP (%)
A Original 76.03 65.05 70.11 71.19
B Mosaic 78.99 73.15 75.96 79.01
C Dynamic Mosaic (Our) 80.13 72.92 76.36 79.73

o Original @ Mosaic B Dynamic Mosaic
<0 78.9930-13 79.0179-73
76.03 75.0676.36
75 73.1572.02
70.11 7119
70
o) 65.03
~ 63
60
50
Precision Recall F1 score mAP

Figure 7. Comparison of experimental results of different schemes. Although the
evaluation metrics recall of the Mosaic Scheme is slightly higher than that of the Dynamic
Mosaic Scheme, compared with the Original and Mosaic Schemes, the Dynamic Mosaic
Scheme has different degrees of improvement in the evaluation metrics precision, F; score
and mAP. This is because the Dynamic Mosaic data augmentation algorithm adds a
dynamic adjustment step based on the mosaic algorithm, which solves the problem of
information waste in the original mosaic algorithm, and increases the complexity of the
image content, so that the detection model has better generalization ability.

Among them, Scheme A does not use the data augmentation algorithm, and only uses the
original image as the training sample to participate in the training of the model. Compared to Scheme
B and Scheme C using data augmentation algorithms, Scheme A performs poorly. This shows that
using a suitable data augmentation algorithm can improve the recognition accuracy of the model.
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Scheme B uses the mosaic data augmentation algorithm. Compared with Scheme A, the evaluation
metrics of Scheme B have been greatly improved, and the highest recall has been achieved among
the three schemes. Scheme C uses the Dynamic Mosaic data augmentation algorithm proposed in
this paper. It can be seen from the experimental results that, although the recall of Scheme C is lower
than that of Scheme B, Scheme C has different degrees of improvement in the evaluation metrics
precision, F; score and mAP. Among them, the evaluation metrics precision is improved by 1.14%,
which indicates that using the Dynamic Mosaic data augmentation algorithm during the training
process can improve the generalization ability of the detection model, thereby reducing the detection
error rate of the model for some difficult samples. In addition, the F; score and mAP are improved by
0.4 and 0.72%, respectively, compared with the Scheme B, which indicates that the detection model
using the Dynamic Mosaic data augmentation algorithm has better comprehensive performance. In
order to more intuitively see the difference of the performance of each scheme, this paper draws the
experimental results of each scheme, as shown in Figure 7.

In order to demonstrate the advancement of the Dynamic Mosaic data augmentation algorithm,
this paper selects the more advanced algorithms for comparison, including cutmix [40], mixup [37]
and mosaic9 [45] algorithms. The cutmix and mixup algorithms have been introduced in Chapter 2,
so here we introduce the mosaic9 algorithm. The mosaic algorithm splices four images to generate a
new image, and the mosaic9 algorithm splices nine images into a new image. The mosaic9 algorithm
improves the recognition ability of the model in complex backgrounds and improves the accuracy of
small objects recognition. The experimental results of all schemes are shown in Table 3. It can be
seen that the training time of Scheme A using the original image is the shortest, which is 14.2 hours,
and the training time of Scheme D is the longest, which is 25.6 hours. Scheme F, using the Dynamic
Mosaic algorithm, achieves the highest recognition accuracy of 79.73%, and Scheme B has the
lowest recognition accuracy of 69.62%. Compared with the mosaic algorithm before the
improvement, although the training time of the Dynamic Mosaic data augmentation algorithm is
increased by 0.7 hours, the recognition accuracy is improved by 0.72%. The experimental results
show that compared with other advanced algorithms, the Dynamic Mosaic algorithm, proposed in
this paper, has advantages in recognition accuracy.

Table 3. Comparison of recognition accuracy and training time of different algorithms.

Scheme Method MAP (%) Training time (h)
A Original 71.19 14.2
B CutMix 69.62 15.4
C Mixup 77.33 17.8
D Mosaic9 78.97 25.6
E Mosaic 79.01 15.7
F Dynamic Mosaic (Our) 79.73 16.4

Figure 8 shows the detection examples of the mosaic algorithm and the Dynamic Mosaic
algorithm on the Pascal VOC dataset. The first line is to use the original images as training samples
without data augmentation. It can be seen from the detection examples that the confidence of the
Original Scheme for the target prediction is relatively poor. For example, the confidence of the
people in the second group of images is only 0.15. In addition, there are cases of missed detection in
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the Original Scheme, such as the cat in the first group of images are not recognized. The second line
is the scheme using the mosaic algorithm. It can be seen from the detection examples that the Mosaic
Scheme has a false detection, for example, as the yellow dog in the third group of images is falsely
identified as a sheep and has a confidence of 0.49. Also, the dog's leg is falsely identified as a cow
and has a confidence of 0.46. The third line is the scheme using the Dynamic Mosaic algorithm
proposed in this paper. The Dynamic Mosaic Scheme has no missed detection or false detection, and
has higher confidence than the Original Scheme and the Mosaic Scheme, for example, as the
confidence of cats in the first group of images increased from 0.37 to 0.56, and the confidence of
horses in the second group of images increased from 0.37 to 0.70.

Original

Mosaic

erson 0.88

horse (P./U .
2

Dynamic Mosaic

Figure 8. Comparison of detection examples of different data augmentation schemes. The
detection example comes from the test set of Pascal VOC 2007. It can be seen from the
detection results that the detection model using the Dynamic Mosaic algorithm can
recognize the target object more accurately, and there is no missed detection or false
detection.

4.4.2. Experimental results and analysis of MTDA strategy
Only using mosaic images that have been generated by the Dynamic Mosaic algorithm to
participate in the training of the model will cause the training samples to maintain a single view,

which limits the difference in information, and is not conducive to the generalization of the model.
According to the MTDA strategy proposed in Section 3, by randomly dividing the training samples
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into four parts, each part of training samples is processed with different data augmentation operations,
which will increase the information variance between the training samples, and is beneficial to the
generalization of the model and improves the recognition accuracy of the model.

To demonstrate the effectiveness of the MTDA strategy, we conducted experiments on the
Pascal VOC dataset. The experimental results are shown in Table 4. Scheme A only uses the
Dynamic Mosaic algorithm, and Scheme B additionally uses the MTDA strategy based on Scheme A.
It can be seen, from the experimental results, that each evaluation metrics of Scheme B have been
greatly improved. Among them, precision increased by 1.71%, recall increased by 3.53%, F; score
increased by 2.69% and mAP increased by 3.68%. This is because the MTDA strategy divides the
input image into four parts, and the samples of each part are processed with different data
augmentation methods, which improves the information variance between training samples. In
addition, the diverse training samples can improve the generalization and robustness of the model
and prevent the network overfitting, so that the model can have better recognition effect on complex
and difficult objects.

Table 4. Comparison of experimental results before and after using the MTDA strategy.

Scheme Method P (%) R (%) F1(%) mAP (%)
A Dynamic Mosaic 80.13 72.92 76.36 79.73
B Dynamic Mosaic + MTDA 81.84 76.45 79.05 83.41

In order to demonstrate the advancement of the MTDA strategy, this paper selects the data
augmentation strategy in YOLOV5 as the Baseline Scheme for comparison in our study. The main
idea of the Baseline Scheme is to increase the probability of using the mixup algorithm based on the
mosaic images, as the main purpose is to provide richer training samples, thereby preventing the
network overfitting. In the Baseline Scheme, the probability of using mosaic algorithm is 0.66, and
the probability of using mixup algorithm is 0.5. Since the input image contains the original image
and the mixed image, it takes 500 epochs for the model to reach convergence, and the rest of the
parameters are the same as the first part. The experimental results are shown in Table 5.

Table 5. Comparison of results of different data augmentation strategies.

Scheme Method P (%) R (%) F1 (%) MAP (%)
A Baseline 79.43 75.96 77.66 81.54
B MTDA (Our) 81.84 76.45 79.05 83.41

Compared with the Baseline Scheme, the MTDA Scheme has achieved great improvements in
various evaluation metrics. Among them, the precision of the model is increased by 2.41%, the recall
is increased by 0.49%, the F; score is increased by 1.39% and the mAP is increased by 1.87%. This
is because the MTDA strategy uses more types of data augmentation methods than the data
augmentation strategy in YOLOvV5. In addition, the MTDA strategy does not use all data
augmentation methods at the same time, but divides the input image into four different parts, and
performs different data augmentation processing on each part, improving the information variance
between training samples. Therefore, the model can achieve better performance in more complex
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detection environments.

In order to further observe the changes of AP values of each class in the Baseline Scheme and
the MTDA Scheme, this paper studied the P-R curves of the two schemes, as well as the AP and
mAP values of each class, as shown in Figure 9. Compared with the Baseline Scheme, the AP value
of all class of the MTDA Scheme has increased. Especially, as the AP value of some classes is low in
the Baseline Scheme, the AP value in the MTDA Scheme is greatly improved. For example, the AP
value of potted plant increased by 4.3% from 55.8 to 60.1%, and the AP value of boat increased by
3.9% from 69.6 to 73.5%. In addition, the AP values of some classes are already relatively high in
the Baseline Scheme, but the AP values are still improved in the MTDA Scheme. For example, the
AP value of aeroplane increased by 1.8% from 90.5 to 92.3%, and the AP value of bicycle increased
by 1.4% from 90.7 to 92.1%.

aeroplane 0.905 5 T— ——————— — aeroplane 0.923
bicycle 0.907 \ = o ~ . bicycle 0.921
bird 0.774 ko) bird 0.810
—— boat 0.696 X —— boat 0.735
bottle 0.750 0.8 bottle 0.760
bus 0.903 bus 0.899
car 0.920 car0.933
cat 0.858 cat 0.869
chair 0.672

%8 cow 0.871

L\ |
diningtable 0.748 § \ \S '1‘" diningtable 0.771
e \
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—— motorbike 0.889 0.4 NN W LR —— motorbike 0.898
b T \
\]
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Figure 9. (a) The P-R curve of the Baseline Scheme, and (b) the P-R curve of the MTDA
Scheme. The thin curve in the figure represents the P-R curve of each class AP, the
thicker blue curve is the P-R curve of mAP, and the corresponding curve color and AP
value of each class are given in the rectangle box on the left.

In order to explore the influence of different image combination methods in the MTDA strategy
on the recognition accuracy of the model, this paper conducted multiple sets of comparative
experiments. The experimental results are shown in Table 6. D,, represents the original image, Dy,
represents the mosaic image generated by the Dynamic Mosaic algorithm, D, image is
superimposed on the basis of the Dynamic Mosaic algorithm and uses the mixup algorithm and D,
image first uses the Dynamic Mosaic algorithm, and then uses the cutout algorithm on this basis. In
addition, the proportion of different images in the training samples is the same.

In the process of exploring the influence of different combinations of Dy, Dgm Dpmm and
D,,. images on the recognition accuracy of the model, we found two interesting phenomena. First,
when comparing Schemes A, B, C and D, it can be observed that the trained model has better
performance when D, or D, images are included in the data augmentation strategy. The reason
for this phenomenon is that the D, and D, images use the mixup [37] data augmentation
algorithm and cutout [30] data augmentation algorithm on the basis of the mosaic images, so that the
training samples can generate more transformations, which is important for inducing the robustness
of the model. In addition, comparing Schemes B, C and Schemes E, F, we also find that the model
containing D,,. images have higher recognition accuracy than the model containing D, images
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when other images in the data augmentation strategy are the same. We believe that, compared with
the mixup algorithm, the cutout algorithm introduces noise into the image through mask, which can
increase the diversity of training samples and make the CNN more robust.

Table 6. Comparison of experimental results of different training sample combinations in

MTDA strategy.
Training samples
Scheme F1 (%) MAP (%)
Dog de Dmm Dmc
A v v 75.59 78.56
B v v 77.78 81.31
C v v 77.68 81.63
D v v 78.12 82.00
E v v v 77.66 81.54
F v v v 78.07 82.07
G v v v 79.04 83.38
H v v v v 79.05 83.41

Original

Baseline

MTDA

Figure 10. Comparison of detection examples of different data augmentation strategies.
The detection example comes from the test set of Pascal VOC 2007. It can be seen from
the detection examples that the detection model using the Multi-Type Data Augmentation
strategy has no missed detection or false detection, and can locate and recognize the
target object more accurately.
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Figure 10 shows the detection examples of the three different schemes, namely the Original
Scheme without data augmentation strategy, Baseline Scheme using data augmentation strategy in
YOLOvV5, and MTDA Scheme using Multi-Type Data Augmentation strategy. It can be seen from the
detection examples that the Original Schemes and Baseline Schemes have problems of false
detection and inaccurate positioning. For example, the Original Schemes and Baseline Schemes in
the second group of images mistake the bird as a person, and the bounding box of the Original
Schemes and Baseline Schemes in the third group of images only encircles the dog’s head. In
contrast, the MTDA Scheme proposed in this paper has no problems of false detection and inaccurate
positioning, and has higher confidence.

4.5. Discussion

In order to summarize the experimental results of this paper and emphasize the advantages of
the Dynamic Mosaic algorithm and the MTDA strategy in recognition accuracy, we have compiled
the experimental results of the Dynamic Mosaic algorithm and the MTDA strategy, as shown in
Table 7.

Table 7. Comparison of Dynamic Mosaic algorithm and MTDA strategy with existing
algorithms and strategies.

Scheme Method P (%) R (%) F1 (%) MAP (%)
A Original 76.03 65.05 70.11 71.19
B Mosaic [23] 78.99 73.15 75.96 79.01
C Dynamic Mosaic 80.13 72.92 76.36 79.73
D Baseline [43] 79.43 75.96 77.66 81.54
E Dynamic Mosaic + MTDA 81.84 76.45 79.05 83.41

By analyzing the above experimental results, we obtained some interesting findings: 1) The
Precision of the detection model using the Dynamic Mosaic algorithm has been greatly improved
compared with the mosaic algorithm. This shows that the detection model using the Dynamic Mosaic
algorithm has better generalization ability, and can reduce the detection error rate of the model for
some difficult samples. 2) Compared with the model without the MTDA strategy, the MTDA strategy
proposed in this paper can improve the robustness of the model and enable the model to have better
detection results when facing complex and difficult objects. Generally, the detection model using the
MTDA strategy has better comprehensive performance. 3) The Dynamic Mosaic algorithm and
MTDA strategy proposed in this paper only improve the quality of training samples, without
changing the structure of the network itself. Therefore, the Dynamic Mosaic algorithm and MTDA
strategy will increase the training cost to improve the accuracy of object detection, but will not
increase the complexity of the original model.

5. Conclusions
In this paper, we firstly proposed the Dynamic Mosaic algorithm for data augmentation. Based

on the original mosaic algorithm, this algorithm adds a dynamic adjustment step, which solves the
problem of information waste caused by the large, gray background in the generated mosaic image,
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and improves the complexity of the content in the mosaic image. In addition, this paper proposed the
Multi-Type Data Augmentation (MTDA) strategy based on the Dynamic Mosaic algorithm to relieve
the problem of network overfitting. This strategy divides the training samples into four parts, and
uses different data augmentation methods to process the training samples of each part, which
improves the information variance between the training samples, and prevents the network from
overfitting. Finally, to evaluate the effectiveness of the method, we conducted a series of experiments
on the Pascal VOC dataset, and the experimental results show that the Dynamic Mosaic algorithm
improves mAP by 0.72% compared with the previous methods, and the MTDA strategy improves
mMAP by 1.87% compared with other methods. However, we also found that the recognition accuracy
of the model for small objects decreased after using the MTDA strategy. This is because the small
objects in the training samples will be partially shielded after using the mixup algorithm and the
cutout algorithm, which is not conducive to the recognition of small objects. In future work, we hope
to solve the problem of decreasing recognition accuracy of small objects by adjusting the ratio of the
number of four types of images.
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Appendix

In order to make it easier for readers to find and understand the meaning of the symbols in the

paper, Table Al lists each symbol and its meaning in the order in which the symbols appear.

Table Al. Symbols appearing in this paper and their meanings.

Symbols Meanings

(xey,) The center point splicing coordinates of mosaic image

pad, The length from the border of spliced images to the border of the mosaic image
pad The width from the border of spliced images to the border of the mosaic image

T The threshold for spliced images to borders of mosaic images

(a;,b;) The coordinates of the upper left corner of the respliced image in the mosaic image
(cid;) The coordinates of the lower right corner of the respliced image in the mosaic image
h The length of the spliced image

wy The width of the spliced image

hy The length of the respliced image

Wy The width of the respliced image

S The size of the mosaic image

max(a, b) Taking the maximum value among a and b

min(a, b) Taking the minimum value among a and b

D, The original image in the training sample

Dy The mosaic image generated after the Dynamic Mosaic algorithm

D The mosaic-mixup image generated after the Dynamic Mosaic and mixup algorithm
D, The mosaic-cutout image generated after the Dynamic Mosaic and cutout algorithm
Dy The output image after data augmentation

W, The ratio of the number of original images to the number of output images

Continued on next page
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Symbols Meanings

W, The ratio of the number of mosaic images to the number of output images

Ws The ratio of the number of mosaic-mixup images to the number of output images
Wy The ratio of the number of mosaic-cutout images to the number of output images
Xy X Two images that are subjected to convex linear interpolation in the mixup algorithm
Vo Y The label of the image being performed convex linear interpolation

X The mixed image generated after the mixup algorithm

y The label of the mixed image generated after the mixup algorithm
A Areal number, A€ [0, 1] and conforms to the Beta distribution
p A real number, € (0,°)

P Representative the evaluation metrics precision

R Representative the evaluation metrics recall

AR ©2023 the Author(s), licensee AIMS Press. This is an open access
AaiMS A[MS Press article distributed under the terms of the Creative Commons
NS =2 Attribution License (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7193-7216.



