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Abstract: The total variation regularizer is diffusely emerged in statistics, image and signal process-
ing to obtain piecewise constant estimator. The `0 total variation (L0TV) regularized signal denoising
model is a nonconvex and discontinuous optimization problem, and it is very difficult to find its global
optimal solution. In this paper, we present the global optimality analysis of L0TV signal denoising
model, and design an efficient algorithm to pursuit its solution. Firstly, we equivalently rewrite the
L0TV denoising model as a partial regularized (PL0R) minimization problem by aid of the structured
difference operator. Subsequently, we define a P-stationary point of PL0R, and show that it is a global
optimal solution. These theoretical results allow us to find the global optimal solution of the L0TV
model. Therefore, an efficient Newton-type algorithm is proposed for the PL0R problem. The algo-
rithm has a considerably low computational complexity in each iteration. Finally, experimental results
demonstrate the excellent performance of our approach in comparison with several state-of-the-art
methods.

Keywords: total variation; signal denoising; partial `0 regularized model; Global optimization;
Newton-type algorithm

1. Introduction

The total variation (TV) regularization term has been used broadly in many areas, such as statis-
tics [1–3], signal and image processing [4–7], in order to get piecewise constant estimator. The TV-
based signal denoising methods are very effective for recovering piecewise constant (PWC) signals
compared with conventional linear time-invariant filtering approach because the TV regularizer can
capture the jump-sparsity in data. The classical TV (L1-TV) denoising model [4] based on `1 norm
penalty function is formulated as a strongly convex optimization problem. For the observed signal
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y ∈ Rn, the L1-TV denoising model is defined as

min
x∈Rn

1
2
‖x − y‖22 + λ‖Dx‖1, (1.1)

where λ > 0 is a regularization parameter, and D ∈ R(n−1)×n is the first-order difference operator

D =


−1 1

−1 1
. . .

. . .

−1 1

 .
In this case, the optimization problem (1.1) has unique global optimal solution, and it can be solved in
finite time by using very fast direct (noniterative) algorithms [8, 9]. However, it has been shown in the
literatures that nonconvex penalties can lead to more accurate estimation by comparison to `1 penalty,
see, e.g., [10–13]. To enhance the performance of L1-TV denoising method, numerous nonconvex
penalties function are used to substitute the `1 norm, see, e.g., [5, 14–19]. In view of the sparsity of
the derivative of the underlying signal, the number of discontinuous points is a natural and cogent
regularization term [17–19], namely,

‖Dx‖0 = # {i : xi+1 − xi , 0} .

However, it is a nonconvex and discontinuous function. To escape the computational challenge arising
from this regularizer, some continuous surrogates of ‖Dx‖0 are proposed in [5, 14–16]. In [5], the
authors adopt the logarithmic penalty and arctangent penalty to substitute `1 norm in (1.1), and show
that the corresponding objective functions are both convex if regularization parameter λ is less than
a threshold. In [14], the authors propose the MCP-TV denoising method by using minimax concave
penalty [12] to induce the sparsity of Dx. Based on the generalized Moreau envelope, Selesnick et
al. [16] define the generalized Moreau envelope TV (GME-TV) penalty with matrix parameter B and
use in denoising of signals. Note that the L1-TV, MCP-TV and Moreau enhanced TV [15] are the
special cases of the GME-TV regularizer.

In this paper, we revisit the `0 TV regularized signal denoising model (L0TV), which is also called
L2-Potts [17, 18]. The corresponding optimization model is

min
x∈Rn

1
2
‖x − y‖22 + λ‖Dx‖0, (1.2)

where ‖Dx‖0 is the `0 pseudo-norm of Dx, for counting the number of non-zero elements of Dx. The
objective function of (1.2) is discontinuous and nonconvex. In [17, 18], the model (1.2) is solved by
dynamic programming algorithm. To well resolve the challengeable problem, we first equivalently
rewrite the L0TV as a partial `0 regularized (PL0R) optimization problem by resorting the interesting
structure of D. For the PL0R problem, we define a P-stationary point and show that it is a global
optimal solution. These fascinating theoretical results allow us to find a global optimal solution of
the model (1.2). Although many existing numerical methods can be used to solve the `0 regularized
(L0R) problem such as iterative hard-thresholding algorithm [20, 21], penalty decomposition [22],
active set Barzilar-Borwein [23], these methods cannot be used to solve the model (1.2) and may suffer
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from low accuracy and slow convergence due to only make use of the first-order information of the
involved functions. Very recently, an efficient Newton-type algorithm was proposed for L0R problem,
and its global and quadratic convergence was established [24]. Inspired by this work, we design an
effective algorithm based on the Newton’s method to pursuit the global optimal solution of the L0TV
model (NL0TV). The algorithm has a low computational complexity since a small-scale linear equation
system is solved to update the Newton direction in per iteration. Comparing with several state-of-the-
art methods, our experimental results show that the NL0TV achieves an excellent performance. The
main contributions of this paper can be summarized as follows.

• An equivalent reformulation of the L0TV denoising model (1.2) is proposed in Theorem 1. After
that, its necessary and sufficient conditions of global optimal solution are established in Theorem
2.
• We systematically analyze the relationships among the L0TV model (1.2), PL0R model (2.1) and

the optimization problem (2.3) in terms of global optimal solution.
• Based on these theoretical results, an effective Newton algorithm is designed to pursuit the global

optimal solution of the model (1.2).
• The excellent performance of our approach is illustrated by comparing with several state-of-the-

art methods.

The remainder of this paper is organized as follows. Section 2 includes an equivalent reformula-
tion of the L0TV denoising model, optimality conditions and Newton algorithm. Experiments and
conclusions are presented in Sections 3 and 4, respectively.

2. Our method

The model (1.2) is a natural and cogent model for denoising of signals. But it is generally difficult
to find the global optimal solution due to the intrinsic combinatorial property and inseparability of
the regularization term. Next, we will give an equivalent reformulation of (1.2), which is helpful for
designing effective optimization algorithm.

For convenience, we first definite several symbols. Let z = Dx ∈ Rn−1 and

H =



0 0 · · · 0
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 . . . 1


∈ Rn×(n−1).

Based on these symbols, we give an equivalent reformulation of (1.2) in next theorem.

Theorem 1. The L0TV signal denoising model (1.2) is equivalent to the following optimization problem

min
w=(x1;z)

1
2
‖Gw − y‖22 + λ‖z‖0, (2.1)

where G = [e,H] ∈ Rn×n and e is an n-dimensional column vector with each component is one.
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Proof. It follows from z = Dx ∈ Rn−1 that zi = xi+1 − xi, for any i = 1, 2, · · · , n − 1, by means of the
fascinating structure of D. Thus,

xi+1 = x1 +

i∑
j=1

z j, for any i = 1, 2, · · · , n − 1.

Together with w = (x1; z), we have

x =



1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 . . . 1


[
x1

z

]
= Gw,

and w = G−1x. Hence, the L0TV signal denoising model (1.2) can be equivalently written as (2.1) by
substituting z and w into (1.2). �

The model (2.1) is named as partial `0 regularized (PL0R) optimization problem because the regu-
larization term in (2.1) is with respect to z rather than w. Note that its the first term f (w) = 1

2‖Gw− y‖22
is a smooth and strongly convex function. Specifically, the gradient and Hessian of f (w) are

∇ f (w) =

[
∇x1 f (w)
∇z f (w)

]
=

[
e> (Gw − y)
H> (Gw − y)

]
,

and ∇2 f (w) = G>G, respectively. Moreover, ∇2 f (w) is a positive definite matrix due to the nonsingu-
larity of G. Hence, there exist two positive constants L f and l f such that all eigenvalues of ∇2 f (w) are
greater than l f and less than L f .

2.1. Optimality conditions

Some first-order optimality conditions of `0 regularized problem have been established in Theorems
2.2 and 2.4 of [22]. But it is worth noting that they analyzed merely the relationship between Karush-
Kuhn-Tucker (KKT) type stationary points and local minimizer. Inspired by the definition of the L-
stationarity in [25, Definition 4.8], we introduce a P-stationary point of the PL0R optimization problem.
For convenience, we first briefly review the definition of L-stationarity. Let L > 0. A vector x∗ is called
an L-stationary point of the `0 regularized optimization problem minx g(x) + λ‖x‖0 if

x∗ ∈ Prox λ
L ‖·‖0

(
x∗ −

1
L
∇g(x∗)

)
.

Here Prox λ
L ‖·‖0

(·) is the proximal operator of λ
L‖ · ‖0, and defined as

Prox λ
L ‖·‖0

(
x∗ −

1
L
∇g(x∗)

)
:= arg min

v

λL‖v‖0 +
1
2

∥∥∥∥∥∥v −
(
x∗ −

1
L
∇g(x∗)

)∥∥∥∥∥∥2

2

 .
Next we present the definition of P-stationary point for the PL0R optimization problem (2.1).
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Definition 1. Let α > 0. We say that w∗ = (x∗1; z∗) is a P-stationary point with α of (2.1) if0 = e>(ex∗1 + Hz∗ − y),
z∗ ∈ Proxαλ‖·‖0 (z∗ − α∇z f (w∗)) .

(2.2)

It is worth mentioning that the proximal operator of αλ‖·‖0 is multi-valued due to the non-convexity
of αλ‖ · ‖0. Fortunately, the analytic formula of Proxαλ‖·‖0(·) can be characterized by using the intrinsic
discreteness and separability. Specifically, for any i = 1, 2, · · · , n − 1,

Proxαλ‖·‖0(ui) = arg min
vi

{
K(vi) := αλJ(vi) +

1
2

(vi − ui)2
}
,

where J : R → {0, 1} is the function defined by J(0) = 0 and J(vi) = 1 for vi , 0. It is easy to show
that the minimum value of K(vi) is the smaller one of αλ and 1

2u2
i . If αλ > 1

2u2
i , then the minimizer of

K(vi) is 0. If αλ = 1
2u2

i , then the minimizer of K(vi) is 0 or ui. If αλ < 1
2u2

i , then the minimum value
and minimizer of K(vi) are αλ and ui respectively. Hence, the proximal operator of αλ‖ · ‖0 can be
characterized as follows:

Proxαλ‖·‖0(ui) =


ui, |ui| >

√
2αλ,

ui or 0, |ui| =
√

2αλ,

0, |ui| <
√

2αλ.

for any i = 1, 2, · · · , n − 1.

Whereafter, the relationship between P-stationary point and global optimal solution of (2.1) is revealed.

Theorem 2. For the PL0R optimization problem (2.1), the following results hold.
(a) (Sufficiency) Let (x∗1; z∗) be a P-stationary point with α ≥ 1/l f , then it is a global optimal solution.
(b) (Necessity) If (x∗1; z∗) is a global optimal solution, then it is a P-stationary point with α ∈ (0, 1/L f ).

Proof. (a) Since (x∗1; z∗) is a P-stationary point. It follows from Definition 1 that 0 = ∇x1 f (w∗) and

z∗ ∈ arg min
z

{
αλ‖z‖0 +

1
2
‖z − (z∗ − α∇z f (w∗))‖22

}
.

According to the optimality of z∗, we have

αλ‖z‖0 +
1
2
‖z − (z∗ − α∇z f (w∗))‖22 ≥ αλ‖z

∗‖0 +
1
2
‖α∇z f (w∗)‖22,∀z.

After some simple manipulations, we can further obtain that

〈z − z∗,∇z f (w∗)〉 +
1

2α
‖z − z∗‖22 + λ‖z‖0 ≥ λ‖z∗‖0.

From the strong convexity of f , one can see, for any w ∈ Rn,

f (w) ≥ f (w∗) + 〈∇ f (w∗),w − w∗〉 +
1
2

l f ‖w − w∗‖22

≥ f (w∗) + 〈∇z f (w∗), z − z∗〉 +
1
2

l f ‖z − z∗‖22.
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Combining the above two aspects, we have

f (w) + λ‖z‖0 ≥ f (w∗) +
1
2

(l f −
1
α

)‖z − z∗‖22 + λ‖z∗‖0

≥ f (w∗) + λ‖z∗‖0.

Here, the last inequality of the above equation holds from α ≥ 1/l f . Hence, (x∗1; z∗) is a global solution
of (2.1).

(b) Suppose w∗ = (x∗1; z∗) is a global optimal solution of (2.1). Then, from Fermat’s rule [26,
Theorem 10.1], we have

0 ∈ ∇z f (w∗) + ∂λ‖z∗‖0 and 0 = ∇x1 f (w∗),

which imply the first equation in (2.2) holds. On the other hand, from the strong smoothness of f , we
obtain that

f (w) ≤ f (w∗) + 〈∇ f (w∗),w − w∗〉 +
L f

2
‖w − w∗‖22

= f (w∗) + 〈∇z f (w∗), z − z∗〉 +
L f

2
‖w − w∗‖22

≤ f (w∗) −
1

2α
‖z − z∗‖22 −

α

2
‖∇z f (w∗)‖22

+
1

2α
‖z − z∗ + α∇z f (w∗)‖22 +

L f

2
‖w − w∗‖22.

Let x1 = x∗1 and z ∈ Ω = Proxαλ‖·‖0(z
∗ − α∇z f (w∗)). We know

f (w) + λ‖z‖0 ≤ f (w∗) + λ‖z∗‖0 +
1
2

(
L f −

1
α

)
‖z − z∗‖22

≤ f (w) + λ‖z‖0 +
1
2

(
L f −

1
α

)
‖z − z∗‖22,

where last inequality holds from the fact that (x∗1; z∗) is a global solution of (2.1). This together with
α < 1/L f leads to

0 ≤
(
L f −

1
α

)
‖z − z∗‖22 ≤ 0,

yielding z = z∗. Therefore,
z∗ ∈ Proxαλ‖·‖0(z

∗ − α∇z f (w∗)).

Namely, (x∗1; z∗) is a P-stationary point with α ∈ (0, 1/L f ). �

To solve the PL0R problem well, we first consider an optimization problem that is closely relevant
to it, namely,

min
z∈Rn−1

h(z) + λ‖z‖0. (2.3)

Here, h(z) = 1
2 (Hz− y)>M(Hz− y), M = In − ee>/n and In is an identity matrix. Thus, the gradient and

Hessian matrix of h(z) are

∇h(z) = H>M(Hz − y) and ∇2h(z) = H>MH,
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respectively. Moreover, h(z) is a strongly convex function because its Hessian matrix is positive defi-
nite. Hence, there exists a constant lh > 0 such that, for any z1, z2,

h(z1) ≥ h(z2) + 〈∇h(z2), z1 − z2〉 +
1
2

lh‖z1 − z2‖22.

Similarly, we say that z∗ is a P-stationary point with α > 0 of (2.3) if

z∗ ∈ Proxαλ‖·‖0(z
∗ − α∇h(z∗))

= Proxαλ‖·‖0(z
∗ − αH>M(Hz∗ − y)).

(2.4)

The following theoretical results present systematically the relationship between (2.1) and (2.3).

Theorem 3. A point z∗ is a P-stationary point with α of (2.3) if and only if

v∗ =
(
e>(y − Hz∗)/n; z∗

)
is a P-stationary point with α of the PL0R model (2.1).

Proof. It follows that

∇z f (v∗) = H> (Gv∗ − y)

= H>(ee>(y − Hz∗)/n + Hz∗ − y)
= H>M(Hz∗ − y) = ∇h(z∗),

and Proxαλ‖·‖0(z
∗ − α∇z f (v∗)) = Proxαλ‖·‖0(z

∗ − α∇h(z∗)). Together with the equivalence of the first
equation in (2.2) and x∗1 = e>(y − Hz∗)/n, the desired conclusions are proved. �

Theorem 4. Let z∗ be a global optimal solution of (2.3). Then it is a P-stationary point of (2.3) with
α > 1/lh, and v∗ = (e>(y − Hz∗)/n, z∗) is also a global optimal solution of (2.1).

Proof. Since the strong convexity of h(z), we obtain that

h(z∗) ≥ h(z) + 〈∇h(z), z∗ − z〉 +
1
2

lh‖z∗ − z‖22

= h(z) +
1

2α
‖z∗ − z + α∇h(z)‖22 +

1
2

(
lh −

1
α

)
‖z∗ − z‖22 −

α

2
‖∇h(z)‖22.

Let z∗ be a global optimal solution of (2.3) and z be a P-stationary point of (2.3). Then we have

h(z∗) + λ‖z∗‖0

≥ h(z) + λ‖z‖0 +
1
2

(
lh −

1
α

)
‖z∗ − z‖22

≥ h(z∗) + λ‖z∗‖0 +
1
2

(
lh −

1
α

)
‖z∗ − z‖22,

where last inequality holds from the fact that z∗ is a global optimal solution of (2.3). This together with
α > 1/lh, we obtain that z∗ = z. Therefore, z∗ is a P-stationary point of (2.3). From Theorem 3 and
Theorem 2 (a), we obtain that the desired conclusion immediately. �
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Algorithm 1 NL0TV: Newton algorithm for the L0TV model (1.2)
Step 1: find z∗ which is a P-stationary point of (2.3) by Newton algorithm;
Step 2: calculate x∗1 = e>(y − Hz∗)/n;
Step 3: calculate x∗ = ex∗1 + Hz∗.

2.2. Newton algorithm

These optimality conditions establish a foundation for finding the global optimal solution of (1.2)
effectively. Particularly, our algorithm can be divided into three steps, see Algorithm 1 for details.

After Step 1 and Step 2, we obtain (x∗1; z∗) which is a P-stationary point of (2.1) by Theorem 3.
Further, it follows from Theorem 2 (a) that (x∗1; z∗) is a global optimal solution of the PL0R model
(2.1). Therefore, we acquire the global optimal solution of the L0TV model (1.2) in Step 3. The
main computational cost of NL0TV is to find a P-stationary point of (2.3). Inspired by [24], we adopt
Newton-type algorithm to solve the model (2.3) and thereby obtaining its P-stationary point. To express
the solution of (2.4) more explicitly, we introduce the following stationary equation

F(z,T ) =

[
∇T h(z)

zT

]
= 0, (2.5)

where T =
{
i : |zi − α∇ih(z)| ≥

√
2λα

}
and T is the complementary set of T . The relationship between

stationary equation (2.5) and a P-stationary point of (2.3) is established in next theorem.

Theorem 5. Let z∗ be a solution of (2.5). Then it is a P-stationary point of (2.3).

Proof. Suppose that z∗ is a solution of (2.5). Then T ∗ =
{
i : |z∗i − α∇ih(z∗)| ≥

√
2λα

}
and

F(z∗,T ∗) =

[
∇T ∗h(z∗)

z∗
T
∗

]
= 0,

Moreover, |z∗i | ≥
√

2λα for any i ∈ T ∗, and |∇ih(z∗)| <
√

2λ/α for any i ∈ T
∗
. Together with [20, Lemma

2], we obtain z∗ is a P-stationary point of (2.3). �

To find a solution of (2.5), we first need to locate the index set T that is unknown in general and
then solve the equation. Therefore, we employ an adaptively updating rule as follows. Let zk be the
k-th iteration point. We first calculate an approximation Tk, and then apply the Newton method to solve
(2.5) with Tk. Namely, update dk and zk+1 by, respectively,∇

2
Tk ,Tk

h(zk)dk
Tk

= ∇2
Tk ,T k

h(zk)zk
T k
− ∇Tkh(zk)

dk
T k

= −zk
T k
,

(2.6)

and

zk+1 = zk(tk) = zk +

tkdk
Tk

dk
T k

 =

[
zk

Tk
+ tkdk

Tk

0

]
. (2.7)

Here tk is a step size generated by the Amijio line search as described in [24]. One can observe that the
major computational cost of Newton algorithm arises from solving the equations (2.6). Its complexity
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Figure 1. The blocks signal with noisy (σ = 0.7).

is approximately O(|Tk|
3) in the k-th iteration. Note that, a sparse solution z∗ is admitted, namely,

‖z∗‖0 � n − 1, then |Tk| can be quite small. Hence, NL0TV has a low computational complexity. As
shown in [24], the generated sequence of Newton algorithm converges to a P-stationary point of (2.3)
globally and quadratically. Thus, the global optimal solution of (2.1) can be obtained according to
Theorem 4.

3. Experiments

This section conducts numerical experiments to illustrate the effectiveness of our proposed NL0TV
method. All experiments are implemented by MATLAB (R2020a) on a personal laptop with 8 GB of
RAM and Inter Core i7 2.3 GHz CPU.

To demonstrate the excellent performance of our approach, we compare NL0TV with five state-of-
the-art TV-based denoising methods, including L1-TV [8], Atan-TV [5], MCP-TV [14], GME-TV [16]
and L2-Potts [18]. For a fair comparison, the regularization parameters of all methods are traversed in
{0.1, 0.2, · · · , 5} to output the best experimental results. The root-mean-square error (RMSE), mean-
absolute-error (MAE) and signal-to-noise ratio (SNR) are used to quantify the performance of NL0TV
and other compared methods. For comparison, we use the same test signal as described in the rele-
vant literatures [5, 15, 16]. The true signal x∗ is named ‘blocks’, which is generated by the function
MakeSignal in the Wavelab software library (see https://statweb.stanford.edu/˜wavelab/
for details). The noisy signal y is obtained by adding Gaussian noise to the true signal, i.e., y = x∗+σN,
where N is the standard normal distribution, σ is the noise factor. Figure 1 illustrates an example of
the ‘blocks’ signal with noise (σ = 0.7). Experimental results of six methods on the noisy signals with
different σ are summarized in Figures 2-3 and Table 1.

Figure 2 reports the experimental results of six methods on the noisy signal with σ = 0.7. Some
comments on Figure 2 can be made. (i) The RMSE of L1-TV, Atan-TV and MCP-TV methods are
more than 0.3, while our approach achieves the minimum values 0.1460. (ii) Regarding MAE, NL0TV
method obtains the minimum values compared with other five methods. Moreover, our approach also
achieves the biggest SNR in comparison with other methods, which shows that the proposed method
can remove more contaminants in the noisy signal. (iii) As presented in Figure 2, there are some
small jumps in the signals estimated by L1-TV, Atan-TV, MCP-TV and GME-TV methods that are
not present in the true signal, but this is rarely the case with NL0TV and L2-Potts methods. The
reason may be that the `0 TV regularization term is more suitable for piecewise constant data than its
surrogates. (iv) It can be seen from Figure 2 (e) and (f) that the NL0TV possesses superior denoising
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Table 1. The experimental results of six methods on the noisy signal with σ = 0.6.

Method
RMSE MAE SNR

Mean (SD) Mean(SD) Mean (SD)
L1-TV 0.2584 (0.0319) 0.1856 (0.0248) 19.6523 (1.0803)

Atan-TV 0.2227 (0.0330) 0.1588 (0.0247) 20.9736 (1.3033)
MCP-TV 0.2201 (0.0391) 0.1543 (0.0264) 21.1149 (1.5572)
GME-TV 0.1525 (0.0377) 0.1069 (0.0229) 24.4340 (2.1847)
L2-Potts 0.1632 (0.0457) 0.1007 (0.0258) 23.9373 (2.5716)
NL0TV 0.1331 (0.0248) 0.0967 (0.0219) 25.4948 (1.6063)

performance comparing to the L2-Potts method, which indicates that our Newton algorithm can obtain
more accurate solution than dynamic programming algorithm developed in [17, 18, 27]. Overall, the
performance of NL0TV is better than other compared methods in terms of the RMSE, MAE and SNR.

To further evaluate the stability of the denoising performance of our approach, we repeat 100 times
noise realizations for each σ value and report the experimental results of six methods in Table 1 and
Figure 3.

Table 1 presents the mean and standard deviation (SD) of RMSE, MAE and SNR for each method
on the noisy signal with σ = 0.6. The values in bold represent the best performances. It is not difficult
to see the following facts from this table. (i) The smallest values of average RMSE and average MAE
are obtained by our approach. These experimental results imply that the proposed method possesses
the best denoising performance. In particular, NL0TV method reduces the average RMSE by 48.49%
and 18.44% compared with the L1-TV method and the L2-Potts method, respectively. (ii) The largest
value of average SNR is achieved by the proposed approach. Specifically, NL0TV method increases
the average SNR by 29.73% compared with the L1-TV method. Moreover, our approach increases
the average SNR by 6.51% compared with the L2-Potts method, which indicates that the proposed
Newton algorithm is effective. (iii) NL0TV method achieves the minimal standard deviation of RMSE
and MAE. This phenomenon indicates that the proposed method is more stable compared with other
several methods.

Figure 3 shows the experimental results of 100 replicates of each method on the noisy signal with
σ = 0.8. This boxplot conveys several interesting phenomena. (i) In Figure 3 (a), the median (red line)
of the RMSE of the NL0TV method is lower than that of the other five methods. (ii) In Figure 3 (a)
and (b), the boxplot of our method does not have a red plus sign (+), which illustrates that our method
does not produce abnormal experimental results. (iii) In Figure 3 (c), the median (red line) of the SNR
of our method is higher than that of the other five methods. These phenomena show that the L0TV
method is superior to other methods.

4. Conclusions

In this paper, we first give an equivalent reformulation of the L0TV model and analyze the rela-
tionship between its P-stationary point and global optimal solution. Based on these theoretical results,
an efficient approach based on Newton’s method is designed to find the global optimal solution of the
L0TV model. The algorithm has a considerably low computational complexity and enjoys an excellent
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Figure 2. The experimental results of six methods on the noisy signal with σ = 0.7.
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Figure 3. The experimental results of six methods on the noisy signal with σ = 0.8.
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performance when against five state-of-the-art methods. Furthermore, the techniques developed in this
paper can be also used in conjunction with other TV-based methods in order to process more general
signal and image processing problems.
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