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Abstract: The convergence speed and the diversity of the population plays a critical role in
the performance of particle swarm optimization (PSO). In order to balance the trade-off between
exploration and exploitation, a novel particle swarm optimization based on the hybrid learning model
(PSO-HLM) is proposed. In the early iteration stage, PSO-HLM updates the velocity of the particle
based on the hybrid learning model, which can improve the convergence speed. At the end of the
iteration, PSO-HLM employs a multi-pools fusion strategy to mutate the newly generated particles,
which can expand the population diversity, thus avoid PSO-HLM falling into a local optima. In order
to understand the strengths and weaknesses of PSO-HLM, several experiments are carried out on 30
benchmark functions. Experimental results show that the performance of PSO-HLM is better than
other the-state-of-the-art algorithms.

Keywords: particle swarm optimization; adaptive parameters; multi-pool fusion; hybrid-learning
model; Gaussian Perturbation

1. Introduction

Meta-heuristic algorithm is a method based on computational intelligence to solve the optimal
solution of complex optimization problems. It refines the corresponding feature model under the
guidance of the characteristics of specific problems and designs intelligent iterative search
optimization algorithm through the understanding of relevant behaviors, functions, experiences, rules
and action mechanisms in biological, physical, chemical, social, artistic and other systems or fields,
such as the monarch butterfly optimization (MBO) [1], slime mould algorithm (SMA) [2], moth
search algorithm (MSA) [3], hunger games search (HGS) [4], Runge Kutta method (RUN) [5], colony
predation algorithm (CPA) [6], weIghted meaN oF vectOrs (INFO) [7] and Harris hawks optimization
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(HHO) [8].

PSO is one of the important branches of meta heuristic algorithm, it was proposed by Kennedy and
Eberhart in 1995 [9]. It is a heuristic swarm intelligence algorithm, which can solve global
optimization problems by simulating the foraging behavior of birds. In the process of problem
solving, PSO searches the global optimal solution by sharing information among particles. It is
widely concerned because of its simplicity and fast convergence [10]. In order to solve a series of
optimization problems [11, 12], researchers have proposed many PSO variants. By adaptively
adjusting the inertia weight of the PSO algorithm [13], the convergence speed of the algorithm is
accelerated. By designing different types of topology, the particle learning model is changed, which
increases the diversity of the population [14]. By simulating dynamic balance and dynamically
forming an independent search space, PSO can effectively avoid premature convergence [15, 16]. In
addition, Levy flight is a random walk with a heavy tailed probability distribution of step size, that is,
there is a relatively high probability of large strides in the process of random walking. Compared with
random walking without heavy tails in the step size distribution, the motion track of Levy flight is just
like flying. It can jump out of the local optimal value with high probability [17].

Three archives particle swarm optimization algorithm (TAPSO) [18] is proposed to solve
continuous domain global optimization problems. This method increases the diversity of the
population by increasing the evaluation criteria of the improvement rate, which improves the accuracy
of the multimodal problem and optimizes the potential, but is prone to premature convergence [19].
By increasing the improvement rate, the algorithm improves the diversity of the population and the
precision and optimization potential of the multimodal problem. This is a considerable improvement
direction, but due to the unclear particle objectives at each stage and insufficient division of the
learning model, it is easy to lead to premature convergence and sharp decline in population diversity.

In order to improve the drawbacks of premature convergence and population diversity, the
population of PSO-HLM is divided into four sub-population pools (elite pool, potential pool, triple
potential pool and fusion pool). The new offspring randomly select two sub-population pools for
cross fusion. In the particle learning stage, the velocity of each particle can be updated through four
learning models: confidence learning model, mild learning model, standard learning model, Gaussian
learning model. Various learning models can guarantee that each particle information can be fully
used, so that it does not fall into the local optima prematurely. In the process of iteration, PSO-HLM
uses tangent function to conduct large-scale random disturbance to the inertia weight, thus it can
realize large-scale particle searches. Through the adaptive change of the cross probability using the
sine function, PSO-HLM mainly focuses on particles with good fitness value at the beginning of
iteration. At the later stage of the iteration, it focuses on particles with high fitness value
improvement rate.

The rest of this paper is organized as follows: Section 1 is an introduction. Section 2 introduces
the traditional particle swarm optimization algorithm, and analyzes some variations of particle swarm
optimization algorithm. Section 3 provides a detailed analysis and explanation of the PSO-HLM.
Section 4 is the experimental part, which verify the feasibility and effectiveness of the PSO-HLM.
Section 5 summarizes the main points of this paper and introduce the future work.
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2. Related works

2.1. Canonical PSO

Particle swarm optimization (PSO) has recently developed into an important branch of
combinatorial heuristic technology. It operates on a group of potential solutions to explore the optimal
search space. Like ant colony optimization (ACO) [20] and other algorithms, particle swarm
optimization was originally developed to study the concept of interesting social behavior (flocks of
birds or fish) [21] in a simplified way in simulation. However, the potential of this technology is soon
realized as a powerful optimization tool [22], which can be successfully applied to continuous and
discrete optimization problems [23]. In cloud task scheduling, hybrid particle swarm optimization
(HPSO) uses intelligent fish swarm algorithm and particle swarm optimization algorithm to further
reduce the total execution application time [24]. Traveling Salesman Problem (TSP) is regarded as an
NP hard problem, which is the benchmark of various optimization methods [25]. PSO is used to
optimize the parameters of Ant Colony Optimization (ACO), and then combines with ACO to solve
the TSP problem [26].

PSO is a population-based intelligent optimization algorithm, its flowchart is shown in Figure 1. The
canonical PSO could be viewed as a population size n of particles searching in problem dimension d.
Through continuous iterative searching and communicating, as well as the intra-group communication
mechanism, the optimal value of the problem space was finally achieved. Each particle is a feasible
solution of the problem, and they all have two vectors of velocity and position. The position and
velocity of the i-th particle in each dimension at iteration time t were xt

i = [xt
i,1, x

t
i,2, . . . , x

t
i,d] and

vt
i = [vt

i,1, v
t
i,2, . . . , v

t
i,d]. At each iteration, the position and velocity of the particles were updated by

Eq. 2.1 and Eq. 2.2.

vt
i, j = w · vt−1

i, j + c1 · r1 ·
(
pbt

i, j − xt−1
i, j

)
+ c2 · r2 ·

(
gbt

j − xt−1
i, j

)
(2.1)

xt
i, j = xt−1

i, j + vt
i, j (2.2)

Where i ∈ [1,n] is the number of particles, j ∈ [1,d] is the dimension. pb stands for the best position
of the individual particle, gb is the position of the best particle in the whole population. w is the inertia
weight, c1 and c2 are the acceleration constants, usually equal to 2. r1, r2 ∈ [0,1] are random numbers.

2.2. Studies of PSO

In the past ten years, many variants and improvements have been made to the basic PSO algorithm
to deal with premature convergence and obtain higher search speed. Since the parameters used in PSO
are considered to have a great impact on the performance of the algorithm, many studies have been
carried out to adaptively adjust the parameters of different problems [27]. Different from the
traditional particle swarm with the same particle, some researches have proposed heterogeneous
particle swarm optimization algorithm, in which the particles have different behaviors. The
information transmission of several neighborhood typologies is analyzed theoretically, and a
PSO [28] with changing topology is proposed. In order to avoid premature convergence, a method to
maintain group diversity is proposed [29]. The evolution process of PSO is deeply analyzed [30],
several methods to improve the performance of PSO are described.
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Figure 1. The flowchart of Canonical PSO.

On the adjustment and improvement of many strategies, designing a more effective speed update
rule has attracted the attention of many researchers. Many scholars have proposed various PSO
variants. According to the goal to be achieved, most researches can be divided into four categories,
namely parameter adjustment, learning strategy adjustment and auxiliary combination with other
algorithms.

1) Parameter adjustment: it is generally believed that a smaller w is conducive to exploitation,
while a larger w is conducive to exploration. In the optimization process, the most common update
rule of w decreases linearly from 0.9 to 0.4, which is still applied in many PSO. Based on the effect of
iteration w, Rantnaweera et al. further advocate the use of layered PSO with variable time
acceleration coefficient HPSO-TVAC [31, 32]. However, considering that the PSO search process is
nonlinear and complex, many nonlinear change rates are proposed to adjust parameters to give
particles different search behaviors. The setting of parameters will encounter inappropriate
contributions to the adjustment of parameters. In order to achieve more satisfactory results in the

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7056–7087.



7060

adjustment of parameters, many scholars propose different adjustments [22, 26]. For example, in
adaptive PSO (APSO), w, c1 and c2 no longer depend on the number of iterations. Various
experiments aim to adjust the parameters of particles by combining or separating fitness value,
velocity and diversity of population. A large number of experimental data show that adaptive can help
particles achieve the balance between exploration and development capabilities.

2) Learning strategy adjustment: in the research of particle swarm optimization, global PSO (GPSO)
and local PSO (LPSO) are two basic learning strategies [33]. Many studies show that the sparse and
dense neighbor topology [13, 14] strategies are suitable for complex multimodal problems and simple
unimodal problems. In order to overcome the shortcomings of single learning, researchers use different
weighting methods to take the entire population as an example of particle swarm. In this way, the
effects of comprehensive learning strategy, orthogonal learning strategy, interactive learning strategy
and dimensional learning strategy are significant.

3) Combination of auxiliary particles: Considering that different operators or optimization
algorithms have their own characteristics, many researchers focus on combining them with reasonable
integration strategies [34]. For example, genetic operators and various local search strategies are very
popular auxiliary tools for balancing exploration and development [35]. In addition, levy flight, as a
common random allocation strategy, is another auxiliary type of PSO [36].

4) Fully-adaptive PSO variants: some PSO variants can make usage of their cognitive and social
factors knowledge learned from their neighbors, Lynn and Suganthan proposed an integrated PSO
(EPSO) [12], in which five PSO variants are hybridized together through the integrated method.
Experiments show that the adaptive mechanism used to allocate appropriate PSO variants to the
population in the evolutionary process can organically integrate the advantages of the PSO variables
involved. In addition, some studies have shown that the hybrid of PSO and other evolutionary
algorithms (EA) also shows promising performance [37]. No matter which collaboration mechanism
is used in these types of PSO variants, the main idea is to use different search behaviors of the
algorithms involved to improve the search ability, and to share useful information of the algorithms to
enhance the development ability.

3. A novel PSO based on hybrid-Learning model

In PSO-HLM, a particle i can learn from Ei, GB, PBi and Gaussian perturbation based on four
learning model (confidence learning model, mild learning model, standard learning model, gaussian
learning model). Ei is a potential exemplar particle, it can be selected by the roulette wheel selection
from four sub-population exemplar pools (elite pool, potential pool, triple potential pool and fusion
pool). During the selection process, crossover probability pc determines which sub-population
exemplar pools to choose for breed Ei. Section 3.1 describes the adaptive change of crossover
probability and the random disturbance of inertia weight, Section 3.2 introduces the concept of
multi-pool fusion strategy, Section 3.3 details the implementation of hybrid learning model strategy.

3.1. Adaptive crossover probability and disturbance of inertia weight

In the iterative algorithm, fixed parameter values can not fully feed back the information of each
stage, resulting in poor performance of the algorithm. In order to adaptively adjust the exploration
and exploitation direction according to the current stage information, PSO-HLM adaptively adjust the
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parameter values according to the stage information.
The crossover probability has a great impact on the diversity of algorithms. When the crossover

probability is fixed, the robustness of the algorithm level is poor. Inspired by the characteristics of
sine function, the sine function is periodic, it can help to periodically change crossover probability pc.
The possibility of particle dispersion and re-aggregation is greater, and the ability of external search is
stronger in the later stagepc is updated according to Eq (3.1) below.

pc = α1 − sin(( CurrentIter /MaxIter ) ∗ π) ∗ α2 (3.1)

where pc is the crossover probability, CurrentIter is the current number of iterations, MaxIter is the
maximum number of iterations, α1 is set to 0.9, and α2 is set to 0.4.

Inertia weight w can control the exploration ability of particles, large inertia weight provides
sufficient global search, while small inertia weight focuses more on local search. In order to better
solve the problem of falling into local optima, the inertia weight is perturbed. This method has the
characteristics of large tangent function range and adding random factors, floating in a large range. As
a result, particles will have different inertia weights set on each dimension. In Section 3.3, different
learning model strategies (confidence model, standard model, mild model and Gaussian model) use
different formulas to update inertia weight. Confidence model and Gaussian model uses Eq (3.2) to
update the inertia weight of particles, standard model and mild model uses Eq (3.3) to update the
inertia weight of particles. Equation (3.2) can help particles focus on small step search, and Eq (3.3)
can help particles prefer on big step search. The detail of Eqs (3.2) and (3.3) is as follow:

wd = ϵ + η∗ tan ((r − 0.5)∗π) (3.2)

wd = δ + η∗ tan ((r − 0.5)∗π) (3.3)

δ =
2(∣∣∣∣2 − (c1 + c2) −

√
(c1 + c2)2 − 4 × (c1 + c2)

∣∣∣∣) (3.4)

where d is the dimension, wd is the inertia weight of the d-th dimension. ϵ is a small constriction factor,
η is a disturbance coefficient, η=0.005 , r ∈ [0,1] is a random number. ϵ and δ is a constriction factor,
where ϵ is a narrow constriction factor, ϵ = 0.45. δ is a wide constriction factor, according to Clerc’s
constriction method, c1 and c2 are set to 2.05, and the constriction factor δ is approximately 0.7298.

3.2. Multi-pool fusion strategy

PSO is a population-based swarm intelligence algorithm. The diversity of the population can
effectively help the algorithm to find the optimal solution quickly. In order to improve the diversity of
the population, PSO-HLM divides the population into four sub-populations (elite pool, potential pool,
triple potential pool and fusion pool). Different particle pools store particles with different
characteristics. For instance, the particle with the best fitness value can only indicate that its current
position is better than other particles of the same generation, but it may be close to a local optima and
far away from the global optimum. The particle whose fitness value improvement rate is relatively
high in two successive generations may be near the local optima or the global optimum.
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During the evolutionary process, the elite pool is used to store particles with the best fitness value
f (x), the potential pool is used to store particles with the highest improvement rate in a single
generation Ir(x), the triple potential pool is used to store particles with the highest average
improvement rate in two consecutive generations Irs(x), and the fusion pool is used to store particles
with best fitness value and the highest improvement rate at the same time. The improvement rate Ir(x)
is defined as:

Ir(xt
i) =

f (xt−1
i ) − f (xt

i)

e|x
t−1
i −xt

i|
(3.5)

Irs
(
xt

i
)
=

Ir
(
xt−1

i

)
+ Ir
(
xt

i

)
2

(3.6)

where Ir(xt
i) is the improvement rate of particle i at t generation, f (xt−1

i ) is the fitness value of particle
i at t generation, and

∣∣∣xt−1
i − xt

i

∣∣∣ is the Euclidean distance between xt−1
i and xt

i. Irs
(
xt

i

)
is the average

improvement rate of particle i in two consecutive generations.
Sub-population pools with different sizes will weaken the fairness of competition and lead to

deviation of algorithm advantages. Therefore, the size of each pool is defined as one fourth of the
population size, and the size of each pool is equal. They are initialized according to different
standards. The elite pool is initialized only by the size of the fitness value and expressed as At

e. The
potential pool is initialized only by the size of the improvement rate and expressed as At

p. The triple
potential pool is initialized by the average improvement rate of two consecutive generations,
expressed as At

c. The fusion pool is initialized by the size of the improvement rate to select the fitness
sequence, which is expressed as At

f . The four Sub-population pools are represented as follows:

At
e =
{
xt

i1, x
t
i2, . . . , x

t
iM | f

(
xt

i1
)
≤ f
(
xt

i2
)
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(
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(3.7)
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xt

j1, x
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t
jM | Ir

(
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)
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(3.8)
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 (3.10)

where At
e is the elite pool, At

p is the potential pool,At
c is the triple potential pool, and At

f is the fusion
pool. t is the number of iterations, M is the size of the particle pool.

In order to take advantage of these four sub-population pools, a potential exemplar Ei is created
when updating each dimension of a particle i. In the early stage of the iteration process, four sub-
population pools (Ae, Ap, Ac and A f ) is used to generate Ei. In the late stage of the iteration process,
three sub-population pools (Ae, Ap and A f ) is used to generate Ei. Because, the particle’s fitness value
in the triple potential pool does not change much in the late stage of the iteration process, and it does
not help to improve the performance of PSO-HLM.
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Thus, in the process of iteration, three sub-population pools or four sub-population pools are
selected adaptively to generate potential exemplars. In the early stage, the probability of selecting
four sub-population pools is high. with the number of iterations increasing, the probability of
selecting three sub-population pools is gradually increased. The random number r f is employed to
adjust the sub-population pool selection probability. When r f > CurrIter/MaxIter, Eq (3.12) is used
to generate Ei, otherwise, Eq (3.13) is used to generate Ei. In the Eq (3.12), we use roulette wheel
selection to select four parents Xip1 , Xip2 , Xip3 and Xip4 from Ae, Ap, Ac and A f , respectively. The detail
of multi-pool fusion operation is shown in Algorithm 1.

pk =
M − k + 1∑M

i=1 i
(3.11)

where pk is the pre-selection probability of the k-th particle, M is the capacity of the excellent parent
particle .

et
i,d =


xt

ip3,d
, if r1 < pc and r2 < pc

xt
ip1,d
, if r1 < pc and r2 > pc

xt
ip2,d
, if r1 > pc and r2 < pc

xt
ip4,d
, otherwise

(3.12)

et
i,d =


xt

ip1,d
, if r1 < pc

xt
ip2,d
, if r1 > pc and r2 < pc

xt
ip4,d
, otherwise

(3.13)

where ei,d is the position of the i-th potential exemplar in the d-th dimension, xip1,d, xip2,d, xip3,d and xip4,d

represent the information in d dimension of the i-th particle of four sub-population pools, respectively.
p1, p2, p3 and p4 represents four sub-population pools Ae, Ap, Ac and A f , respectively. r1, r2 is a
random number uniformly distributed in [0,1] , pc is the crossover probability, which is introduced in
Section 3.1.

Algorithm 1 The Multi-pool Fusion Operation.
1: while i = 1 to n do
2: while j = 1 to d do
3: Calculate the probability of selection pk by Eq (3.11);
4: Select xip1 from At

e based on the probability pk;
5: Select xip2 from Ap

e based on the probability pk;
6: Select xip3 from Ac

e based on the probability pk;
7: if r f > CurrIter/MaxIter then
8: Select xip4 from A f

e based on the probability pk;
9: Generate potential exemplar et

i, j according to Eqs (3.1) and (3.12);
10: else
11: Generate potential exemplar et

i, j according to Eqs (3.1) and (3.13);
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3.3. Hybrid learning model strategy

After applying multi-pool fusion strategy to generate potential exemplar E. The i-th particle had
three potential exemplars (GB, PBi and Ei) to learn. In order to increase the local search ability of
particles, Gaussian perturbation is also used. Thus, PSO-HLM had four learning models (confidence
learning model, standard learning model, mild learning model and Gaussian learning model) at each
generation.

In the early stage, If the potential exemplar fitness value f (et
i) is less than or equal to global optimal

solution f (gbt), f (et
i) ≤ f (gbt) ≤ f (pbt

i). It is considered that Ei is a excellent exemplar and GB may
be a local (even a global) optimum solution. Thus, every particles only learning from the potential
exemplar, that is the confident learning model, as shown in Eq (3.14). Moreover, GB is replaced by Ei

after the particle updates its velocity and position.
If the potential exemplar fitness value f (et

i) is less than or equal to the individual optimal solution
f (pbt

i), f (gbt) ≤ f (et
i) ≤ f (pbt

i). It is considered that both the global optimal solution gbt and the
potential exemplar had more space to learning, and it can provide more direct guidance information
for the i-th particle. So, in this case, i-th particle not only learn from GB but also learn from Ei, that is
mild learning model, as shown in Eq (3.15).

If the potential exemplar fitness value f (et
i) is worse than f (gbt) and f (gbt), f (et

i) ≤ f (pbt
i) ≤ f (gbt).

At this time, the particle no longer learns from the potential exemplar, but learns from the two better
particles of the global optimal solution GB and the individual optimal solution PBi, that is standard
learning model, as shown in Eq (3.16).

In the middle and late stages of the iteration, t ≥ MaxIter/3, in order to increase the exploration
ability of the population, the Gaussian learning model is applied. It adds Gaussian perturbation while
learning from the potential exemplar, so it can effectively jump out of the local optimal. If the fitness
value of the perturbed potential exemplar G(et

i) is less than or equal to the global optimal solution gbt,
G(et

i) ≤ gbt. It learning from the excellent particles with a certain step size in a certain direction, which
can effectively avoid falling into the local optima prematurely, as shown in Eq (3.19).

According to the aforementioned analysis, the confident, mild, standard and Gaussian learning
models detailed as follows are favorable for the exploitation, balanced search, and exploration abilities,
respectively.

1) Confidence Learning Model: Learning from Ei.

vt
i, j = wd · vt−1

i, j + r1, j ·
(
et

i, j − xt−1
i, j

)
(3.14)

2) Mild Learning Model: Learning from Ei and GB.

vt
i, j = wd · vt−1

i, j + r1, j ·
(
et

i, j − xt−1
i, j

)
+ r2, j ·

(
gbt

j − xt−1
i, j

)
(3.15)

3) Standard Learning Model: Learning from PBi and GB.

vt
i, j = wd · vt−1

i, j + r1, j ·
(
pbt

i, j − xt−1
i, j

)
+ r2, j ·

(
gbt

j − xt−1
i, j

)
(3.16)

4) Gaussian Learning Model: Learning from Ei and Gaussian perturbation.

Gasi = r1 ∗ N
(
µ, σ2

)
(3.17)
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G
(
et

i
)
= |Gasi| ∗ f

(
et

i
)

(3.18)

vt
i, j = wd · vt−1

i, j + r1, j ·
(
et

i, j − xt−1
i, j

)
+ 0.001 ·Gasi (3.19)

where vt
i, j is the velocity of the j-th dimension of the i-th particle at t generation. wd is the inertia weight

by Eqs (3.2) and (3.3). r1, j, r2, j are random number uniformly distributed in [0,1], xt−1
i, j is the position

of the j-th dimension of the i-th particle at t − 1 generation. pb is the individual optimal solution, gb
is the global optimal solution, and e is the potential exemplar. Gasi is the Gaussian random number of
the i-th particle,N is a standard Gaussian distribution, µ is the mean value and σ is the variance. G(et

i)
is a Gaussian perturbation value of the i-th potential exemplar at t generation. f (et

i) is the fitness value
of the i-th potential exemplar at t generation.

In the last, the potential exemplar will be reused, and it is more likely to become key role models
for other particles to learn. The reuse formula is Eq (3.20).

pbt
o =

et
i, if G(et

i) ≤ G(et
j)

et
j, otherwise

(3.20)

where pbo is the individually optimal solution for the o-th particles, o is the particle random number, ei

is the position of the i-th offspring, G(ei) and G(e j) is the value of the i-th and j-th potential exemplar
fitness value after Gaussian perturbation. t is the number of iterations.

3.4. Framework of PSO-HLM

By incorporating the aforementioned components, The details of the pseudocode of PSO-HLM are
shown in Algorithm 2. There are several steps. First, the parameters (population size, the number
of iterations and the mutation rate) are initialized. Then the position information of each particle
is initialized and the fitness value of each particle is calculated. The particles with good fitness are
selected to initialize the global optimal solution and the individual optimal solution. In iteration loop,
different individuals from different particle pools are used for crossover-fusion to generate potential
exemplar particles, as shown by Algorithm 1. According to the fitness of potential exemplar particles,
the dominant particles are more likely to be selected, and the velocity and position of particles is
updated through the corresponding learning model. In the early stage, the learning model is selected
according to the fitness value of potential exemplar particles. After a specific stage, the fitness value
of potential exemplar particles is perturbed by the Gaussian distribution. An appropriate learning
model is selected to update the velocity and position of potential exemplar particles, according to the
disturbed fitness value and the original fitness value. Then, the global optimal solution is replaced by
the generated optimal potential exemplar particles. Through the transformation and stage adaptation
of different learning models, the best solutions can be found.

3.5. Complexity analysis

We denote the population size is N, the dimensionality of the problem is D. First, the relevant
parameters of the algorithm, the velocity and position of particle are initialized. In the initialization
process, the time complexity of PSO-HLM related parameters is O(K) and K is constant. The time
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complexity of initialization velocity and position is O(N × D). It is concluded that the time
complexity of initialization is O(N × D). Then, the excellent individuals are crossover fused to
generate potential exemplar. Moreover, the information of each dimension of potential exemplar
needs to be uniquely selected, so the time complexity of crossover is O(N2 × D). After that, particles
need to choose the corresponding learning model according to velocity and position. Since each
particle selects the learning model only once, the time complexity of the selection operation is O(N).
Because each operation of the algorithm is completed in parallel, the total time complexity of each is
O(K + N × D + N2 × D + N). Therefore, it is preliminarily determined that the time complexity of
PSO-HLM is O(N2 × D). If the number of iterations of PSO-HLM is K, the asymptotic upper bound
of the algorithm time complexity is O(K × N2 + K × D). As a result, the overall time complexity of
PSO-HLM is O(N2 × D).

Algorithm 2 The Fusion Operation.
1: t=1;
2: while i = 1 to n do
3: Initialization particle vt

i and xt
i;

4: Refresh pbest, pbt
i = xt

i;

5: Update gb, gbt = pbt
i;

6: while CurrentIter ≤ MaxIter do
7: t = t + 1;
8: Calculation improvement rate Ir

(
Xt

i
)
, Irs
(
Xt

i
)

by Eqs (3.5) and (3.6);
9: Update parent sequence pk, At

e, At
p, At

c and At
f by Eqs (3.7)–(3.11);

10: while i = 1 to N do
11: Generation of potential exemplar et

i by Algorithm 1;
12: if CurrentIter/MaxIter > 1

3 then
13: Perturbation of potential exemplar fitness value G(et

i) by Eqs (3.17) and (3.18);

14: if G(et
i) ≤ f (gbt) then

15: Update wd and vt
i based on Eqs (3.2) and (3.19);

16: else
17: if f (et

i) ≤ f (gbt) then
18: Update wd and vt

i based on Eqs (3.2) and (3.14);
19: Update gbt;
20: else if f (et

i) ≤ f (pbt
i) then

21: Update wd and vt
i based on Eqs (3.3) and (3.15);

22: else
23: Update wd and vt

i based on Eqs (3.3) and (3.16);

24: Update position xt
i = xt−1

i + vt
i

25: Update gbt and location information;
26: The reuse of the offspring et

i is based on Eq (3.20);
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Table 1. The information of the benchmark functions.

No. Function Search space
F1 Sphere [−100, 100]D

F2 Schwefel P2.22 [−10, 10]D

F3 Schwefel P1.2 [−100, 100]D

F4 Schwefel P2.6 with Global optimum on Bounds [−100, 100]D

F5 Shifted Sphere [−100, 100]D

F6 Shifted Schwefel P1.2 [−100, 100]D

F7 Shifted Schwefel P1.2 with Noise in fitness [−100, 100]D

F8 Shifted Rotated High Conditioned Elliptic [−100, 100]D

F9 Ackley [−32, 32]D

F10 Schwefel [−500, 500]D

F11 Rastrigin [−5.12, 5.12]D

F12 Noncont Rastrigin [−5.12, 5.12]D

F13 Weierstrass [−0.5, 0.5]D

F14 Penalized [−50, 50]D

F15 Salomon [−100, 100]D

F16 Pathological [−100, 100]D

F17 Rosenbrock [−30, 30]D

F18 Griewank [−600, 600]D

F19 Expanded Extended Griewankplus Rosenbrock [−3, 1]D

F20 Schwefel P2.13 [−π, π]D

F21 Shifted Rastrigin [−5.12, 5.12]D

F22 Shifted Noncont Rastrigin [−5.12, 5.12]D

F23 Shifted Rosenbrock [−100, 100]D

F24 Shifted Rotated Expanded Scaffer F6 [−100, 100]D

F25 Shifted Rotated Griewank without Bounds [−600, 600]D

F26 Shifted Rotated Ackley with Global optimum on bounds [−32, 32]D

F27 Shifted Rotated Rastrigin [−5.12, 5.12]D

F28 Shifted Rotated Noncont Rastrigin [−5.12, 5.12]D

F29 Shifted Rotated Weierstrass [−0.5, 0.5]D

F30 Shifted Rotated Salomon [−100, 100]D

4. Experimental studies

4.1. Benchmark functions and peer algorithms

In order to fully evaluate the performance of PSO-HLM and ensure the fairness of the experiment,
the same benchmark function suite (30 functions) is used, followed by TAPSO [18]. This benchmark
function suite contains 8 unimodal functions and 22 multimodal functions. The unimodal functions
have the basic unimodal functions (F1–F4) and the modified unimodal functions (F5–F8). The
multimodal functions have the basic multimodal functions (F9–F20) and modified multimodal
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functions (F21–F30), the detailed information was shown in Table 1. The test results were compared
and analyzed with 5 state-of-the-art algorithms (CLPSO [22], FDR-PSO [32], PPSO [38],
TAPSO [18] and XPSO [35]). All algorithms were run on MATLAB 2019b and the processor was an
Intel(R) Core (TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz. In addition, a number of experiments
were conducted aimed at analyzing and illustrating the effectiveness of the newly introduced
strategies, as detailed in Section 4.5.

4.2. Experimental parameter setting

The population size N of PSO-HLM is 60 and the pm is 0.02. To be fair, for all algorithms, the
parameters uses the default settings in its original paper, the detail information of experimental
parameter settings is shown in Table 2. All algorithms are given a random initial position and
velocity. The fitness evaluation sizes was set to 10000 ∗ D. For each algorithm, each benchmark test
function was run 30 times, and the mean and standard deviation (std) of each algorithm are used for
comparison.

Each algorithm is independently performed for 30 times for the propose of statistical comparisons,
and for each run, the mean value (Mean) and standard variance (Std) of the solution is recorded, the
best results of each function are presented in bold. In the comparative experiments, the best result
is bolded. Results of PSO-HLM are compared with those of CLPSO, FDR-PSO, PPSO, TAPSO and
XPSO, respectively, by Wilcoxon rank sum test at the significance level of 0.05. The marker “-” is
worse than the results of PSO-HLM, “+” is better than the results of PSO-HLM and “≈” is equivalent
to the results of PSO-HLM.

Table 2. Parameter setting of each algorithm.

Algorithm Population size Experimental parameter settings
CLPSO N = 60 wmax = 0.9,wmin = 0.4, c1 = 1.49445, c2 = 0
FDR-PSO N = 60 w = [0.4, 0.9], c1 = 1, c2 = 1, c3 = 2

PPSO N = 40 w = 0, c1 =
∣∣∣cos θIter

i

∣∣∣2∗sin θIter
i , c2 =

∣∣∣sin θCurrentIter
i

∣∣∣2∗cos θCurrentIter
i

TAPSO N = 60 w = 0.7298, pc = 0.5, pm = 0.02,M = N/4
XPSO N = 60 w = [0.4, 0.9], c1 = 1, c2 = 0.5, c3 = 0.5
PSO-HLM N = 60 w = Eqs (3.2) or (3.3), pc = Eq (3.1), pm = 0.02

4.3. Statistical results of solutions

4.3.1. Analysis of experimental results on 30-D

In this experiment, five state-of-the-art algorithms (CLPSO [22], FDR-PSO [32], PPSO [38],
TAPSO [18] and XPSO [35]), are used for comparisons with PSO-HLM on the 30-D problems. The
results was reported in Table 3.

1) Unimodal Functions (F1–F8): from Table 3, it can be seen that PSO-HLM has the best mean
value in many functions. On the F4 and F7 functions, the results obtained by PSO-HLM are always the
most promising for most functions, so that the introduction of different improvement rates increases
the likelihood of finding the best and the variety of learning models allows for an adequate search of
the problem space. However, on the F4 and F7 functions, XPSO has good mean values, which shows
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that the forgetting ability of the particles can well help these two functions need to find the optimum.

Table 3. The results of the algorithm on 30-D.
No. CLPSO FDR-PSO PPSO TAPSO XPSO PSO-HLM
F1 mean 1.56E-36 + 3.21E-124 + 2.01E-14 + 1.94E-160 + 4.53E-132 + 3.62E-180

std 1.45E-36 + 1.76E-123 + 2.27E-14 + 6.24E-160 + 2.48E-131 + 0.00E+00
F2 mean 7.76E-24 + 2.48E-57 + 1.30E-04 + 1.34E-78 + 2.77E-41 + 3.81E-91

std 4.68E-24 + 1.25E-56 + 1.86E-04 + 4.54E-78 + 1.52E-40 + 1.39E-90
F3 mean 1.42E+02 + 2.28E-10 + 8.27E-08 + 2.21E-26 + 1.62E-14 + 1.17E-31

std 8.41E+01 + 3.71E-10 + 1.38E-07 + 7.95E-26 + 5.25E-14 + 2.97E-31
F4 mean 4.00E+03 + 3.09E+03 + 6.39E+03 + 3.91E+03 + 3.02E+03 + 3.41E+03

std 4.41E+02 + 5.10E+02 + 2.20E+03 + 1.15E+03 + 7.88E+02 + 9.02E+02
F5 mean 0.00E+00 ≈ 0.00E+00 ≈ 2.53E+01 + 0.00E+00 ≈ 3.53E-29 + 0.00E+00

std 0.00E+00 ≈ 0.00E+00 ≈ 1.17E+02 + 0.00E+00 ≈ 8.28E-29 + 0.00E+00
F6 mean 1.09E+03 + 2.57E-11 + 6.36E+01 + 6.46E-20 + 8.25E-06 + 6.59E-27

std 2.01E+02 + 7.86E-11 + 1.61E+02 + 3.50E-19 + 1.75E-05 + 4.96E-27
F7 mean 7.52E+03 + 3.41E+02 + 2.23E+03 + 8.69E+03 + 9.70E+01 + 1.13E+03

std 1.65E+03 + 2.02E+02 + 1.22E+03 + 4.07E+03 + 6.41E+01 + 8.29E+02
F8 mean 1.74E+07 + 4.88E+05 + 1.61E+06 + 2.23E+05 + 3.61E+06 + 1.67E+05

std 4.30E+06 + 2.26E+05 + 3.63E+06 + 1.17E+05 + 4.17E+06 + 7.43E+04
F9 mean 7.82E-15 + 1.97E-14 + 2.69E-08 + 5.57E-15 + 7.34E-15 + 6.63E-15

std 1.45E-15 + 4.82E-15 + 1.26E-08 + 1.79E-15 + 1.30E-15 + 1.23E-15
F10 mean 7.90E+00 + 3.24E+03 + 8.31E+02 + 1.82E-13 + 3.19E+03 + 0.00E+00

std 3.00E+01 + 4.79E+02 + 7.54E+02 + 5.55E-13 + 4.61E+02 + 0.00E+00
F11 mean 3.32E-02 + 2.57E+01 + 1.98E-13 + 0.00E+00 ≈ 2.47E+01 + 0.00E+00

std 1.82E-01 + 8.22E+00 + 1.41E-13 + 0.00E+00 ≈ 8.58E+00 + 0.00E+00
F12 mean 0.00E+00 ≈ 1.04E+01 + 1.54E-13 + 0.00E+00 ≈ 4.80E+00 + 0.00E+00

std 0.00E+00 ≈ 4.70E+00 + 7.50E-14 + 0.00E+00 ≈ 4.40E+00 + 0.00E+00
F13 mean 0.00E+00 + 2.00E-03 + 5.29E-02 + 2.83E-02 + 7.70E-03 + 8.94E-04

std 0.00E+00 + 1.05E-02 + 4.17E-02 + 4.31E-02 + 1.49E-02 + 1.50E-03
F14 mean 1.57E-32 + 1.57E-32 + 3.60E-13 + 1.59E-32 ≈ 1.93E-32 + 1.59E-32

std 1.11E-47 + 1.11E-47 + 3.25E-13 + 9.43E-34 ≈ 1.63E-32 + 9.43E-34
F15 mean 2.40E-01 + 2.90E-01 + 1.38E+00 + 5.83E-01 + 2.90E-01 + 4.80E-01

std 4.78E-02 + 6.62E-02 + 5.89E-01 + 1.39E-01 + 4.81E-02 + 7.61E-02
F16 mean 8.80E-01 + 5.79E+00 + 5.56E+00 + 3.38E+00 + 8.52E+00 + 3.64E+00

std 3.91E-01 + 9.09E-01 + 3.70E+00 + 7.82E-01 + 1.34E+00 + 7.33E-01
F17 mean 2.13E+00 + 3.89E+00 + 2.17E+01 + 5.22E-12 + 6.14E+00 + 3.53E-12

std 5.61E+00 + 3.09E+00 + 5.19E-01 + 8.08E-12 + 1.40E+01 + 5.04E-12
F18 mean 0.00E+00 + 1.25E-02 + 2.47E-05 + 5.90E-03 + 9.20E-03 + 5.10E-03

std 0.00E+00 + 1.73E-02 + 1.35E-04 + 8.30E-03 + 7.40E-03 + 1.02E-02
F19 mean 1.65E+00 + 2.90E+00 + 9.61E+00 + 1.14E+00 + 2.85E+00 + 1.12E+00

std 1.86E-01 + 8.13E-01 + 3.37E+00 + 2.47E-01 + 7.94E-01 + 1.78E-01
F20 mean 1.81E+04 + 6.95E+03 + 4.38E+04 + 2.17E+03 + 8.37E+03 + 9.95E+02

std 5.19E+03 + 8.42E+03 + 5.25E+04 + 4.32E+03 + 7.36E+03 + 1.40E+03
F21 mean 1.33E-01 + 2.85E+01 + 6.62E+01 + 0.00E+00 ≈ 2.69E+01+ 0.00E+00

std 3.44E-01 + 9.05E+00 + 2.39E+01 + 0.00E+00 ≈ 8.47E+00 + 0.00E+00
F22 mean 0.00E+00 ≈ 1.11E+01 + 2.30E+01 + 0.00E+00 ≈ 5.80E+00 + 0.00E+00

std 0.00E+00 ≈ 6.04E+00 + 1.61E+01 + 0.00E+00 ≈ 4.59E+00 + 0.00E+00
F23 mean 9.89E+00 + 1.53E+01 + 2.00E+02 + 5.47E-04 + 2.89E+01 + 4.28E-10

std 1.76E+01 + 3.30E+01 + 3.08E+02 + 2.40E-03 + 5.24E+01 + 1.45E-09
F24 mean 1.29E+01 + 1.18E+01 + 1.32E+01 + 1.20E+01 + 1.17E+01 + 1.21E+01

std 2.30E-01 + 5.17E-01 + 3.58E-01 + 5.90E-01 + 5.54E-01 + 6.25E-01
F25 mean 1.33E-01 + 1.60E-02 + 3.69E+00 + 1.82E-02 + 1.19E+00 + 2.53E-02

std 4.58E-02 + 1.67E-02 + 1.43E+01 + 1.83E-02 + 4.34E-01 + 3.31E-02
F26 mean 2.09E+01 + 2.09E+01 + 2.02E+01 + 2.03E+01 + 2.09E+01 + 2.04E+01

std 5.49E-02 + 6.44E-02 + 2.08E-01 + 4.01E-01 + 5.64E-02 + 4.65E-01
F27 mean 1.24E+02 + 5.91E+01 + 3.71E+02 + 7.34E+01 + 5.57E+01 + 5.46E+01

std 1.63E+01 + 2.07E+01 + 8.45E+01 + 1.88E+01 + 3.96E+01 + 1.51E+01
F28 mean 1.32E+02 + 8.03E+01 + 3.74E+02 + 9.00E+01 + 9.14E+01 + 7.10E+01

std 2.09E+01 + 2.14E+01 + 9.80E+01 + 2.81E+01 + 3.45E+01 + 1.71E+01
F29 mean 2.81E+01 + 1.84E+01 + 3.52E+01 + 1.99E+01 + 1.37E+01 + 1.70E+01

std 1.91E+00 + 3.72E+00 + 3.55E+00 + 3.56E+00 + 3.66E+00 + 2.49E+00
F30 mean 2.40E-01 + 2.97E-01 + 1.43E+00 + 5.43E-01 + 2.77E-01 + 4.80E-01

std 4.96E-02 + 7.65E-02 + 4.86E-01 + 1.36E-01 + 5.68E-02 + 7.13E-02
- / ≈ / + 21/3/6 22/1/7 28/0/2 20/5/5 24/0/6

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7056–7087.



7070

2) Basic Multimodal Functions (F9–F20): as shown in Table 3, the ones with the most optimal
means are PSO-HLM and CLPSO. On F9, TAPSO has the best mean value, its performance is better
than PSO-HLM. Because the division condition of PSO-HLM’s diverse learning model is not the most
suitable, thus it leads to the omission of the optimal solution. However, on F10, PSO-HLM has the
best optimal value, indicating that the diverse learning models and the multi-pool fusion can improve
performance effectively. On F14, F15, F16 and F18, CLPSO has the best average mean value, it
is shown that uninterrupted learning toward optimal particles interferes with the search for optimal
solutions, and that integrated reviews and different choices are more conducive to the solution of such
problems. The improvement rate is also very important as can be seen from the F17 and F19 functions.
On F20, PSO-HLM significantly outperforms than other algorithm. In general, it is found that PSO-
HLM is the most promising algorithm compared to other algorithms.

3) Modified Multimodal Function (F21–F30): it can be seen from the data in Table 3 that TAPSO
can find the optimal solution only on F21 and F22. PSO-HLM not only finds the optimal solution on
F21 and F22, but also outperforms the other five state-of-the-art algorithms on three functions F23,
F27 and F28. It shown that for multimodal problems, more diversified learning modes and diversified
particle models can effectively alleviate premature local concentration of particle swarm. On F22
and F30, the results of CLPSO illustrate the importance of learning model selection. The results
of mainstream algorithms further show that the performance of the algorithm can be improved by
appropriate learning models. In short, an appropriate learning model and an appropriate conversion
time are the key to the superiority of the algorithm.

In order to better evaluate the performance of all algorithms, the Friedman test was conducted
individually for all algorithms in this paper. The mean value of the 30 test functions of all algorithms
were run in the Friedman test, the average ranking value smaller indicates better performance. From
Table 7, it is evident that six algorithms at 30-D can be sorted into the following order: PSO-HLM,
TAPSO, CLPSO, FDR-PSO, XPSO and PPSO. PSO-HLM has the best average ranking, PPSO has the
worst results.

Table 4. Average rankings achieved by Friedman test at 30-D.

No. Algorithms The average Ranking
1 PSO-HLM 2.03
2 TAPSO 2.77
3 CLPSO 3.60
4 FDR-PSO 3.62
5 XPSO 3.78
6 PPSO 5.20

4.3.2. Convergence speed analysis on 30-D

It is necessary to measure the speed of obtaining the global optimal solution as well as the accuracy
of the solution. In this section, convergence analysis and speed comparison are performed on the
experimental data of Section 4.3.1. The convergence curves plots of all algorithms are drawn for each
function on the 30-D functions, and it is shown in Figures 2–6.
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Figure 2. The convergence curves on F1–F15.
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Figure 3. The convergence curves on F1–F15.
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Figure 4. The convergence curves on F1–F15.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7056–7087.



7074

0 0.5 1 1.5 2 2.5 3

Fes 105

100

101

102

fit
ne

ss

F19

CLPSO
FDR-PSO
PSO-HLM
PPSO
TAPSO
XPSO

0 0.5 1 1.5 2 2.5 3

Fes 105

103

104

105

106

fit
ne

ss

F20

CLPSO
FDR-PSO
PSO-HLM
PPSO
TAPSO
XPSO

0 0.5 1 1.5 2 2.5 3

Fes 105

10-15

10-10

10-5

100

105

fit
ne

ss

F21

CLPSO
FDR-PSO
PSO-HLM
PPSO
TAPSO
XPSO

0 0.5 1 1.5 2 2.5 3

Fes 105

10-15

10-10

10-5

100

105
fit

ne
ss

F22

CLPSO
FDR-PSO
PSO-HLM
PPSO
TAPSO
XPSO

0 0.5 1 1.5 2 2.5 3

Fes 105

10-10

10-5

100

105

1010

fit
ne

ss

F23

CLPSO
FDR-PSO
PSO-HLM
PPSO
TAPSO
XPSO

0 0.5 1 1.5 2 2.5 3

Fes 105

11

11.5

12

12.5

13

13.5

14

14.5

15

fit
ne

ss

F24

CLPSO
FDR-PSO
PSO-HLM
PPSO
TAPSO
XPSO

Figure 5. The convergence curves on F16–F30.
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Figure 6. The convergence curves on F16–F30.
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Table 5. The results of the algorithm on 50-D.
No. CLPSO FDR-PSO PPSO TAPSO XPSO PSO-HLM
F1 mean 6.68E-26 + 5.16E-101 + 1.95E-13 + 9.31E-191- 1.81E-130 + 1.87E-144

std 1.55E-26 + 5.84E-101 + 1.61E-13 + 0.00E+00 - 3.13E-130 + 3.24E-144
F2 mean 4.51E-17 + 1.83E-44 + 1.66E-04 + 3.60E-45 + 4.99E-32 + 9.37E-49

std 5.04E-18 + 2.38E-44 + 1.21E-04 + 6.22E-45 + 8.15E-32 + 9.05E-50
F3 mean 4.34E+02 + 1.70E-03 + 2.49E-07 + 4.50E-08 + 1.51E-08 + 3.58E-13

std 5.18E+02 + 5.34E-04 + 1.73E-07 + 7.15E-08 + 1.22E-08 + 2.53E-13
F4 mean 9.56E+03 + 7.00E+03 - 1.57E+04 + 9.41E+03 + 6.84E+03 - 7.04E+03

std 6.20E+02 + 5.65E+02 - 2.12E+03 + 2.52E+03 + 1.36E+03 - 7.03E+02
F5 mean 0.00E+00≈ 0.00E+00≈ 1.31E-11 + 2.10E-29 + 5.05E-28 + 0.00E+00

std 0.00E+00≈ 0.00E+00≈ 6.53E-12 + 2.63E-29 + 3.53E-28 + 0.00E+00
F6 mean 6.55E+03 + 3.93E-04 + 2.18E+02 + 5.65E-06 + 1.58E-01 + 2.77E-12

std 1.52E+03 + 4.71E-04 + 1.96E+02 + 7.26E-06 + 1.89E-01 + 7.60E-13
F7 mean 2.68E+04 + 1.15E+04 - 1.93E+04 + 2.91E+04 + 2.15E+03 - 1.46E+04

std 3.04E+03 + 4.69E+03 - 5.46E+03 + 5.15E+03 + 5.66E+02 - 1.78E+03
F8 mean 5.19E+07 + 6.29E+05 + 6.01E+06 + 9.36E+05 + 4.43E+07 + 1.56E+05

std 1.14E+06 + 2.25E+05 + 4.71E+06 + 9.16E+05 + 1.79E+07 + 5.18E+04
F9 mean 8.05E-14 + 4.62E-14 + 6.80E-08 + 1.42E-14 + 1.66E-14 + 9.47E-15

std 1.35E-14 + 1.63E-14 + 1.77E-08 + 1.93E-30 + 4.10E-15 + 4.10E-15
F10 mean 1.82E-11- 5.42E+03 + 3.23E+03 + 2.30E-11 + 6.67E+03 + 2.06E-11

std 0.00E+00 - 1.03E+03 + 4.15E+03 + 8.40E-12 + 3.77E+02 + 4.20E-12
F11 mean 0.00E+00 ≈ 4.41E+01 + 3.90E-13 + 1.78E-15 + 6.20E+01 + 0.00E+00

std 0.00E+00 ≈ 1.70E+01 + 8.62E-14 + 1.78E-15 + 1.39E+01 + 0.00E+00
F12 mean 0.00E+00≈ 2.40E+01+ 5.07E-13+ 0.00E+00≈ 6.67E+00 + 0.00E+00

std 0.00E+00≈ 6.56E+00+ 6.45E-14+ 0.00E+00≈ 3.51E+00 + 0.00E+00
F13 mean 0.00E+00- 1.64E+00 + 5.87E-02 - 1.28E-01 - 1.90E-01 + 1.28E-01

std 0.00E+00 - 1.57E+00+ 8.39E-02 - 3.87E-02 - 2.10E-01 + 6.91E-02
F14 mean 3.96E-28+ 9.42E-33≈ 1.74E-13+ 1.25E-32+ 9.42E-33≈ 9.42E-33

std 8.21E-29+ 0.00E+00≈ 6.68E-14+ 3.10E-33+ 0.00E+00≈ 0.00E+00
F15 mean 3.68E-01 - 4.67E-01 - 2.57E+00+ 1.60E+00 + 4.33E-01 - 6.33E-01

std 5.48E-02- 1.53E-01 - 1.53E-01 + 2.65E-01 + 5.77E-02 - 5.77E-02
F16 mean 3.18E+00- 1.01E+01 + 4.84E+00 - 6.88E+00 + 1.91E+01 + 5.83E+00

std 4.95E-01- 5.45E-01 + 8.37E+00 - 1.05E+00 + 8.28E-01 + 1.03E+00
F17 mean 2.71E+00 + 2.51E+01 + 4.17E+01 + 4.82E-14 + 4.12E+01 + 1.78E-15

std 2.57E+00 + 4.33E+01 + 3.01E-01 + 8.25E-14 + 4.08E+01 + 1.59E-15
F18 mean 0.00E+00 - 7.40E-03- 1.37E-10- 3.07E-02- 3.30E-03- 4.40E-02

std 0.00E+00- 1.28E-02- 7.59E-11- 5.32E-02- 5.70E-03- 5.27E-02
F19 mean 3.05E+00+ 5.85E+00+ 1.92E+01+ 1.98E+00+ 5.63E+00+ 1.53E+00

std 2.27E-01+ 1.20E+00+ 6.11E+00+ 1.52E-01+ 4.55E-01+ 9.56E-02
F20 mean 5.53E+04+ 4.69E+04+ 4.18E+05+ 1.16E+04+ 5.55E+04+ 1.05E+03

std 1.20E+04+ 3.00E+04+ 4.23E+05+ 1.51E+04+ 2.08E+04+ 2.96E+02
F21 mean 3.32E-01+ 7.79E+01+ 1.85E+02+ 2.37E-15+ 6.40E+01+ 0.00E+00

std 5.74E-01+ 3.77E+00+ 1.01E+01+ 2.05E-15+ 1.15E+00+ 0.00E+00
F22 mean 0.00E+00≈ 3.23E+01+ 4.80E+01+ 0.00E+00≈ 8.67E+00+ 0.00E+00

std 0.00E+00≈ 1.30E+01+ 3.94E+01+ 0.00E+00≈ 8.96E+00+ 0.00E+00
F23 mean 2.13E+01+ 3.22E+01+ 8.56E+01+ 6.96E-05+ 1.49E+01+ 4.65E-11

std 3.61E+01+ 3.91E+01+ 8.21E+01+ 1.21E-04+ 1.39E+01+ 7.64E-11
F24 mean 2.28E+01+ 2.15E+01+ 2.30E+01+ 2.12E+01+ 2.18E+01+ 2.11E+01

std 1.36E-01+ 3.35E-01+ 5.57E-01+ 1.18E+00+ 5.61E-01+ 6.75E-01
F25 mean 1.09E-01+ 4.10E-03+ 9.40E-01+ 2.30E-02+ 2.70E+00+ 2.50E-03

std 1.24E-02+ 7.10E-03+ 1.61E+00+ 2.48E-02+ 2.77E+00+ 4.30E-03
F26 mean 2.11E+01+ 2.11E+01+ 2.02E+01+ 2.04E+01+ 2.11E+01+ 2.00E+01

std 3.70E-03+ 4.43E-02+ 7.85E-02+ 5.98E-01+ 3.32E-02+ 9.90E-03
F27 mean 2.94E+02+ 1.15E+02+ 8.77E+02+ 1.48E+02+ 6.00E+01+ 1.04E+02

std 2.29E+01+ 3.47E+01+ 9.91E+01+ 4.43E+01+ 1.74E+01+ 2.98E+01
F28 mean 3.21E+02+ 1.76E+02+ 8.17E+02+ 2.03E+02+ 2.07E+02+ 1.65E+02

std 4.01E+01+ 2.69E+01+ 8.33E+01+ 4.11E+01+ 5.43E+01+ 1.59E+01
F29 mean 5.37E+01+ 3.57E+01+ 6.48E+01+ 3.36E+01+ 2.95E+01- 3.31E+01

std 1.14E+00+ 8.05E+00+ 2.74E+00+ 4.66E+00+ 7.07E+00- 4.33E+00
F30 mean 4.00E-01- 5.33E-01- 2.27E+00+ 1.33E+00+ 4.33E-01- 6.25E-01

std 2.99E-08- 1.16E-01- 3.51E-01+ 1.53E-01+ 5.77E-02- 9.57E-02
- / ≈ / + 20/4/6 23/2/5 27/0/3 25/2/3 23/1/6
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It can be seen that PSO-HLM not only has the best solution result on F1, F2, F3, F5 and F6
functions, but also has the fastest convergence speed. Among other unimodal functions F4 and F8,
PSO-HLM also has the fastest convergence speed or the best solution accuracy. This strongly shows
that increasing early-stage diversity can help generate good particles and promote the algorithm for
finding the best solution. On F7, PSO-HLM falls into local optima at the early stage, but escapes from
local optima with the help of four hybrid learning model strategy. At the same time, it also shows that
in different learning models and Gaussian disturbances, it can avoid falling into the local optima
prematurely due to the sharp decrease of diversity. On F10, F11 and F12 of basic multimodal
functions, PSO-HLM has the best performance in finding the global solution. On F9 and F14,
PSO-HLM has the fastest convergence speed, although it does not have a good solution accuracy. It
can also be seen from F15 that diversified learning models can provide more possibilities for later
algorithms.

Among multimodal functions, PSO-HLM has overwhelmed advantages in many functions,
including basic functions and modified functions. It can be seen from that PSO-HLM has good
convergence speed and search speed for many functions, and has relatively optimal solutions for most
functions. However, on F16, F18, and F19, it still has much locally optimal, possibly because the
better learning model or learning sample has not been found. But on F21 and F22, PSO-HLM has an
overwhelming advantage performance. The convergence curves of these functions F20, F23, F26 is
shown that different types of learning models were used in the middle and later stages, which kept a
balance between local search and global search. It is allowed to search within an appropriate range
because it avoids local optimization. On other modified multimodal functions, PSO-HLM has the best
performance on F27 and F28, but it fails to escape the local optima at F25 and F29. This suggests that
in some cases there is a need to improve the division of multiple learning patterns.

4.3.3. Analysis of experimental results on 50-D

From Table 5, PSO-HLM still has the best performance on high-dimensional optimization
problems. On unimodal functions, PSO-HLM has the best fitness mean values. The results of F3, F6
and F8 functions illustrate the unique merits of PSO-HLM in such problems, PSO-HLM can fully
explore the best solutions by using alternative updates of these four learning models. On F4 function,
the results for XPSO are better than PSO-HLM, it indicated that the population forgetting capability is
also optimal for unimodal functions to avoid falling into local optimal solution. F11, F12 and F19
functions have good solutions for PSO-HLM, TAPSO and CLPSO, while the results are poor for
XPSO and PPSO. It confirms that the learning model has a great influence on the search for problem
solutions, it indicated that a more suitable learning model can facilitate the solution exploration well.
On F13, F15 functions, the experimental results of CLPSO are the best, and only CLPSO has found
the optimal solution for F13. This shows that when solving this kind of function, it is very important
to use the learning model to update particles into the best samples. For the modified multimodal
functions, PSO-HLM has the first optimal solution proportion, then CLPSO, TAPSO, XPSO and
PPSO, respectively. The comparison of TAPSO and PSO-HLM illustrates that for different
improvement rates can effectively help to learn the model turnover and locate the optimal solution
more precisely. The results of F25, F28 functions illustrate that for the solution accuracy of this
problem PSO-HLM has a significant improvement, it proved that the combination of the improvement
rate of PSO-HLM and the selection of multiple learning models can effectively improve the efficiency
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of PSO-HLM.

4.3.4. Analysis of experimental results on CEC 2017 30-D

From Table 6, PSO-HLM is compared with other algorithms on the CEC2017 test functions. On
unimodal function (F1), an excellent CLPSO performance is achieved. It shows that the stable learning
model has a good advantage for this type of problem. On simple multimodal function (F2–F8), PSO-
HLM exemplifies that the multi-learning model is the best choice for jumping out of the local optimal
solution. On hybrid function (F9–F18), CLPSO and PSO-HLM have equal and maximum number of
optimal solutions, and the combination of crossover probabilities under adaptive and multiple learning
models can explore optimal solutions as effectively as CLPSO. On composition function (F19–F28),
These algorithms (CLPSO, TAPSO, PSO-HLM, XPSO, PPSO, and FDR-PSO) have the same results.
This shows that there is not much difference between fixed learning model and adaptive learning model
for such problems.

4.4. Effectiveness analysis

4.4.1. Effectiveness of the adaptive parameters strategy

The inertia weights and crossover probability plays a key role in PSO-HLM. In order to fully test
the performance of the adaptive parameters strategy, two algorithms (PSO-HLM-NA and PSO-HLM-
A) are compared on the benchmark function suite, where PSO-HLM-NA uses fixed parameters(w =
0.7298, pc =0.5, followed by TAPSO [18]), and PSO-HLM-A uses adaptive parameter strategy. All
experimental results are shown in Table 7.

From Table 7, PSO-HLM-A significantly outperforms PSO-HLM-NA. Because, in the adaptive
parameter strategy, the inertia weights and crossover probability using the triangular function, the
center of gravity of each stage can be fully utilized. Large inertia weight can improve the ability of
exploration, and small inertia weight can improve the ability of exploitation. In the iterative process,
These four learning models can adaptively adjust the parameters, the adaptive inertia weight can make
the particles fit well with different behaviors. The center of gravity in the stage is also controlled
iteratively by the sinusoidal function to realize that it is more likely to escape the local optimization in
the later stage. It can be found that PSO-HLM-A is more likely to jump out of the local optima and
find a more potential solution in the later stage.

4.4.2. Effectiveness of the multi-pool fusion strategy and hybrid learning model strategy

From Table 8, it can be seen that PSO-HLM-F has better performance than PSO-HLM-NF. In the
original algorithm, the useful information of sub-excellent particles cannot be well utilized, and many
promising possibilities were lost. The proposed multi-pool fusion strategy, based on two points: 1)
one is the characteristics of different subpopulation pools, and 2) another is the information of multiple
parents. It enables PSO-HLM-F introduce more possibilities and also avoids falling into local optima
to some extent in the late stage, the exemplar generated by the multi-pool fusion strategy can fuse the
characteristics of different subpopulation pools.

From Table 9, PSO-HLM-H fully outperforms PSO-HLM-NH, where PSO-HLM-H uses hybrid
learning model strategy, and PSO-HLM-NH only uses standard learning model strategy. In the hybrid
learning model strategy, these four learning model (confidence learning model, mild learning model,
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standard learning model, Gaussian learning model) can make full use of the total information of
particles at each stage, so that each particles can absorb various effective information. At the stage of
sharp decline in diversity, the transformation between different learning models is realized by
implementing Gaussian perturbation, thus it can avoid the local concentration of particles caused by a
single learning model. Gauss model and standard model can further enhance the randomness and
regularity of the learning stage.

Table 6. The algorithm results for CEC2017 30-D.
No. CLPSO FDR-PSO PPSO TAPSO XPSO PSO-HLM
F1 mean 1.01E+02- 4.93E+03 + 1.11E+04 + 5.28E+02 + 4.93E+03 + 3.36E+02

std 5.12E-01- 8.27E+03 + 9.65E+03 + 7.17E+02 + 3.94E+03 + 2.33E+02
F2 mean 1.83E+04 + 3.00E+02≈ 3.00E+02 + 3.00E+02≈ 3.00E+02 + 3.00E+02

std 2.46E+03 + 0.00E+00≈ 1.05E-04 + 0.00E+00≈ 7.96E-04 + 0.00E+00
F3 mean 4.90E+02 + 4.30E+02 + 4.97E+02 + 4.23E+02 + 5.34E+02 + 4.03E+02

std 1.39E+01 + 4.58E+01 + 1.39E+01 + 3.59E+01 + 1.23E+01 + 2.23E+00
F4 mean 5.53E+02 + 5.48E+02 + 7.60E+02 + 5.48E+02 + 5.45E+02 + 5.41E+02

std 7.54E+00 + 4.34E+00 + 1.45E+01 + 1.15E+01 + 1.29E+01 + 4.17E+00
F5 mean 6.00E+02- 6.00E+02 + 6.35E+02 + 6.00E+02 - 6.00E+02 + 6.00E+02

std 0.00E+00- 5.40E-03 + 1.12E+01 + 1.80E-03 - 5.45E-01 + 3.00E-03
F6 mean 7.87E+02 + 7.92E+02 + 1.12E+03 + 7.74E+02 + 7.72E+02 + 7.67E+02

std 6.43E+00 + 1.80E+01 + 3.22E+01 + 1.41E+01 + 3.19E+00 + 4.94E+00
F7 mean 8.49E+02 + 8.47E+02 + 9.79E+02 + 8.52E+02 + 8.45E+02 + 8.38E+02

std 1.03E+01 + 4.14E+00 + 2.19E+01 + 3.20E+00 + 6.05E+00 + 3.04E+00
F8 mean 9.09E+02 - 9.05E+02 - 5.12E+03 + 9.88E+02 + 9.04E+02 - 9.10E+02

std 3.05E+00 - 4.44E+00 - 6.91E+02 + 1.01E+02 + 2.11E+00 - 4.31E+00
F9 mean 3.27E+03 - 3.85E+03 + 5.39E+03 + 3.45E+03- 3.91E+03 + 3.52E+03

std 2.89E+02 - 8.63E+02 + 7.98E+02 + 4.37E+02- 7.12E+02 + 2.98E+02
F10 mean 1.18E+03 + 1.23E+03 + 1.21E+03 + 1.18E+03 + 1.19E+03 + 1.15E+03

std 4.51E+00 + 6.23E+01 + 7.41E+00 + 1.81E+01 + 5.34E+01 + 2.02E+01
F11 mean 5.97E+05 + 1.89E+04 + 2.53E+05 + 2.37E+04 + 1.44E+05 + 1.48E+04

std 3.96E+05 + 1.08E+04 + 2.95E+05 + 1.07E+04 + 1.45E+05 + 1.61E+03
F12 mean 2.62E+03- 1.97E+04+ 3.81E+03- 2.71E+04+ 5.89E+03- 6.06E+03

std 1.55E+03- 3.58E+03+ 1.19E+03- 2.93E+04+ 4.17E+03- 5.31E+03
F13 mean 1.75E+04 + 3.20E+03 + 1.53E+03- 1.92E+03- 4.53E+03 + 2.52E+03

std 9.65E+03 + 1.55E+03 + 5.23E+01- 5.05E+02- 2.47E+03 + 5.95E+02
F14 mean 1.61E+03- 2.01E+03- 1.68E+03- 2.28E+03- 1.72E+04+ 5.89E+03

std 2.70E+01- 3.70E+02- 7.78E+01- 5.13E+02- 1.52E+04+ 4.95E+03
F15 mean 2.16E+03+ 2.18E+03+ 2.84E+03+ 2.48E+03+ 2.44E+03+ 2.13E+03

std 1.32E+02+ 4.88E+01+ 4.40E+02+ 2.01E+02+ 1.03E+02+ 2.25E+02
F16 mean 1.84E+03 + 1.82E+03 + 2.34E+03 + 1.96E+03 + 1.89E+03 + 1.79E+03

std 4.18E+01 + 1.01E+02 + 4.10E+02 + 5.75E+01 + 1.56E+02 + 6.86E+01
F17 mean 2.16E+05 + 9.21E+04 + 4.71E+03- 5.76E+04+ 3.02E+05+ 3.25E+04

std 1.61E+05 + 8.01E+04 + 2.50E+03- 1.81E+04+ 3.22E+05+ 3.87E+03
F18 mean 1.95E+03- 5.34E+03 + 2.10E+03- 6.30E+03 + 1.66E+04 + 5.24E+03

std 1.88E+01- 3.21E+03 + 1.30E+02- 1.69E+03 + 1.82E+04 + 4.25E+03
F19 mean 2.20E+03+ 2.24E+03+ 2.51E+03+ 2.18E+03- 2.14E+03- 2.19E+03

std 2.64E+01+ 1.10E+02+ 2.04E+02+ 1.20E+01- 8.24E+01- 1.27E+02
F20 mean 2.36E+03+ 2.35E+03+ 2.53E+03+ 2.34E+03+ 2.35E+03+ 2.34E+03

std 5.04E+00+ 8.88E+00+ 4.82E+01+ 1.24E+01+ 1.10E+01+ 1.39E+01
F21 mean 2.65E+03- 3.39E+03+ 3.48E+03+ 2.30E+03- 2.30E+03- 2.98E+03

std 5.40E+02- 1.89E+03+ 2.04E+03+ 1.97E+00- 2.10E+00- 1.17E+03
F22 mean 2.72E+03+ 2.71E+03+ 2.98E+03+ 2.71E+03+ 2.68E+03- 2.71E+03

std 1.15E+01+ 1.79E+01+ 6.70E+01+ 1.47E+01+ 5.30E+00- 8.36E+00
F23 mean 2.92E+03+ 2.88E+03+ 3.21E+03+ 2.89E+03+ 2.91E+03+ 2.88E+03

std 1.21E+01+ 2.22E+01+ 2.00E+01+ 1.37E+01 4.41E+01+ 1.69E+01
F24 mean 2.89E+03- 2.89E+03- 2.92E+03+ 2.89E+03- 2.90E+03+ 2.89E+03

std 2.23E-01- 5.30E-01- 2.54E+01+ 2.62E+00- 1.58E+01+ 4.20E+00
F25 mean 3.47E+03- 4.30E+03+ 5.24E+03+ 5.20E+03+ 3.82E+03- 3.87E+03

std 7.89E+02- 3.81E+02+ 2.15E+03+ 1.03E+03+ 7.96E+02- 9.38E+02
F26 mean 3.21E+03- 3.22E+03+ 3.30E+03+ 3.23E+03+ 3.23E+03+ 3.22E+03

std 6.70E+00- 1.31E+01+ 5.53E+01+ 6.71E+00+ 2.87E+01+ 2.14E+00
F27 mean 3.21E+03+ 3.15E+03+ 3.24E+03+ 3.10E+03- 3.18E+03+ 3.13E+03

std 5.65E+00+ 5.19E+01+ 2.88E+01+ 0.00E+00- 7.61E+01+ 5.96E+01
F28 mean 3.45E+03- 3.47E+03+ 3.99E+03+ 3.75E+03+ 3.49E+03- 3.54E+03

std 4.85E+00- 7.35E+01+ 2.63E+02+ 2.18E+02+ 1.06E+02- 1.65E+02
- / ≈ / + 12/0/16 24/1/3 23/0/5 19/1/8 21/0/7
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Table 7. The results of the parameter adaptation experiments, where PSO-HLM-NA uses
fixed parameters, and PSO-HLM-A uses adaptive parameter strategy.

No. PSO-HLM-NA PSO-HLM-A
F1 mean 1.94E-160 - 7.61E-175

std 6.24E-160 - 0.00E+00
F2 mean 1.34E-78 - 9.30E-89

std 4.54E-78 - 2.19E-88
F3 mean 2.21E-26 - 1.95E-31

std 7.95E-26 - 4.86E-31
F4 mean 3.91E+03 - 3.60E+03

std 1.15E+03 - 7.50E+02
F5 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F6 mean 6.46E-20 - 2.12E-21

std 3.50E-19 - 8.07E-21
F7 mean 8.69E+03 + 1.01E+04

std 4.07E+03 + 3.88E+03
F8 mean 2.23E+05 - 1.59E+05

std 1.17E+05 - 1.21E+05
F9 mean 5.57E-15 + 6.51E-15

std 1.79E-15 + 1.35E-15
F10 mean 1.82E-13 + 0.00E+00

std 5.55E-13 + 0.00E+00
F11 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F12 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F13 mean 2.83E-02 - 2.13E-02

std 4.31E-02 - 2.31E-02
F14 mean 1.59E-32 + 1.61E-32

std 9.43E-34 + 1.31E-33
F15 mean 5.83E-01 + 6.07E-01

std 1.39E-01 + 1.39E-01
-/ ≈ / + 8/3/4

No. PSO-HLM-NA PSO-HLM-A
F16 mean 3.38E+00 + 3.52E+00

std 7.82E-01 + 7.20E-01
F17 mean 5.22E-12 - 2.64E-12

std 8.08E-12 - 1.36E-11
F18 mean 5.90E-03 - 5.70E-03

std 8.30E-03 - 6.80E-03
F19 mean 1.14E+00 + 1.17E+00

std 2.47E-01 + 1.83E-01
F20 mean 2.17E+03 - 1.64E+03

std 4.32E+03 - 2.69E+03
F21 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F22 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F23 mean 5.47E-04 - 2.28E-06

std 2.40E-03 - 1.09E-05
F24 mean 1.20E+01 + 1.21E+01

std 5.90E-01 + 6.95E-01
F25 mean 1.82E-02 + 2.22E-02

std 1.83E-02 + 3.07E-02
F26 mean 2.03E+01 ≈ 2.03E+01

std 4.01E-01 ≈ 4.34E-01
F27 mean 7.34E+01 - 6.69E+01

std 1.88E+01 - 1.94E+01
F28 mean 9.00E+01 - 8.41E+01

std 2.81E+01 - 2.39E+01
F29 mean 1.99E+01 - 1.74E+01

std 3.56E+00 - 3.05E+00
F30 mean 5.43E-01 + 6.20E-01

std 1.36E-01 + 1.22E-01
+/ ≈ / + 7/3/5
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Table 8. The effectiveness experimental results of the multi-pool fusion strategy, where PSO-
HLM-NF uses a total population, and PSO-HLM-F uses multi-pool subpopulation fusion
strategy.

No. PSO-HLM-NF PSO-HLM-F
F1 mean 1.94E-160 - 7.81E-188

std 6.24E-160 - 0.00E+00
F2 mean 1.34E-78 - 1.45E-96

std 4.54E-78 - 4.67E-96
F3 mean 2.21E-26 - 4.45E-33

std 7.95E-26 - 1.75E-32
F4 mean 3.91E+03 - 3.15E+03

std 1.15E+03 - 5.59E+02
F5 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F6 mean 6.46E-20 - 7.32E-27

std 3.50E-19 - 2.63E-27
F7 mean 8.69E+03 - 7.12E+03

std 4.07E+03 - 2.20E+03
F8 mean 2.23E+05 - 1.11E+05

std 1.17E+05 - 4.48E+04
F9 mean 5.57E-15 + 6.28E-15

std 1.79E-15 + 1.53E-15
F10 mean 1.82E-13 - 0.00E+00

std 5.55E-13 - 0.00E+00
F11 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F12 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F13 mean 2.83E-02 - 9.10E-03

std 4.31E-02 - 7.50E-03
F14 mean 1.59E-32 + 1.61E-32

std 9.43E-34 + 1.31E-33
F15 mean 5.83E-01 - 5.20E-01

std 1.39E-01 - 8.05E-02
-/ ≈ / + 10/3/2

No. PSO-HLM-NF PSO-HLM-F
F16 mean 3.38E+00 + 3.42E+00

std 7.82E-01 + 4.98E-01
F17 mean 5.22E-12 - 2.04E-14

std 8.08E-12 - 6.40E-14
F18 mean 5.90E-03 - 3.70E-03

std 8.30E-03 - 6.10E-03
F19 mean 1.14E+00 - 1.11E+00

std 2.47E-01 - 2.30E-01
F20 mean 2.17E+03 - 8.87E+02

std 4.32E+03 - 1.03E+03
F21 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F22 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F23 mean 5.47E-04 - 3.20E-10

std 2.40E-03 - 1.38E-09
F24 mean 1.20E+01 + 1.21E+01

std 5.90E-01 + 5.43E-01
F25 mean 1.82E-02 + 1.84E-02

std 1.83E-02 + 1.83E-02
F26 mean 2.03E+01 ≈ 2.03E+01

std 4.01E-01 ≈ 4.03E-01
F27 mean 7.34E+01 - 6.33E+01

std 1.88E+01 - 1.40E+01
F28 mean 9.00E+01 - 7.50E+01

std 2.81E+01 - 2.10E+01
F29 mean 1.99E+01 - 1.83E+01

std 3.56E+00 - 2.56E+00
F30 mean 5.43E-01 + 6.03E-01

std 1.36E-01 + 1.30E-01
-/ ≈ / + 8/3/4
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Table 9. The effectiveness experimental results of four hybrid model strategy. where PSO-
HLM-NH only uses standard learning model strategy, and PSO-HLM-H uses hybrid learning
model strategy.

No. PSO-HLM-NH PSO-HLM-H
F1 mean 1.94E-160 - 8.23E-164

std 6.24E-160 - 0.00E+00
F2 mean 1.34E-78 - 9.96E-80

std 4.54E-78 - 3.22E-79
F3 mean 2.21E-26 - 3.94E-29

std 7.95E-26 - 2.03E-28
F4 mean 3.91E+03 - 3.72E+03

std 1.15E+03 - 9.66E+02
F5 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F6 mean 6.46E-20 - 8.30E-27

std 3.50E-19 - 2.16E-26
F7 mean 8.69E+03 - 6.95E+02

std 4.07E+03 - 4.42E+02
F8 mean 2.23E+05 - 1.80E+05

std 1.17E+05 - 1.06E+05
F9 mean 5.57E-15 + 6.63E-15

std 1.79E-15 + 1.23E-15
F10 mean 1.82E-13 - 0.00E+00

std 5.55E-13 - 0.00E+00
F11 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F12 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F13 mean 2.83E-02 - 1.00E-03

std 4.31E-02 - 2.00E-03
F14 mean 1.59E-32 + 1.61E-32

std 9.43E-34 + 1.31E-33
F15 mean 5.83E-01 - 4.67E-01

std 1.39E-01 - 6.61E-02
-/ ≈ / + 10/3/2

No. PSO-HLM-NH PSO-HLM-H
F16 mean 3.38E+00 + 3.69E+00

std 7.82E-01 + 8.37E-01
F17 mean 5.22E-12 + 2.32E-10

std 8.08E-12 + 6.90E-10
F18 mean 5.90E-03 - 4.80E-03

std 8.30E-03 - 7.80E-03
F19 mean 1.14E+00 - 1.13E+00

std 2.47E-01 - 2.07E-01
F20 mean 2.17E+03 - 1.90E+03

std 4.32E+03 - 2.87E+03
F21 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F22 mean 0.00E+00 ≈ 0.00E+00

std 0.00E+00 ≈ 0.00E+00
F23 mean 5.47E-04 - 8.58E-07

std 2.40E-03 - 4.25E-06
F24 mean 1.20E+01 - 1.19E+01

std 5.90E-01 - 6.70E-01
F25 mean 1.82E-02 + 1.86E-02

std 1.83E-02 + 1.74E-02
F26 mean 2.03E+01 ≈ 2.03E+01

std 4.01E-01 ≈ 4.25E-01
F27 mean 7.34E+01 - 5.89E+01

std 1.88E+01 - 1.23E+01
F28 mean 9.00E+01 - 7.01E+01

std 2.81E+01 - 1.74E+01
F29 mean 1.99E+01 - 1.75E+01

std 3.56E+00 - 2.75E+01
F30 mean 5.43E-01 - 4.57E-01

std 1.36E-01 - 8.58E-02
-/ ≈ / + 9/3/3
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Table 10. The sensitivity experimental results of hybrid learning model strategy initialization
time.

No. 0 MaxIter/3 2*MaxIter/3
F1 mean 6.90E-172 - 3.62E-180 8.80E-188-

std 0.00E+00 - 0.00E+00 0.00E+00 +
F2 mean 3.29E-84 - 3.81E-91 1.49E-96-

std 1.67E-83 - 1.39E-90 5.99E-96-
F3 mean 1.52E-29 - 1.17E-31 3.56E-33-

std 3.61E-29 - 2.97E-31 1.77E-32-
F4 mean 4.37E+03 - 3.41E+03 4.05E+03+

std 8.46E+02 - 9.02E+02 1.01E+03+
F5 mean 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈

std 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈
F6 mean 4.12E-27 + 6.59E-27 7.58E-18+

std 2.12E-27 + 4.96E-27 4.15E-17+
F7 mean 4.13E+02 + 1.13E+03 1.01E+04+

std 2.29E+02 + 8.29E+02 3.71E+03+
F8 mean 2.05E+05 - 1.67E+05 1.41E+05-

std 9.96E+04 - 7.43E+04 7.08E+04-
F9 mean 6.87E-15 - 6.63E-15 6.75E-15+

std 9.01E-16 - 1.23E-15 1.08E-15+
F10 mean 2.43E-13 - 0.00E+00 4.85E-13+

std 6.29E-13 - 0.00E+00 8.18E-13+
F11 mean 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈

std 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈
F12 mean 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈

std 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈
F13 mean 3.74E-04 + 8.96E-04 2.85E-02+

std 3.69E-04 + 1.50E-03 3.03E-02+
F14 mean 1.57E-32 + 1.59E-32 1.61E-32 -

std 5.57E-46 + 9.43E-34 1.31E-33 -
F15 mean 3.93E-01 + 4.80E-01 5.73E-01 -

std 6.91E-02 + 7.61E-02 1.14E-01 -
-/ ≈ / + 7/3/5 8/3/4

No. 0 MaxIter/3 2*MaxIter/3
F16 mean 3.98E+00 - 3.64E+00 3.69E+00+

std 6.27E-01 - 7.33E-01 6.97E-01 -
F17 mean 1.18E-09 - 3.53E-12 3.60E-14-

std 2.20E-09 - 5.04E-12 8.85E-14-
F18 mean 8.12E-03 - 5.10E-03 5.60E-03+

std 1.05E-02 - 1.02E-02 1.01E-02+
F19 mean 1.18E+00 - 1.12E+00 1.12E+00 ≈

std 2.33E-01 - 1.78E-01 2.00E-01 ≈
F20 mean 3.37E+03 - 9.95E+02 2.10E+03+

std 5.34E+03 - 1.40E+03 3.53E+03+
F21 mean 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈

std 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈
F22 mean 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈

std 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈
F23 mean 3.39E-01 - 4.28E-10 5.30E-10+

std 1.31E+00 - 1.45E-09 1.77E-09+
F24 mean 1.23E+01 - 1.21E+01 1.22E+01+

std 4.14E-01 - 6.25E-01 8.04E-01+
F25 mean 1.44E-02 + 2.53E-02 2.12E-02-

std 1.25E-02 + 3.31E-02 3.23E-02-
F26 mean 2.09E+01 - 2.04E+01 2.02E+01-

std 5.29E-02 - 4.65E-01 3.59E-01 +
F27 mean 7.39E+01 - 5.46E+01 5.57E+01+

std 4.34E+01 - 1.51E+01 1.50E+01+
F28 mean 8.25E+01 - 7.10E+01 7.67E+01+

std 3.28E+01 - 1.71E+01 2.63E+01+
F29 mean 1.66E+01 + 1.70E+01 1.72E+01+

std 2.20E+00 + 2.49E+00 2.92E+00+
F30 mean 4.03E-01 + 4.80E-01 5.70E-01+

std 7.18E-02 + 7.13E-02 9.15E-02+
-/ ≈ / + 10/2/3 9/3/3

4.5. Sensitivity analysis

In order to ensure the sensitivity of the hybrid learning model strategy, several experimental
analysis was carried out to ensure that the initialization time of the hybrid learning model strategy.
The experimental result was shown on Table 10, where 0, MaxIter/3, and 2 ∗ MaxIter/3 represents
the hybrid learning model strategy initialization time. Due to the introduction of multi-pool fusion
strategy and different learning models, PSO-HLM can be divided into three stages: prospect,
transition and development.

From Table 10, it can be see that the initialization time of the hybrid learning model strategy equal
to MaxIter/3, PSO-HLM has the best performance than other two initialization time (0 and
2 ∗ MaxIter/3). Because, in the early stage of iteration, the initialized population has a strong search
ability. In the medium stage (MaxIter/3), the diversity of the population decreases, and these four
learning strategies can effectively improve the exploration ability of the population. In the last stage
(2 ∗MaxIter/3), the computing resources are not enough for the population to explore new landscape.
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Thus, MaxIter/3 is the best time to start hybrid learning model strategy.

5. Conclusions

In this paper, a hybrid learning model based particle swarm optimization algorithm (PSO-HLM) is
proposed. These improved PSO-HLM strategies can increase population diversity and avoid falling
into local optimization. In PSO-HLM, the multi-pool fusion strategy can increase population diversity
and avoid sudden decline of population diversity. In addition, in the particle learning stage, each
particle can update its velocity through four learning models. Confidence learning model makes
particles search for sub-particles with the best potential exemplar. Mild learning model enable
particles to learn the most suitable particle from two different sub-populations (the potential exemplar
and global optimal particles), thus it can balance multi-directional search. Standard learning model
enable particles to search in multiple directions by learning global optimal particles and local optimal
particles. Gaussian model makes particles jump out of the local optimal solution with Gaussian
perturbation. These four learning models can ensure that PSO-HLM can fully learn the information of
each particle and avoid falling into local optimization prematurely.

In PSO-HLM, these different learning models can help particles find more potential solution, and
avoid falling into local optimization prematurely. In future work, the dynamic changes of population
size under different learning models can be further studied.
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