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Abstract: This paper considers the stability of a fractional differential equation with multi-point
boundary conditions and non-instantaneous integral impulse. Some sufficient conditions for the ex-
istence, uniqueness and at least one solution of the aforementioned equation are studied by using the
Diaz-Margolis fixed point theorem. Secondly, the Ulam stability of the equation is also discussed.
Lastly, we give one example to support our main results. It is worth pointing out that these two
non-instantaneous integral impulse and multi-point boundary conditions factors are simultaneously
considered in the fractional differential equations studied for the first time.
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1. Introduction

In the past decades, a lot of complex dynamic phenomena have been produced by multi-point
boundary conditions for fractional differential equations, which are more general than classical integer
differential equations, so more and more researchers are attracted to studying the stability analysis of
multi-point boundary conditions for fractional differential equations. In the modeling of many physical
phenomena, fractional differential equations have been used as strong tools. Thus, some scholars [1–7]
provided the most theoretical method for qualitative analysis in this research fieldsuch as, medicine,
mechanical engineering, ecology, biology and astronomy.
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Because impulse fractional differential equation calculus can describe the dynamic properties of
system, it has attracted extensive attention of many researchers. For example, Zhao [8] considered
multiple positive solutions of integral boundary value problems (BVPs) for high-order nonlinear frac-
tional differential equations with impulses and distributed delays. Zhao [9] studied an impulsive in-
tegral boundary value problems of the higher-order fractional differential equation with eigenvalue
arguments. Tian and Bai [10] studied impulsive boundary value problem for differential equations
with fractional order. In addition, some papers also studied the dynamic properties of impulsive frac-
tional differential equations. For example, solutions of impulsive fractional Langevin equations and
existence results were studied by [11]. A new class of impulsive fractional differential equations was
considered in [12].

Many researchers developed some interesting results about the existence of solutions for different
boundary value problems, using different fixed point theorems [13–17]. Often, it is a challenging task
for researchers to find the exact solutions of nonlinear differential equations. Thus, in this situation
different approximation techniques were introduced [18,19]. The difference between approximate and
exact solutions can be treated with the help of Hyers-Ulam (HU) stability, which was first introduced
in 1940 by Ulam [20–22]. Based on this method, many scholars have conducted further research on the
stability of the solutions of fractional equations. For example, Zada et al. [23] presented the existence
and uniqueness of solutions and different types of Ulam-Hyers stability for a class of nonlinear im-
plicit fractional differential equations with non-instantaneous integral impulses and nonlinear integral
boundary conditions. Subsequently, Zada and Ali [24] studied existence, uniqueness, and generalized
different type of Ulam stability of fractional differential equations with non-instantaneous impulses.
There are many interesting results to see [25–28]. As far as we know, a fractional differential equa-
tion simultaneous consideration of the multi-point boundary conditions and non-instantaneous integral
impulse is not found in the existing literature.

Motivated by the existing works [29–36], in this manuscript, we deal with a multi-point boundary
conditions for fractional differential equation with non-instantaneous integral impulse

cDα( D + λ)x(t) = f (t, x(t), cDβx(t)), t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m,
x(t) = Iαsk−1,tk(gk(t, x(t))) t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m,
ax(tk) + bx(sk) = c, x(0) = 0,

(1.1)

where 0 < β < α ≤ 1. λ, a, b and c are constants, and λ > 0, b , 0, J = [0,T ]. ∗Dα stands for
the Caputo fractional derivatives of order ∗, and D stands for the ordinary derivative. Iα is Caputo
fractional integral of order α. As we have 0 = t0 < s0 < t1 < s1 < · · · < tm < sm = T , T is a fixed
number. f : C(J × R2) → R is continuous, and gk ∈ C((sk−1, tk] × R → R is also continuous for all
k = 1, 2, . . . ,m.

Based on the method of [37–44], in this paper, we study the multi-point boundary conditions for
a general fractional differential equation with non-instantaneous integral impulse. We consider the
existence and stability analysis of multi-point boundary conditions for the general fractional differential
equation with non-instantaneous integral impulse. By using the Diaz-Margolis fixed point theorem,
we discuss some sufficient conditions for the existence, uniquenes, and at least one solution of the
aforementioned equation. Secondly, the Ulam stability of Eq (1.1) is also given. The method of
proving stability is only one of the results. The major innovations are Theorems 1, 3 and 4 of this
paper. We only refer to references [23, 24] to prove the stability method of the solution of our system.
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The novelty and difficulty are the following.
For the main results: 1) Although both this paper and [23, 24] discuss existence and generalized

different type of Ulam stability for fractional differential equation, this paper first gives different the
function value at the boundary of each pulse interval (tk, sk] has a certain relationship value, that is, the
value of the function at the boundary point tk is related to the value of the function at sk. 2) In [24], a
stability analysis of a multi-point boundary value problem for sequential fractional differential equa-
tions with non-instantaneous impulses is considered. The general fractional differential equations with
(1.1) considered in our paper have non-instantaneous impulses and multi-point boundary conditions,
and [24] have considered sequential fractional differential equations with non-instantaneous impulses.
Using the Diaz-Margolis fixed point theorem, some general sufficient conditions for the existence,
uniqueness and at least one solution of the aforementioned equation are given in our article. 3) It
should be noticed that [23] considered the existence and different type of Ulam stability for a fractional
differential equation. Different from [23], in this paper, we improve it more generally; for example
the second impulse equation is introduced into our equation. We point out that the non-instantaneous
integral impulse and multi-point boundary conditions of two factors are simultaneously considered in
the general fractional differential equations studied for the first time.

For the difficulty in analysis method of this article: 1) The traditional continuity theory cannot
be applied due to the multi-point boundary conditions for the general fractional differential equation
in our paper. For example, when proving the existence, uniqueness and at least one solution of the
systems with non-instantaneous integral impulse, the traditional stability theorem cannot be similarly
constructed. 2) The fixed point theorem of continuous systems cannot be used to prove the existence of
stability of general Eq (1.1). In this paper, by using the Diaz-Margolis fixed point theorem, we obtain
the Ulam stability of the Eq (1.1).

This paper is organized as follows: in Section 2, we give some basic Definitions, Lemmas and the
existence of solution. Section 3 gives the Ulam stabilities analysis. Section 4 gives one example to
illustrate the main results. Finally, we summarize the main results of this paper in Section 5.

Notations: Let J = [0,T ] and C(J,R) be the space of all continuous functions from J to R. Let
B = PC2(J,R) represent the space of piecewise continuous and two times differentiable functions. For
a function u : J → R, the Caputo fractional derivative of order α is defined as

cDαu(t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1un(s)ds, n = [α] + 1,

where [α] denotes the integer part of the real number α. For a function u : J → R, the sequential
fractional derivative is defined as

Dαu(t) = Dα1 Dα2 . . .Dαku(t),

where α = (α1, α2, . . . , αk) is any multi-index. In general, the operator Dα can either be Riemann-
Liouville or Caputo or any other kind of integro-differential operator.

Let y ∈ B, ε > 0, v > 0, λ ∈ R+ and θ ∈ C(J,R+) be a non-decreasing function. Let us consider the
following set:{

|cDα( D + λ)y(t) − f (t, y(t), cDβy(t))| 6 ε, t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m,
|y(t) − Iαsk−1,tkgk(t, y(t))| 6 ε, t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m,

(1.2)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7020–7041



7023{
|cDα( D + λ)y(t) − f (t, y(t), cDβy(t))| 6 θ(t), t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m,
|y(t) − Iαsk−1,tkgk(t, y(t))| 6 v, t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m,

(1.3)

and {
|cDα( D + λ)y(t) − f (t, y(t), cDβy(t))| 6 εθ(t), t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m,
|y(t) − Iαsk−1,tkgk(t, y(t))| 6 εv, t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m.

(1.4)

2. Preliminaries and the existence of solution

In this part, we give some basic definitions, lemmas, theorems and the existence conditions of
solution in Eq (1.1).

2.1. Preliminaries

Definition 1. [7] For a function u : J → R, the Caputo fractional integral of order α is defined as

cIαu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, t > 0, α > 0,

where Euler gamma function Γ is defined by Γ(α) =

∫ ∞

0
tα−1e−tdt.

As in [19], Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability
and generalized Ulam-Hyers-Rassias stability of Eq (1.1) are given as follows.

Definition 2. [19] For a given ε > 0, the following conditions hold.

(1)) For each solution y ∈ B of Eq (1.2), there are a positive constant cm,α,β > 0 and a solution x ∈ B
of Eq (1.1) satisfying |y(t) − x(t)| ≤ cm,α,βε, t ∈ J. Then, the solution of Eq (1.1) is Ulam-Hyers
stable.

(2) For each solution y ∈ B of Eq (1.3), there are a constant φm,α,β ∈ C(R+,R+), φm,α,β(0) = 0 and
solution x ∈ B of Eq (1.1) satisfying |y(t) − x(t)| ≤ φm,α,β(ε), t ∈ J. Then, the solution of Eq (1.1) is
generalized Ulam-Hyers stable.

(3) For each solution y ∈ B of Eq (1.4), there are a positive constant cm,α,β > 0 and a solution
x ∈ B of Eq (1.1) satisfying |y(t) − x(t)| ≤ cm,α,βε(θ(t) + v), t ∈ J. Then, the solution of Eq (1.1) is
Ulam-Hyers-Rassias stable with respect to (θ, v).

(4) For each solution y ∈ B of Eq (1.3), there are a positive constant cm,α,β > 0 and a solution x ∈ B of
Eq (1.1) satisfying |y(t)− x(t)| ≤ cm,α,β(θ(t) + v), t ∈ J. Then, the solution of Eq (1.1) is generalized
Ulam-Hyers-Rassias stable.

Definition 3. [25] Let X be a non-empty set, and a function d : X × X → [0,∞], for a, b, c ∈ X
satisfying d(a, b) ≥ 0; d(a, b) = 0 if and only if a = b; d(a, b) = d(b, a); d(a, b) ≤ d(a, c) + d(c, b).
Then, X is a generalized metric space.
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Definition 4. [25] Let X be a generalized metric space. If every d Cauchy sequence in X is d-
convergent, i.e., if {an} is a sequence in X satisfying lim

m,n→∞
d(an, am) = 0, and further, there is u ∈ X that

satisfies lim
n→∞

d(an, u) = 0, then, X is generalized complete metric space.

Lemma 1. [26] Suppose (X, d) is a generalized complete metric space, and an operator
∧

: X → X
is strictly contractive with Lipschitz constant L < 1. If there is an integer n ≥ 0 such that
d(
∧n+1 x,

∧n x) < ∞ for some x ∈ X, then the following conditions hold. (i) The sequence {
∧n x}

converges to a fixed point θ∗ of
∧

. (ii) θ∗ is the unique fixed point of
∧

in X∗ = {y ∈ X|d(
∧n θ, y) < ∞}.

(iii) If y ∈ X∗, then d(y, x∗) ≤ 1
1−Ld(

∧
y, y).

Lemma 2. [7] For any α > 0 and u ∈ B, the following conditions hold.

1). The Caputo fractional differential equation cDαu(t) = 0 has a solution of the following form:
u(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, where ci ∈ R, i = 0, 1, · · · n − 1, and n = [α] + 1.

2). I0 +α (Dα
0+

u(t)) = u(t) + c0 + c1t + ... + cn−1tn−1, where ci ∈ R, i = 0, 1, ..., n − 1, and n = [α] + 1.

To give main results of Eq (1.1), the following assumptions are necessary

(H1) f : J × R+ → R+ is continuous function.

(H2) There exist two numbers L f > 0 and 0 < L̃ f < 1 such that | f (t,w1,w1) − f (t,w2,w2)| ≤ L f |w1 −

w2| + L̃ f |w1 − w2|, where t ∈ J and w1,w1,w2,w2 ∈ R
+.

(H3) For gk ∈ C([sk−1, tk],R+,R+) and there are Lgk > 0, k = 1, 2, · · · ,m such that |gk(t,w1)−gk(t,w2)| ≤
Lgk |w1 − w2|, where t ∈ (sk−1, tk] and w1,w2 ∈ R

+.

(H4) Letting θ(t) ∈ C(J,R+) be a non-decreasing function, for each t ∈ J, there are cαθ , c
α−β
θ such that∫ t

0
Iαθ(s)ds ≤ cαθ θ(t)

∫ t

0
Iα−βθ(s)ds ≤ cα−βθ θ(t).

For convenience, we give the following notations

Λ =
1 − e−λt

1 − e−λs0
, Bk =

1 − e−λ(t−tk)

1 − e−λ(sk−tk) .

2.2. Existence of solution

In this part, by using Definition 1 and Lemma 2, we address the existence of solution in Eq (1.1) as
follows.

Theorem 1. Let 0 < α ≤ 1 and f : J → R be a given continuous function. A solution x ∈ B satisfies
the linear impulsive problem

cDα( D + λ)x(t) = f (t), t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m, 0 < β < α ≤ 1,
x(t) = Iαsk−1,tk(gk(t)), t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m,
ax(tk) + bx(sk) = c, x(0) = 0,

(2.1)

if and only if the solution x ∈ B satisfies
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x(t) =



∫ t

0
e−λ(t−s)Iα f (s)ds + Λ[ c

b −
∫ s0

0
e−λ(s0−s)Iα f (s)ds], t ∈ [t0, s0],

Iαsk−1,tk
(gk(t)), k = 1, 2, · · · ,m, t ∈ (sk−1, tk],∫ t

tk
e−λ(t−s)Iα f (s)ds + Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk)) −
∫ sk

tk
e−λ(sk−s)Iα f (s)ds

−e−λ(sk−tk)Iαsk−1,tk
(gk(tk))] + e−λ(t−tk)Iαsk−1,tk

(gk(tk)), k = 1, 2, · · · ,m, t ∈ (tk, sk].

(2.2)

Proof. To prove the sufficiency, let x ∈ B be the solution of (2.1). For t ∈ [0, s0], we first consider
cDα

0,t( D + λ)x(t) = f (t). (2.3)

By using Lemma 2, we have

x(t) =

∫ t

0
e−λ(t−s)Iα f (s)ds + c0

1 − e−λt

λ
+ d0e−λt, (2.4)

where c0 and d0 are arbitrary constants.
From (2.4) and x(0) = 0, we get d0 = 0. In view of ax(0) + bx(s0) = c, we obtain x(s0) = c

b . From
(2.4), x(s0) =

∫ s0

0
e−λ(s0−s)Iα f (s)ds + c0

1−e−λs0

λ
+ d0e−λs0 = c

b , and then

c0 =
λ

1 − e−λs0
[
c
b
−

∫ s0

0
e−λ(s0−s)Iα f (s)ds].

So,

x(t) =

∫ t

0
e−λ(t−s)Iα f (s)ds +

1 − e−λt

1 − e−λs0
[
c
b
−

∫ s0

0
e−λ(s0−s)Iα f (s)ds]. (2.5)

Moreover, we assume that t ∈ (s0, t1], and from the second equation of (2.1), we then have x(t) =

Iαsk−1,tk
(gk(t)).

If t ∈ (t1, s1], then

x(t) =

∫ t

t1
e−λ(t−s)Iα f (s)ds + c1

1 − e−λ(t−t1)

λ
+ d1e−λt. (2.6)

Based on x(t1) = Iαs0,t1(g1(t1)), we get x(t1) = d1e−λt1 , and then d1 = eλt1 Iαs0,t1(g1(t1)). In view of the
condition ax(t1) + bx(s1) = c, with

x(s1) =

∫ s1

t1
e−λ(s1−s)Iα f (s)ds + c1

1 − e−λ(s1−t1)

λ
+ d1e−λs1 ,

we obtain

c1 =
λ

1 − e−λ(s1−t1) [
c
b
−

a
b

Iαs0,t1(g1(t1)) −
∫ s1

t1
e−λ(s1−s)Iα f (s)ds − e−λ(s1−t1)Iαs0,t1

(g1(t1))].

So,

x(t) =

∫ t

t1
e−λ(t−s)Iα f (s)ds +

1 − e−λ(t−t1)

1 − e−λ(s1−t1) [
c
b
−

a
b

Iαs0,t1(g1(t1)) −
∫ s1

t1
e−λ(s1−s)Iα f (s)ds

− e−λ(s1−t1)Iαs0,t1
(g1(t1))] + e−λ(t−t1)Iαs0,t1

(g1(t1)). (2.7)
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If t ∈ (tk, sk], the solution of (2.1) with x(tk) = Iαsk−1,tk
(gk(tk)), ax(tk) + bx(sk) = c, is given as

x(t) =

∫ t

tk
e−λ(t−s)Iα f (s)ds +

1 − e−λ(t−tk)

1 − e−λ(sk−tk) [
c
b
−

a
b

Iαsk−1,tk
(gk(tk)) −

∫ sk

tk
e−λ(sk−s)Iα f (s)ds

− e−λ(sk−tk)Iαsk−1,tk
(gk(tk))] + e−λ(t−tk)Iαsk−1,tk

(gk(tk)). (2.8)

Conversely, if x ∈ B is a solution of fractional integral (2.2), by the fact that cDα
0,t is the left inverse

of cIα0,t, we can easily verify our result.

Theorem 2. Letting (H1)–(H4) hold and a solution y satisfy (1.4), for all time t ∈ J, there is a unique
solution y0 of (1.1) that satisfies

y0(t) =



∫ t

0
e−λ(t−s)Iα f (s, y0(s),c Dβy0(s))ds
+Λ[ c

b −
∫ s0

0
e−λ(s0−s)Iα f (s, y0(s),c Dβy0(s)ds], t ∈ [t0, s0],

Iαsk−1,tk
(gk(t, (y0(t))), k = 1, 2, · · · ,m, t ∈ (sk−1, tk],∫ t

tk
e−λ(t−s)Iα f (s, y0(s),c Dβy0(s)ds + Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk, (y0(tk)))
−
∫ sk

tk
e−λ(sk−s)Iα f (s, y0(s),c Dβy0(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk, (y0(tk)))]
+e−λ(t−tk)Iαsk−1,tk

(gk(tk, (y0(tk))), k = 1, 2, · · · ,m, t ∈ (tk, sk],
(2.9)

where (X, d) is a generalized complete metric space, y, y0 ∈ X.

Proof. Let X be the space of piecewise continuous functions, i.e., X = {p : J → R|p ∈ B} with
generalized metric on Y , which is defined as

d(p, q) = inf{C1 + C2 ∈ [0,+∞] | |p(t) − q(t)| ≤ ε(C1 + C2)(θ(t) + ν)}, (2.10)

for t ∈ J, where

C1 ∈ {C ∈ [0,+∞] | |p(t) − q(t)| ≤ Cεθ(t)}, t ∈ (tk, sk], k = 0, 1, . . . ,m},

and

C2 ∈ {C ∈ [0,+∞] | |p(t) − q(t)| ≤ Cεν}, t ∈ (sk−1, tk], k = 1, 2, . . . ,m}.

Now, we prove that there exists at least one positive solution.
Based on Lemma 1, we prove that (X, d) is a complete generalized metric space.
For all x ∈ X and t ∈ J, define an operator T : X × X → R+ by

(T x)(t) =



∫ t

0
e−λ(t−s)Iα f (s, x(s),c Dβx(s))ds
+Λ[ c

b −
∫ s0

0
e−λ(s0−s)Iα f (s, x(s),c Dβx(s))ds], t ∈ [t0, s0],

Iαsk−1,tk
(gk(t, (x(t))), k = 1, 2, · · · ,m, t ∈ (sk−1, tk],∫ t

tk
e−λ(t−s)Iα f (s, x(s),c Dβx(s))ds + Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk, (x(tk)))
−
∫ sk

tk
e−λ(sk−s)Iα f (s, x(s),c Dβx(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk, (x(tk)))]
+e−λ(t−tk)Iαsk−1,tk

(gk(tk, (x(tk))), k = 1, 2, · · · ,m, t ∈ (tk, sk],
(2.11)
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where T is a defined operator according to assumption (H1). To verify (X, d) is a complete generalized
metric space, we can prove that T of (2.11) is strictly contractive on X.

From (2.10), for any number p, q ∈ X, we can find C1,C2 ∈ [0,+∞] such that

|p(t) − q(t)| ≤
{

C1εθ(t), t ∈ (tk, sk], k = 0, 1, . . . ,m,
C2εν, t ∈ (sk−1, tk], k = 1, 2, . . . ,m.

(2.12)

Let L = max{L1, L2} < 1, L1 = max{(L f + L̃ f )cθ[1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b | + Bke−λ(sk−tk) +

e−λ(t−tk)]Lgk}, L2 = max{(L f + L̃ f )[
(t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ]
1−e−λ(sk−tk )

λ
(1 + Bk) + [Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]Lgk}.

From (H1)–(H4), (2.10) and (2.12), four Cases are considered as follows.
Case 1 For t ∈ [0, s0], we have

Γ1 = |(T p)(t) − (Tq)(t)|
= |
∫ t

0
e−λ(t−s)Iα0,t f (s, p(s),c Dβ

0,t p(s))ds + Λ[ c
b −
∫ s0

0
e−λ(s0−s)Iα0,t f (s, p(s),c Dβ

0,t p(s))ds]
−
∫ t

0
e−λ(t−s)Iα0,t f (s, q(s),c Dβ

0,tq(s))ds − Λ[ c
b −
∫ s0

0
e−λ(s0−s)Iα0,t f (s, q(s),c Dβ

0,tq(s))ds]|

≤
∫ t

0
e−λ(t−s)Iα0,t| f (s, p(s),c Dβ

0,t p(s)) − f (s, q(s),c Dβ
0,tq(s))|ds

+Λ
∫ s0

0
e−λ(s0−s)Iα0,t| f (s, p(s),c Dβ

0,t p(s)) − f (s, q(s),c Dβ
0,tq(s))|ds

≤
∫ t

0
e−λ(t−s)Iα0,t(L f |p(s) − q(s)| + L̃ f |

cDβ
0,t p(s) −c Dβ

0,tq(s)|)ds
+Λ
∫ s0

0
e−λ(s0−s)Iα0,t(L f |p(s) − q(s)| + L̃ f |

cDβ
0,t p(s) −c Dβ

0,tq(s)|)ds

≤ L f C1ε
∫ t

0
e−λ(t−s)Iα0,tθ(s)ds + L̃ f C1ε

∫ t

0
e−λ(t−s)Iα0,t

cDβ
0,tθ(s)ds

+ΛL f C1ε
∫ s0

0
e−λ(s0−s)Iα0,tθ(s)ds + AL̃ f C1ε

∫ s0

0
e−λ(s0−s)Iα0,t

cDβ
0,tθ(s)ds

≤ L f C1ε(
∫ t

0
e−λ(t−s)ds)(

∫ t

0
Iα0,tθ(s)ds) + L̃ f C1ε(

∫ t

0
e−λ(t−s)ds)(

∫ t

0
Iα0,t

cDβ
0,tθ(s)ds)

+ΛL f C1ε(
∫ s0

0
e−λ(s0−s)ds)(

∫ s0

0
Iα0,tθ(s)ds) + AL̃ f C1ε(

∫ s0

0
e−λ(s0−s)ds)(

∫ s0

0
Iα0,t

cDβ
0,tθ(s)ds)

≤ L f C1ε
1−e−λt

λ
cαθ θ(t) + L̃ f C1ε

1−e−λt

λ
cα−βθ θ(t) + ΛL f C1ε

1−e−λs0

λ
cαθ θ(s0)

+ΛL̃ f C1ε
1−e−λs0

λ
cα−βθ θ(s0)

≤ C1εθ(t)1−e−λt

λ
(L f cαθ + L̃ f c

α−β
θ ) + ΛC1εθ(s0)1−e−λs0

λ
(L f cαθ + L̃ f c

α−β
θ )

≤ (L f + L̃ f )cθ[1−e−λs0

λ
(1 + Λ)]C1εθ(s0),

where cθ = max{cαθ , c
α−β
θ }.

Case 2 For t ∈ (sk−1, tk], k = 1, 2, . . . ,m, we have

|(T p)(t) − (Tq)(t)| = |Iαsk−1,tkgk(t, p(t)) − Iαsk−1,tkgk(t, q(t))| ≤ Lgk |p(t) − q(t)|
≤ LgkC2εv.

Case 3 For t ∈ (tk, sk] and s ∈ (tk, sk], k = 1, 2, . . . ,m, we have

Γ2 = |(T p)(t) − (Tq)(t)|
= |
∫ t

tk
e−λ(t−s)Iα f (s, p(s),c Dβp(s))ds + Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk, p(tk)))
−
∫ sk

tk
e−λ(sk−s)Iα f (s, p(s),c Dβp(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk, p(tk)))]

+e−λ(t−tk)Iαsk−1,tk
(gk(tk, p(tk))) −

∫ t

tk
e−λ(t−s)Iα f (s, q(s),c Dβq(s))ds

−Bk[ c
b −

a
b Iαsk−1,tk

(gk(tk, (q(tk))) −
∫ sk

tk
e−λ(sk−s)Iα f (s, q(s),c Dβq(s))ds

−e−λ(sk−tk)Iαsk−1,tk
(gk(tk, q(tk)))] − e−λ(t−tk)Iαsk−1,tk

(gk(tk, q(tk)))|
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≤
∫ t

tk
e−λ(t−s)Iα| f (s, p(s),c Dβp(s)) − f (s, q(s),c Dβq(s))|ds
+Bk|

a
b ||I

α
sk−1,tkgk(tk, p(tk)) − Iαsk−1,tkgk(tk, q(tk))|

+Bk

∫ sk

tk
e−λ(sk−s)Iα| f (s, p(s),c Dβp(s)) − f (s, q(s),c Dβq(s))|ds

+Bke−λ(sk−tk)|Iαsk−1,tkgk(tk, p(tk)) − Iαsk−1,tkgk(tk, q(tk))|
+e−λ(t−tk)|Iαsk−1,tkgk(tk, p(tk)) − Iαsk−1,tkgk(tk, q(tk))|

≤
∫ t

tk
e−λ(t−s)Iα(L f |p(s) − q(s)| + L̃ f |

cDβp(s) −c Dβq(s)|)ds + Bk|
a
b |Lgk |p(tk) − q(tk)|

+Bk

∫ sk

tk
e−λ(sk−s)Iα(L f |p(s) − q(s)| + L̃ f |

cDβp(s) −c Dβq(s)|)ds
+Bke−λ(sk−tk)Lgk |p(tk) − q(tk)| + e−λ(t−tk)Lgk |p(tk) − q(tk)|

≤ L f C1ε
∫ t

tk
e−λ(t−s)Iαθ(s)ds + L̃ f C1ε

∫ t

tk
e−λ(t−s)IαcDβθ(s)ds + Bk|

a
b |LgkC2εv

+BkL f C1ε
∫ sk

tk
e−λ(sk−s)Iαθ(s)ds + BkL̃ f C1ε

∫ sk

tk
e−λ(sk−s)IαcDβθ(s)ds

+Bke−λ(sk−tk)LgkC2εv + e−λ(t−tk)LgkC2εv

≤ L f C1ε(
∫ t

tk
e−λ(t−s)ds)(

∫ t

tk
Iαθ(s)ds) + L̃ f C1ε(

∫ t

tk
e−λ(t−s)ds)(

∫ t

tk
IαcDβθ(s)ds)

+Bk|
a
b |LgkC2εv + BkL f C1ε(

∫ sk

tk
e−λ(sk−s))(

∫ sk

tk
Iαθ(s)ds)

+BkL̃ f C1ε(
∫ sk

tk
e−λ(sk−s))(

∫ sk

tk
IαcDβ

0,tθ(s)ds) + Bke−λ(sk−tk)LgkC2εv
+e−λ(t−tk)LgkC2εv

≤ L f C1ε
1−e−λ(t−tk )

λ
cαθ θ(t) + L̃ f C1ε

1−e−λ(t−tk )

λ
cα−βθ θ(t) + Bk|

a
b |LgkC2εv

+BkL f C1ε
1−e−λ(sk−tk )

λ
cαθ θ(t) + BkL̃ f C1ε

1−e−λ(sk−tk )

λ
cα−βθ θ(t) + Bke−λ(sk−tk)LgkC2εv

+e−λ(t−tk)LgkC2εv

≤ {(L f + L̃ f )cθ[1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]Lgk}

(C1 + C2)ε(θ(t) + v).

Case 4 For t ∈ (tk, sk] and s ∈ (sk−1, tk], k = 1, 2, . . . ,m, we have

Γ3 = |(T p)(t) − (Tq)(t)|
= |
∫ t

tk
e−λ(t−s)Iα f (s, p(s),c Dβp(s))ds + Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk, p(tk)))
−
∫ sk

tk
e−λ(sk−s)Iα f (s, p(s),c Dβp(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk, p(tk)))]

+e−λ(t−tk)Iαsk−1,tk
(gk(tk, p(tk))) −

∫ t

tk
e−λ(t−s)Iα f (s, q(s),c Dβq(s))ds

−Bk[ c
b −

a
b Iαsk−1,tk

(gk(tk, q(tk))) −
∫ sk

tk
e−λ(sk−s)Iα f (s, q(s),c Dβq(s))ds

−e−λ(sk−tk)Iαsk−1,tk
(gk(tk, q(tk)))] − e−λ(t−tk)Iαsk−1,tk

(gk(tk, q(tk)))|

≤
∫ t

tk
e−λ(t−s)Iα| f (s, p(s),c Dβp(s)) − f (s, q(s),c Dβq(s))|ds
+Bk|

a
b ||I

α
sk−1,tk(gk(tk, p(tk))) − Iαsk−1,tk(gk(tk, q(tk)))|

+Bk

∫ sk

tk
e−λ(sk−s)Iα| f (s, p(s),c Dβp(s)) − f (s, q(s),c Dβq(s))|ds

+Bke−λ(sk−tk)|Iαsk−1,tk(gk(tk, p(tk))) − Iαsk−1,tk(gk(tk, q(tk)))|
+e−λ(t−tk)|Iαsk−1,tk(gk(tk, p(tk))) − Iαsk−1,tk(gk(tk, q(tk)))

≤
∫ t

tk
e−λ(t−s)Iα(L f |p(s) − q(s)| + L̃ f |

cDβp(s) −c Dβq(s)|)ds + Bk|
a
b |Lgk |p(tk) − q(tk)|

+Bk

∫ sk

tk
e−λ(sk−s)Iα(L f |p(s) − q(s)| + L̃ f |

cDβp(s) −c Dβq(s)|)ds
+Bke−λ(sk−tk)Lgk |p(tk) − q(tk)| + e−λ(t−tk)Lgk |p(tk) − q(tk)|

≤
∫ t

tk
e−λ(t−s)Iα(L f C2εv + L̃ f

c
DβC2εv)ds + Bk|

a
b |LgkC2εv
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+Bk

∫ sk

tk
e−λ(sk−s)Iα(L f C2εv + L̃ f

c
DβC2εv)ds

+Bke−λ(sk−tk)LgkC2εv + e−λ(t−tk)LgkC2εv
≤ [L f

∫ t

tk
e−λ(t−s)Iαds + L̃ f

∫ t

tk
e−λ(t−s)IαcDβds + Bk|

a
b |Lgk

+BkL f

∫ sk

tk
e−λ(sk−s)Iαds + BkL̃ f

∫ sk

tk
e−λ(sk−s)IαcDβds

+Bke−λ(sk−tk)Lgk + e−λ(t−tk)Lgk]C2εv

≤ [ L f (t−tk)α(1−e−λ(t−tk ))
λΓ(α+1) +

L̃ f (1−e−λ(t−tk ))(t−tk)α−β

λΓ(α−β+1) + Bk|
a
b |Lgk + Bk

L f (t−tk)α(1−e−λ(sk−tk ))
λΓ(α+1)

+Bk
L̃ f (1−e−λ(sk−tk ))(t−tk)α−β

λΓ(α−β+1) + Bke−λ(sk−tk)Lgk + e−λ(t−tk)Lgk]C2εv

≤ {(L f + L̃ f )[
(t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ]
1−e−λ(sk−tk )

λ
(1 + Bk)

+[Bk|
a
b | + Bke−λ(sk−tk)] + e−λ(t−tk)]Lgk}(C1 + C2)ε(θ(t) + v).

From the above four Cases, for any number p, q ∈ X, one obtains

|(T p)(t) − (Tq)(t)| ≤ L(C1 + C2)ε(θ(t) + v), t ∈ J.

Thus,

d(T p,Tq) ≤ L(C1 + C2)ε(θ(t) + v), t ∈ J,

which implies that T is strictly contractive on X. Based on Definitions 3 and 4, we know that (X, d) is
a complete generalized metric space.

3. Ulam stability analysis

In this section, based on [19] and Definition 2, Ulam-Hyers stability, generalized Ulam-Hyers sta-
bility, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of (1.1) are given as
follows.

Theorem 3. Letting (H1)–(H4) hold and a solution y satisfy (1.4), for all t ∈ J, there is an unique
solution y0 of (1.1) that satisfies (2.9) and

|y(t) − y0(t)| ≤
Dkε(θ(t) + v)

1 − L
. (3.1)

Then, the solution of (1.1) is Ulam-Hyers-Rassias stable with respect to (θ, v), where (X, d) is a
generalized complete metric space, y, y0 ∈ X. Dk = cθ{ 1−e−λ(sk−tk )

λ
(1+Bk)+Bk|

a
b |+Bke−λ(sk−tk)+e−λ(t−tk)}, L =

max{L1, L2} < 1, L1 = max{(L f + L̃ f )cθ[1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]Lgk}, L2 =

max{(L f + L̃ f )[
(t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ]
1−e−λ(sk−tk )

λ
(1 + Bk) + [Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]Lgk}.

Proof. From Theorem 2, we know that (X, d) is a complete generalized metric space. Next, based on
the third case of Definition 2, we prove that the solution of (1.1) is Ulam-Hyers-Rassias stable with
respect to (θ, v). Two steps are given as follows.

Step 1 We verify that {p ∈ X|d(p0, p) < ∞} = X.
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From Eqs (3.2) and (3.3), for arbitrary number p0 ∈ X, we know that there is a constant M1 > 0 that
satisfies

|(T p0)(t) − p0(t)| = |
∫ t

0
e−λ(t−s)Iα f (s, yp(s),c Dβp0(s))ds

+ Λ[
c
b
−

∫ s0

0
e−λ(s0−s)Iα f (s, p0(s),c Dβp0(s)ds] − p0(t)|

≤ M1εθ(t)
≤ M1ε(θ(t) + v), t ∈ [0, s0].

For t ∈ (sk−1, tk], k = 1, 2, . . . ,m, it shows that there is an M2 > 0 such that

|(T p0)(t) − p0(t)| = |Iαsk−1,tk
(gk(t, (p0(t))) − p0(t)| ≤ M2εv

≤ M2ε(θ(t) + v).

Then, for t ∈ (tk, sk], k = 1, 2, . . . ,m, we can find a number M3 > 0 such that

|(T p0)(t) − p0(t)| = |
∫ t

tk
e−λ(t−s)Iα f (s, p0(s),c Dβp0(s)ds + Bk[

c
b
−

a
b

Iαsk−1,tk
(gk(tk, (p0(tk)))

−

∫ sk

tk
e−λ(sk−s)Iα f (s, p0(s),c Dβp0(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk, (p0(tk)))]

+ e−λ(t−tk)Iαsk−1,tk
(gk(tk, (p0(tk))) − p0(t)|

≤ M3ε(θ(t) + v).

In view of number p, gk and p0 being bounded on J and θ(·) + v > 0, (3.2) implies that

d(T p0, p0) < ∞.

By using Lemma 1(i), there is a continuous function y0 : J → R that satisfies T n p0 → y0 in (X, d)
as n→ ∞ and Ty0 = y0, for all t ∈ J.

For any p ∈ X, in view of p and p0 being bounded on J and mint∈J ε(θ(t) + v) > 0, we know that
there exists a constant 0 < Cp < ∞ such that

|p0(t) − p(t)| ≤ Cpε(θ(t) + v), t ∈ J.

Therefore, we get d(T p0, p0) < ∞ for all p ∈ X, that is,

{p ∈ X|d(p0, p) < ∞} = X.

Hence, in view of Lemma 1(ii), we conclude that p0 is the unique continuous function with (2.9).
Step 2 We verify that |y(t) − y0(t)| ≤ cDkε(θ(t)+v)

1−L .
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From Lemma 4 in the Appendix and hypotheses (H1)–(H4), for t ∈ [0, s0], we have

Υ1 = |y(t) −
∫ t

0
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Λ[

c
b
−

∫ s0

0
e−λ(s0−s)Iα f (s, y(s), cDβy(s))ds]|

≤ ε

∫ t

0
e−λ(t−s)Iαθ(s)ds + Λε

∫ s0

0
e−λ(s0−s)Iαθ(s)ds

≤ ε(
∫ t

0
e−λ(t−s)ds)(

∫ t

0
Iαθ(s)ds) + Λε(

∫ s0

0
e−λ(s0−s)ds)(

∫ s0

0
Iαθ(s)ds)

≤ ε
1 − e−λt

λ
cαθ θ(t) + Λε

1 − e−λs0

λ
cαθ θ(t)

≤ c
(1 + Λ)(1 − e−λs0)

λ
εθ(t)

≤ c
(1 + Λ)(1 − e−λs0)

λ
ε(θ(t) + v).

For t ∈ (sk−1, tk], k = 1, 2, . . . ,m, we have

|y(t) − Iαsk−1,tk
(gk(t, y(t)))| ≤ εv ≤ ε(θ(t) + v).

For t ∈ (tk, sk], k = 1, 2, . . . ,m, we have

Υ2 = |y(t) −
∫ t

tk
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Bk[

c
b
−

a
b

Iαsk−1,tk
(gk(tk), y(tk))

−

∫ sk

tk
e−λ(sk−s)Iα f (s, y(s), cDβy(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk), y(tk))]

− e−λ(t−tk)Iαsk−1,tk
(gk(tk), y(tk))|

≤ ε

∫ t

tk
e−λ(t−s)Iαθ(s)ds + Bkε

∫ sk

tk
e−λ(sk−s)Iαθ(s)ds + Bk(|

a
b
| + e−λ(sk−tk))εv + e−λ(t−tk)εv

≤ ε(
∫ t

tk
e−λ(t−s)ds)(

∫ t

tk
Iαθ(s)ds) + Bkε(

∫ sk

tk
e−λ(sk−s)ds)(

∫ sk

tk
Iαθ(s)ds)

+ Bk(|
a
b
| + e−λ(sk−tk))εv + e−λ(t−tk)εv

≤ ε
1 − e−λ(t−tk)

λ
cαθ θ(t) + Bkε

1 − e−λ(sk−tk)

λ
cαθ θ(t) + Bk(|

a
b
| + e−λ(sk−tk))εv + e−λ(t−tk)εv

≤ cαθ [
1 − e−λ(sk−tk)

λ
(1 + Bk)]εθ(t) + [Bk(|

a
b
| + e−λ(sk−tk)) + e−λ(t−tk)]εv

≤ cθ{[
1 − e−λ(sk−tk)

λ
(1 + Bk)] + Bk(|

a
b
| + e−λ(sk−tk)) + e−λ(t−tk)}ε(θ(t) + v).

From the above four cases, we get

d(y,Ty) ≤ Dk,

where, Dk = cθ{ 1−e−λ(sk−tk )

λ
(1 + Bk) + Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)}.
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Moreover, we have

d(y, y0) ≤
d(y,Ty)

1 − L
≤

Dk

1 − L
,

where L = max{L1, L2} < 1, L1 = max{(L f + L̃ f )cθ[1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b | + Bke−λ(sk−tk) +

e−λ(t−tk)]Lgk}, L2 = max{(L f + L̃ f )[
(t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ]
1−e−λ(sk−tk )

λ
(1 + Bk) + [Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]Lgk}.

this implies that

|y(t) − y0(t)| ≤
Dkε(θ(t) + v)

1 − L
,

and then (3.1) is true for all t ∈ J. Lemma 1(i) holds. Based on the third case of Definition 2 and
Lemma 1, we know that (1.1) is Ulam-Hyers-Rassias stable with respect to (θ, v).

Theorem 4. Letting (H1)–(H4) hold and a solution y satisfy (1.3), for all t ∈ J, there is a unique
solution y0 of (1.1) that satisfies (2.9) and

|y(t) − y0(t)| ≤
cDk(θ(t) + v)

1 − L
. (3.2)

Then, the solution of (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (θ, v), where
(X, d) is a generalized complete metric space, y, y0 ∈ X.

Proof. By Definition 2(4), choosing ε = 1, similar to the proof of Theorem 3, we know that the solution
of (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (θ, v). Here we omit it.

Theorem 5. Letting (H1)–(H4) hold and a solution y ∈ B satisfy (1.2).Then, there is a unique solution
y0 ∈ X of (1.1) that satisfies (2.9) and

|y(t) − y0(t)| ≤ cm,α,βε

with cm,α,β = Ek
1−L . Then, (1.1) is Ulam-Hyers stable, where Ek = [ (t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ][
1−e−λ(sk−tk )

λ
(1 +

Bk)] + [Bk|
a
b | + Bke−λ(sk−tk) + e−λ(t−tk)], L = max{(L f + L̃ f )[

(t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ][
1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b | +

Bke−λ(sk−tk) + e−λ(t−tk)]Lgk} < 1, k = 1, 2, · · · ,m. cm,α,β is a positive number, and (X, d) is a generalized
complete metric space that satisfies y, y0 ∈ X.

Proof. Let X be the space of piecewise continuous functions, i.e., X = {p : J → R|p ∈ B} with
generalized metric on Y , which is defined as

d(p, q) = inf{C1 + C2 ∈ [0,+∞] | |p(t) − q(t)| ≤ ε(C1 + C2)}, (3.3)

for all t ∈ J, where C1 ∈ {C ∈ [0,+∞] | |p(t) − q(t)| ≤ Cε}, t ∈ (tk, sk], k = 0, 1, . . . ,m}, and
C2 ∈ {C ∈ [0,+∞] | |p(t) − q(t)| ≤ Cε}, t ∈ (sk−1, tk], k = 1, 2, . . . ,m}.

Next, we prove that the solution of (1.1) is Ulam-Hyers stable. Two steps are given as follows.
Step 1 We verify the condition that {p ∈ X|d(p0, p) < ∞} = X.
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From (3.3), for arbitrary p0 ∈ X, we know that there exists an M1 > 0 such that

|(T p0)(t) − p0(t)| = |
∫ t

0
e−λ(t−s)Iα f (s, yp(s),c Dβp0(s))ds

+ Λ[
c
b
−

∫ s0

0
e−λ(s0−s)Iα f (s, p0(s),c Dβp0(s)ds] − p0(t)|

≤ M1ε, t ∈ [0, s0].

For t ∈ (sk−1, tk], k = 1, 2, . . . ,m, we know that there also exists a positive number M2 such that

|(T p0)(t) − p0(t)| = |Iαsk−1,tk
(gk(t, (p0(t))) − p0(t)| ≤ M2ε,

and then, for t ∈ (tk, sk], k = 1, 2, . . . ,m, we can find an M3 > 0 such that

|(T p0)(t) − p0(t)| = |
∫ t

tk
e−λ(t−s)Iα f (s, p0(s),c Dβp0(s)ds + Bk[

c
b
−

a
b

Iαsk−1,tk
(gk(tk, (p0(tk)))

−

∫ sk

tk
e−λ(sk−s)Iα f (s, p0(s),c Dβp0(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk, (p0(tk)))]

+ e−λ(t−tk)Iαsk−1,tk
(gk(tk, (p0(tk))) − p0(t)|

≤ M3ε.

In view of p, gk and p0 being bounded on J, (3.2) implies that

d(T p0, p0) < ∞.

By using Lemma 1(i), there is a continuous function y0 : J → R that satisfies T n p0 → y0 in (X, d)
as n→ ∞ and Ty0 = y0, for all t ∈ J.

For any p ∈ X, note that p and p0 being bounded on J and min
t∈J

ε > 0, and we know that there is a
constant 0 < Cp < ∞ such that

|p0(t) − p(t)| ≤ Cpε, t ∈ J.

Therefore, we get d(T p0, p0) < ∞ for all p ∈ X, that is,

{p ∈ X|d(p0, p) < ∞} = X.

Thus, in light of Lemma 1(ii), we conclude that p0 is a unique continuous function with (2.9).
Step 2 We verify the condition that |y(t) − y0(t)| ≤ Ekε

1−L .

From Lemma 3 in the Appendix and hypotheses (H1)–(H4), for t ∈ [0, s0], one gets

Λ1 = |y(t) −
∫ t

0
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Λ[

c
b
−

∫ s0

0
e−λ(s0−s)Iα f (s, y(s), cDβy(s))ds]|

≤ ε

∫ t

0
e−λ(t−s)Iαds + Λε

∫ s0

0
e−λ(s0−s)Iαds

≤ ε(
∫ t

0
e−λ(t−s)ds)(

∫ t

0
Iαds) + Λε(

∫ s0

0
e−λ(s0−s)ds)(

∫ s0

0
Iαds)
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≤ ε
tα(1 − e−λt)
λΓ(α + 1)

+ Λε
tα(1 − e−λs0)
λΓ(α + 1)

≤
(1 + Λ)tα(1 − e−λs0)

λΓ(α + 1)
ε.

For t ∈ (sk−1, tk], k = 1, 2, . . . ,m, one has

|y(t) − Iαsk−1,tk
(gk(t, y(t)))| ≤ ε.

For t ∈ (tk, sk], k = 1, 2, . . . ,m, one gets

Λ2 = |y(t) −
∫ t

tk
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Bk[

c
b
−

a
b

Iαsk−1,tk
(gk(tk), y(tk))−∫ sk

tk
e−λ(sk−s)Iα f (s, y(s), cDβy(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk), y(tk))]

− e−λ(t−tk)Iαsk−1,tk
(gk(tk), y(tk))|

≤
ε(t − tk)α

λΓ(α + 1)
[(1 − e−λ(t−tk)) + Bk(1 − e−λ(sk−tk))] + Bk(|

a
b
| + e−λ(sk−tk))ε + e−λ(t−tk)ε

≤ ε
(t − tk)α(1 − e−λ(t−tk))

λΓ(α + 1)
+ Bkε

(t − tk)α(1 − e−λ(sk−tk))
λΓ(α + 1)

+ Bk(|
a
b
| + e−λ(sk−tk))ε + e−λ(t−tk)ε

≤ [
(t − tk)α(1 − e−λ(sk−tk))

λΓ(α + 1)
(1 + Bk)]ε + [Bk(|

a
b
| + e−λ(sk−tk)) + e−λ(t−tk)]ε

≤ {[
(t − tk)α

Γ(α + 1)
+

(t − tk)α−β

Γ(α − β + 1)
][

1 − e−λ(sk−tk)

λ
(1 + Bk)] + [Bk|

a
b
| + Bke−λ(sk−tk) + e−λ(t−tk)]}ε.

Similar to the proof of Theorem 3, we get d(y,Ty) ≤ Ek. That is,

d(y, y0) ≤
d(y,Ty)

1 − L
≤

Ek

1 − L
,

where Ek = [ (t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ][
1−e−λ(sk−tk )

λ
(1+Bk)]+[Bk|

a
b |+Bke−λ(sk−tk)+e−λ(t−tk)], L = max{(L f +L̃ f )[

(t−tk)α

Γ(α+1) +

(t−tk)α−β

Γ(α−β+1) ][
1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b |+ Bke−λ(sk−tk) + e−λ(t−tk)]Lgk} < 1, k = 1, 2, · · · ,m, which implies that

|y(t) − y0(t)| ≤
Ekε

1 − L
.

Hence, based on the first case of Definition 2, the solution of (1.1) is Ulam-Hyers stable.

Theorem 6. Let φm,α,β(ε) be a positive number, and (X, d) is a generalized complete metric space
that satisfies y, y0 ∈ X. If (H1)–(H4) hold, and a solution y ∈ B satisfies (1.3), then there is a unique
solution y0 ∈ X of (1.1) that satisfies (2.9) and

|y(t) − y0(t)| ≤ φm,α,β(ε).

Proof. When cm,α,βε = φm,α,β(ε) with φm,α,β(0) = 0, we know that the solution of (1.1) is generalized
Ulam-Hyers stable. Here we omit it.
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4. Example

In order to better check the correctness of this results, we give the following example to verify the
above theorem. Choose J = [0, 6], α = 1

2 , β = 1
3 , λ = 6 and 0 = t0 < s0 = 2 < t1 = 4 < s1 = 6. Then,

the following equation is given.
cD

1
2
0,t( D + 6)x(t) =

cD
1
3
0,t x(t)+|x(t)|

(t+
√

10)2(1+x(t))
, t ∈ (0, 2]

⋃
(4, 6],

x(t) = I
1
2
2,4(g1(t, x(t))) = 1

Γ( 1
2 )

∫ 4

2
(t − s)−

1
2 sin|x(s)|ds, t ∈ (2, 4],

2x(tk) + 7x(sk) = 10, x(0) = 0.

(4.1)

Represent f (t, x(t), cDβ
0,tx(t)) =

cD
1
3 x(t)+|x(t)|

(t+
√

10)2(1+x(t))
with L f = L̃ f = 1

10 for t ∈ (0, 2]
⋃

(4, 6] and

I
1
2
2,4(g1(t, x(t))) with Lg1 = 1

2 for t ∈ (2, 4].
By Theorem 2, we easily know that there exists an unique solution y0 : [0, 6]→ R such that

y0(t) =



∫ t

0
e−6(t−s)I

1
2

cD
1
3 y0(s)+|y0(t)|

(s+
√

10)2(1+y0(s))
ds + A[10

7 −
∫ 2

0
e−6(2−s)I

1
2

cD
1
3 y0(s)+|y0(t)|

(s+
√

10)2(1+y0(s))
ds], t ∈ [0, 2],

I
1
2
2,4(g1(t, x(t))) = 1

Γ( 1
2 )

∫ 4

2
(t − s)−

1
2 sin|x(s)|ds, t ∈ (2, 4],∫ t

t1
e−6(t−s)I

1
2

cD
1
3 y0(s)+|y0(t)|

(s+
√

10)2(1+y0(s))
ds + Bk[10

7 −
2
7 I

1
2
s0,t1(g1(t1, (y0(t1)))

−
∫ sk

tk
e−6(sk−s)I

1
2

cD
1
3 y0(s)+|y0(t)|

(s+
√

10)2(1+y0(s))
ds − e−6(sk−tk)I

1
2
ss0 ,t1

(g1(t1, (y0(t1)))]

+e−6(t−tk)I
1
2
s0,t1(g1(t1, (y0(t1))), t ∈ [4, 6],

(4.2)

where

Λ =
1 − e−6t

1 − e−6×2 , Bk =
1 − e−6(t−tk)

1 − e−6(sk−tk) =
1 − e−6(t−t1)

1 − e−6(s1−t1) =
1 − e−6(t−4)

1 − e−6(6−4) .

Next, we check the conditions of Theorems 3–6.

1) We first check the conditions of Theorem 3: |
cD

1
2
0,t( D + 6)y(t) −

cD
1
3
0,ty(t)+|y(t)|

(t+
√

10)2(1+y(t))
| ≤ εθ(t), t ∈ (0, 2]

⋃
(4, 6],

y(t) − 1
Γ( 1

2 )

∫ 4

2
(t − s)−

1
2 sin|y(s)|ds| ≤ εv, t ∈ (2, 4].

(4.3)

Choosing again ε = 1
4 , θ(t) = et, v = 1

5 and cαθ = cα−βθ = 6, we have∫ t

0
I

1
2 esds ≤ 6et,

∫ t

0
Iα−βesds ≤ 6et,

L = max{L1, L2},
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L1 = max{(L f + L̃ f )c[ 1−e−λ(sk−tk )

λ
(1 + Bk)] + [Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]Lgk | k = 1}

= max{( 1
10 + 1

10 ) × 10 × [1−e−6×(6−4)

6 (1 + 1−e−6(t−4)

1−e−6×(6−4) )] + [ 1−e−6(t−4)

1−e−6×(6−4) |
2
7 |

+ 1−e−6(t−4)

1−e−6×(6−4) e−6×(6−4) + e−6(t−4)] 1
2 }

≤ 0.5429, t ∈ (4, 6], L2 = max{(L f + L̃ f )[
(t−tk)α

Γ(α+1) +
(t−tk)α−β

Γ(α−β+1) ]
1−e−λ(sk−tk )

λ
(1 + Bk)

+[Bk|
a
b | + Bke−6(sk−tk) + e−λ(t−tk)]Lgk | k = 1}

= max{( 1
10 + 1

10 )[ (t−4)
1
2

Γ( 1
2 +1)

+
(t−4)

1
2 −

1
3

Γ( 1
2−

1
3 +1)

] 1−e−6×(6−4)

6 (1 + 1−e−6(t−4)

1−e−6×(6−4) )

+[ 1−e−6(t−4)

1−e−6×(6−4) |
2
7 | +

1−e−6(t−4)

1−e−6×(6−4) e−6×(6−4) + e−6(t−4)] × 1
2 }

≤ 0.3226 for, t ∈ (4, 6].

Thus, L = 0.5429, and then, one has

|y(t) − y0(t)| ≤
c[1−e−λ(sk−tk )

λ
(1 + Bk) + Bk|

a
b | + Bke−λ(sk−tk) + e−λ(t−tk)]ε(θ(t) + v)

1 − L

=
10 × [ 1−e−6×(6−4)

6 (1 + 1−e−6(t−4)

1−e−6×(6−4) ) + 1−e−6(t−4)

1−e−6×(6−4) |
2
7 | + k2] × 1

4 (et + 1
5 )

1 − 0.5429

≤ 8.1259 ×
1
4

(et +
1
5

), t ∈ (4, 6],

where k2 = 1 − e−6(t−4)1 − e−6×(6−4)e−6×(6−4) + e−6(t−4). Thus, the solution of (4.1) is Ulam-Hyers-
Rassias stable.

2) We verify Theorem 4, and choose ε = 1. Other parameters are the same as (4.1), and then (4.1) is
generalized Ulam-Hyers-Rassias stable.

3) We verify the conditions of Theorem 5. Consider (4.1) and |
cD

1
2
0,t( D + 6)y(t) −

cD
1
3
0,ty(t)+|y(t)|

(t+
√

10)2(1+y(t))
| ≤ ε, t ∈ (0, 2]

⋃
(4, 6],

y(t) − 1
Γ( 1

2 )

∫ 4

2
(t − s)−

1
2 sin|y(s)|ds| ≤ ε, t ∈ (2, 4].

(4.4)

As

L = max{(L f + L̃ f )[
(t−t1)α

Γ(α+1) +
(t−t1)α−β

Γ(α−β+1) ][
1−e−λ(s1−t1)

λ
(1 + B1)] + [B1|

a
b | + B1e−λ(s1−t1)

+e−λ(t−t1)]Lg1} ≤ 0.5429 < 1,

via calculations, we know that there exists a unique solution y0 : [0, 6] → R that satisfies (2.9)
and

|y(t) − y0(t)| ≤ cm,α,βε

with

cm,α,β =
[ (t−t1)α

Γ(α+1) +
(t−t1)α−β

Γ(α−β+1) ][
1−e−λ(s1−t1)

λ
(1 + B1)] + [B1|

a
b | + B1e−λ(s1−t1) + e−λ(t−t1)]

1 − L

=
[ (t−4)

1
2

Γ( 1
2 +1)

+
(t−4)

1
2 −

1
3

Γ( 1
2−

1
3 +1)

][ 1−e−6×(6−4)

λ
(1 + 1−e−6(t−4)

1−e−6×(6−4) )] + [ 1−e−6(t−4)

1−e−6×(6−4) |
2
7 | + k1]

1 − 0.5429
≤ 4.7788 > 0,
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where k1 = 1−e−6(t−4)

1−e−6×(6−4) e−6×(6−4) + e−6(t−4). That is, |y(t) − y0(t)| ≤ 4.7788ε. Thus, the solution of (4.1)
is Ulam-Hyers stable.

4) We verify the conditions of Theorem 6. By choosing φm,α,β(ε) = 4.7788ε with φm,α,β(0) = 0, the
solution of (4.1) is generalized Ulam-Hyers stable.

5. Conclusions

In this manuscript, the existence and Ulam stability for a fractional differential equation is consid-
ered with multi-point boundary conditions and non-instantaneous integral impulse. First, some suffi-
cient conditions for the existence, uniquenes, and at least one solution of the aforementioned equation
are discussed by using the generalized Diaz-Margolis fixed point theorem. Then, we obtain the Ulam
stability of the equation. Lastly, we give one example to support our main results. In addition, in
this paper, we only consider the stability analysis of multi-point boundary conditions for a fractional
differential equation. However, the reaction-diffusion multi-point boundary conditions for fractional
differential equation, the dynamical behaviors of system (1.1) and the situation of the method of prov-
ing global stability are not yet fully clear, which would be our further topic.
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Appendix

First, a function y ∈ B is the solution of (1.2), if and only if there exists a function τ ∈ B and y
dependent τk, k = 1, 2, · · · ,m, such that

� |τ(t)| ≤ ε, t ∈ J.

� |τk| ≤ ε, t = 1, 2, · · · ,m.

� cDα( D + λ)y(t) = f (t, y(t), cDβy(t)) + τ(t), t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m.

� y(t) = Iαsk−1,tkgk(t, y(t)) + τk, t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m.

Thus, we have the following Lemma 3:
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Lemma 3. Let y ∈ B be a solution of inequality (Eq 1.2), and then y is a solution of the following

|y(t) −
∫ t

0
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Λ[ c

b

−
∫ s0

0
e−λ(s0−s)Iα f (s, y(s), cDβy(s))ds]| ≤ εtα

λΓ(α+1) [(1 − e−λt) + Λ(1 − e−λs0)], t ∈ [t0, s0],

|y(t) − Iαsk−1,tk
(gk(t, y(t)))| ≤ ε, k = 1, 2, · · · ,m, t ∈ (sk−1, tk],

|y(t) −
∫ t

tk
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk), y(tk))−∫ sk

tk
e−λ(sk−s)Iα f (s, y(s), cDβy(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk), y(tk))]
−e−λ(t−tk)Iαsk−1,tk

(gk(tk), y(tk))|
≤

ε(t−tk)α

λΓ(α+1) [(1 − e−λ(t−tk)) + Bk(1 − e−λ(sk−tk))] + Bk(| ab |
+e−λ(sk−tk))ε + e−λ(t−tk)ε, k = 1, 2, · · · ,m, t ∈ (tk, sk].

In addition, a function y ∈ B is the solution of (1.4), if and only if there exists a function τ ∈ B and
y dependent sequenze τk, k = 1, 2, · · · ,m, such that

� |τ(t)| ≤ εθ(t), t ∈ J.

� |τk| ≤ εv, t = 1, 2, · · · ,m.

� cDα( D + λ)y(t) = f (t, y(t), cDβy(t)) + τ(t), t ∈ (tk, sk] ⊂ J, k = 0, 1, . . . ,m.

� y(t) = Iαsk−1,tkgk(t, y(t)) + τk, t ∈ (sk−1, tk] ⊂ J, k = 1, 2, . . . ,m.

Thus, we have the following Lemma 4:

Lemma 4. Let y ∈ B be a solution of inequality (Eq 1.4), and then y is a solution of the following.

|y(t) −
∫ t

0
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Λ[ c

b −
∫ s0

0
e−λ(s0−s)Iα f (s, y(s), cDβy(s))ds]|

≤ ε
∫ t

0
e−λ(t−s)Iαθ(s)ds + Λε

∫ s0

0
e−λ(s0−s)Iαθ(s)ds, t ∈ [t0, s0],

|y(t) − Iαsk−1,tk
(gk(t, y(t)))| ≤ εv, k = 1, 2, · · · ,m, t ∈ (sk−1, tk],

|y(t) −
∫ t

tk
e−λ(t−s)Iα f (s, y(s), cDβy(s))ds − Bk[ c

b −
a
b Iαsk−1,tk

(gk(tk), y(tk))−∫ sk

tk
e−λ(sk−s)Iα f (s, y(s), cDβy(s))ds − e−λ(sk−tk)Iαsk−1,tk

(gk(tk), y(tk))]
−e−λ(t−tk)Iαsk−1,tk

(gk(tk), y(tk))|

≤ ε
∫ t

tk
e−λ(t−s)Iαθ(s)ds + Bkε

∫ sk

tk
e−λ(sk−s)Iαθ(s)ds + Bk(| ab |

+e−λ(sk−tk))εv + e−λ(t−tk)εv, k = 1, 2, · · · ,m, t ∈ (tk, sk].
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