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Abstract: Purpose: Accurate retinal vessel segmentation is of great value in the auxiliary screening 

of various diseases. However, due to the low contrast between the ends of the branches of the fundus 

blood vessels and the background, and the variable morphology of the optic disc and cup in the 

retinal image, the task of high-precision retinal blood vessel segmentation still faces difficulties. 

Method: This paper proposes a multi-scale integrated context network, MIC-Net, which fully fuses 

the encoder-decoder features, and extracts multi-scale information. First, a hybrid stride sampling 

(HSS) block was designed in the encoder to minimize the loss of helpful information caused by the 

downsampling operation. Second, a dense hybrid dilated convolution (DHDC) was employed in the 

connection layer. On the premise of preserving feature resolution, it can perceive richer contextual 

information. Third, a squeeze-and-excitation with residual connections (SERC) was introduced in the 

decoder to adjust the channel attention adaptively. Finally, we utilized a multi-layer feature fusion 

mechanism in the skip connection part, which enables the network to consider both low-level details 

and high-level semantic information. Results: We evaluated the proposed method on three public 

datasets DRIVE, STARE and CHASE. In the experimental results, the Area under the receiver 

operating characteristic (ROC) and the accuracy rate (Acc) achieved high performances of 

98.62%/97.02%, 98.60%/97.76% and 98.73%/97.38%, respectively. Conclusions: Experimental 

results show that the proposed method can obtain comparable segmentation performance compared 

with the state-of-the-art (SOTA) methods. Specifically, the proposed method can effectively reduce 

the small blood vessel segmentation error, thus proving it a promising tool for auxiliary diagnosis of 
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ophthalmic diseases. 

Keywords: retinal vessel segmentation; fundus image; multi-scale; deep learning 

 

1. Introduction  

Fundus image diagnosis in the clinic can assist in screening various diseases, such as 

hypertension and diabetes. Ophthalmologists can make an initial diagnosis of the disease by 

observing the morphology of retinal blood vessels. However, the accuracy of automatic fundus 

vessel segmentation is still unsatisfactory, due to the complex morphology of the vessels and the 

observer dependence. Therefore, accurate retinal vessel segmentation technologies are extremely 

valuable in clinical environments. 

Currently, the automatic segmentation methods of fundus blood vessels can be mainly divided 

into two categories: machine learning and deep learning. Furthermore, according to different strategies, 

machine learning-based approaches can be divided into unsupervised and supervised approaches. 

For unsupervised machining methods, Chaudhuri et al. [1] introduced a Gaussian function in the 

segmentation task for the problem of low local contrast, and successfully designed a 

two-dimensional matched filter to detect blood vessel segments in images. Li et al. [2] constructed a 

simple and efficient multi-scale filtering method based on the response relationship of matched 

filters at three scales. After that, Sreejini et al. [3] introduced the particle swarm optimization 

algorithm in the multi-scale matched filter method, and discussed the process more comprehensively. 

The matched filter method is easy to implement, and the amount of calculation is relatively small. 

However, this method is highly restricted by factors, such as image contrast and noise, and its ability 

to distinguish vessel pixels from background ones is relatively poor.  

In addition, Aibinu et al. [4] proposed a method for segmentation at the crossing and branching 

of vessels, which uses a hybrid crossing point method to identify the crossing and branching points 

of vessels, realize vessel tracking and extraction. Finally, Vlachos et al. [5] proposed a linear 

multi-scale tracking method, which tracks the gray-scale characteristics of blood vessel pixels from 

the initial seed node to form a gridded extraction of blood vessels. The blood vessel tracking method 

can obtain very accurate blood vessel width. However, the segmentation effect largely depends on 

the selection of the initial seed node. In addition, it is susceptible to noise interference, and the 

problem of segmenting blood vessel breakage occurs.  

Moreover, Zana et al. [6] first determined the Gaussian-like contours of blood vessels, and then 

combined morphological processing with cross-curvature evaluation for segmentation. Fraz et al. [7] 

further obtained the blood vessel’s skeleton based on detecting the centerline of the blood vessel. It 

received the direction map with the help of morphological plane slices, and generated the shape of 

the blood vessel at the same time. The vessel neutral line image is reconstructed through the 

orientation map and vessel shape, and, finally, the segmented vessel choroid map is obtained. Yang et 

al. [8] proposed a hybrid method to extract blood vessels based on mathematical morphology and 

fuzzy clustering. However, these traditional unsupervised-based image processing methods are less 

robust. Besides, they suffer from poor generalization ability due to customizing artificial features and 

expert annotations for specified datasets based on prior knowledge. 

For supervised machine learning-based methods, its segmentation accuracy is higher than that 
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of unsupervised ones, but with a possibility of overfitting. It has been widely used in retinal vessel 

segmentation. Staal et al. [9] used the K-nearest neighbor (KNN) algorithm to intercept the first k data 

to compare further and determine its pixel category, which is essentially a binary classification of each 

pixel. Soares et al. [10] used a two-dimensional Gabor filter to extract the overall features of retinal 

images, and then used a naive Bayesian classifier to classify retinal vessels and backgrounds. Osareh et 

al. [11] first computed feature vectors on a per-pixel basis, and then used a Gaussian mixture model 

combined with a support vector machine to classify the feature vectors. Khowaja et al. [12] proposed a 

framework based on a hybrid feature set and hierarchical classification approach. They first employed 

random forests for classification and evaluating the performance of each feature class for feature 

selection, and then combined the selected feature set with a hierarchical classification approach for 

vessel segmentation. Conventional machine learning methods is more suitable for scenarios with a 

small amount of data. However, deep learning performance will be more prominent if the amount of 

data increases rapidly. 

Deep learning-based methods can automatically learn vessel features from the retinal image and 

avoid manual participation. Therefore, it has stronger robustness, higher frontal segmentation 

accuracy and more vital generalization ability. In recent years, deep learning has shown excellent 

performance in the field of medical image segmentation, and many researchers have conducted 

research in retinal blood vessel segmentation. Specifically, the proposal of U-Net [13] makes the U 

shape network a popular framework, and many improved models are proposed for retinal vessel 

segmentation. For example, Wu et al. [14] proposed a multi-scale network followed network 

(MS-NFN) to solve the small vessel segmentation problem. Zhuang et al. [15] introduced multiple 

encoding and decoding structures in their LadderNet, and increased the information flow path via 

skip connections. Alom et al. [16] proposed a recursive residual convolutional neural network 

(R2U-net) based on the U-shaped network model, which better retains feature information and 

achieves the effect of feature reuse. Finally, Li et al. [17] proposed a small U-Net segmentation 

method IterNet with multiple iterations, which expands the model’s depth while considering the 

segmentation details. Gu et al. [18] proposed CE-Net, which introduces a cascaded upper and lower 

feature extraction module in the middle layer of the codec. It can ensure the acquisition of complete 

feature information, and extract deeper feature information. Lin et al. [19] proposed a multi-path 

high-resolution retinal vessel segmentation method combined with HR-Net. The feature map 

maintained high resolution in the feature extraction process, and enabled the information interaction 

between high and low-resolution branches, thus resulting in more accurate probability maps. 

Although the models mentioned above achieved good results in retinal blood vessel 

segmentation, there are still some limitations: 

 The codec structure transmits and receives information features in a single layer through skip 

connections, which aggravates the problem of information loss. 

 The connecting layer of codec cannot thoroughly combine context information, and continuous 

pooling and convolution further cause a decrease in the recognition rate of the vessel ends. 

To alleviate the above problems, this paper proposes a multi-scale integrated context network to 

improve blood vessel segmentation accuracy further. Aiming at the issues that existing algorithms 

have an insufficient feature extraction ability, serious feature information loss and low segmentation 

accuracy for color fundus retinal vascular images, an aggregated multi-scale integrated context 

model is proposed to further improve the accuracy of vascular segmentation. Its main new feature is 

that it has a multi-layer feature fusion mechanism, which can fully use the information in different 
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scales. The main contributions of the network are as follows: 

 A multi-layer feature fusion mechanism is proposed, combining the low-level details of feature 

maps at different scales with high-level semantic information through full-scale skip connections 

from the encoding path to the decoding path. 

 In the encoder, a hybrid stride sampling (HSS) block is constructed to extract deeper semantic 

information while reducing the dimensionality of features. 

 A Dense Hybrid Dilated Convolution (DHDC) block is designed between the encoder and the 

decoder to improve the accurate recovery of blood vessel details by obtaining richer contextual 

information. 

 The Squeeze-and-Excitation module with residual connections is introduced into the decoder, 

and the weight of each scale feature is adaptively adjusted to strengthen the effective channel 

while suppressing redundant information. 

The rest of this paper is organized as follows: Section II introduces the proposed method in 

detail. Section III describes the experimental implementation and illustrates the experimental results. 

Section IV gives the conclusions of this paper. 

2. Proposed method 

2.1. Pre-processing 

The retinal images in the fundus dataset have many samples with poor contrast and high noise. 

Therefore, proper preprocessing is critical for later training. This paper uses four preprocessing 

methods, including gray-scale transformation, data standardization, contrast limited adaptive 

histogram equalization (CLAHE) and gamma correction [18,20–22], to process each original retinal 

blood vessel image. 

Figure 1 provides a schematic diagram of the staged processing results of the original color 

retinal image after gray-scale transformation, contrast-limited adaptive histogram equalization and 

gamma correction. It can be seen from the figure that the image texture after preprocessing is clear, 

the edge is prominent, and the detailed information is enhanced. 

 

Figure 1. The flowchart of data preprocessing. 

We use a patch extraction strategy to augment the experimental data and avoid the overfitting 

problem. There are three patch extraction ways: sequential crop, overlap crop and random crop.  

This paper selects random cropping for data augmentation in the training phase. In addition, to 

maintain the consistency of the training data, we performed the same augmentation processing for 

the ground truth images manually segmented by experts.  

Different from the cropping approach in the training phase, in the testing phase, each image 
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block needs to be re-spliced into a complete image and then binarized to obtain the segmentation 

result map. All patches must be spliced to restore their separation ratios to the level of the original 

fundus image. However, if random cropping is used, the time and space complexity of splicing 

according to the index is extremely high. To avoid this problem, the overlap crop is chosen in the 

testing phase. We set the stride to 12 based on the trade-off of workstation performance. 

 

Figure 2. The overlapping cropping strategy. 

As shown in Figure 2, each test image is divided into several patches by the overlapping 

cropping strategy, and Eq (1) calculates the number of patches for each image: 

_ _ _ _
_ _ _ ( 1) ( 1)

_ _

img h patch h img w patch w
N patches per img

stride h stride w

    
      

   
,    (1) 

where img_h and img_w represent the height and width of the test image, patch_h and patch_w 

represent the height and width of the image block, and stride_h and stride_w represent the step size 

of horizontal and vertical sliding, respectively. After obtaining the prediction results of overlapping 

patches, a reconstruction algorithm continuously reconstructs the final average segmentation results 

(final_avg) by Eq (2). 

 
_

_
_

full pro
final avg

full sum
   ,                                (2) 

where full_pro and full_sum represent the sum of each pixel’s prediction probability and extraction 

frequency in each patch, respectively. 

2.2. Framework of proposed MIC-Net 

Figure 3 presents the overall framework of the MIC-Net proposed in this paper (the source code 

is publicly available at https://github.com/Mamdanni/MIC-Net). The network preserves the 

two-layer end-to-end basic structure of U-Net. First, a hybrid stride sampling (HSS) block is 

designed in the encoder, which uses full-scale skip connections to replace the single one of U-Net. 

Second, the interconnection between encoding and decoding paths is redesigned as the dense hybrid 

https://github.com/Mamdanni/MIC-Net
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dilated convolution (DHDC) block. Finally, the decoder utilized the Squeeze-and-Excitation module 

with residual connections. Each part is described in detail below. 

 

Figure 3. The structure of proposed MIC-Net. 

2.2.1. Hybrid stride sampling block 

The max pooling downsampling is mainly used to reduce the image’s resolution. However, 

valuable information is lost while extracting features. To minimize the data loss caused by the 

downsampling, we designed an HSS block in the encoding process. It performs the downsampling 

process before two successive convolutions, which can reduce the feature dimension. Meanwhile, it 

alleviates the loss of helpful information as much as possible and thus extracts deeper semantic 

information. 

 

Figure 4. The structure of the Hybrid Stride Sampling Block. 
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As shown in Figure 4, the HSS module is implemented by paralleling a convolution operation 

with a convolution kernel size of 2 × 2 or 4 × 4, a stride of 2 or 4, and a pooling kernel size of 2 × 2 or 

4 × 4. It is executed by max pooling downsampling with stride 2 or 4. 

Compared with downsampling by a single max-pooling or a fixed stride convolution, the 

proposed sampling module could reduce the information loss caused by dimension reduction. 

Besides, it is worth noting that we also conducted the HSS block before the full-scale skip 

connection. On the other hand, upsampling uses transposed convolution to achieve the fusion of 

different scale features. 

2.2.2. Full-scale skip connections 

 

Figure 5. Illustration of full-scale skip connections. 

Skip connections can fuse the high-resolution information from the encoder with the decoder 

upsampled feature maps, thereby helping to refine the tiny features of the segmentation map. 

However, though the single skip connection is intuitive and straightforward, the single-layer 

transmission and reception information features lead to the inability to utilize the full-scale 

information fully.  

However, the feature maps of different scales often contain extra information. Therefore, this 

paper introduces the full-scale skip connections mechanism, as shown in Figure 5. First, the feature 

map is re-sampled to a uniform size before downsampling at each layer. Then, we implement 

full-scale skip connections from the encoding path to the decoding path, thereby achieving a fusion 

of feature maps at different scales, that is, a complete fusion of low-level details and high-level 

semantic information. 
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2.2.3. Dense hybrid dilated convolution block  

To improve the receptive field without losing information and cascade convolutional 

convolutions with different dilation ratios to obtain multi-scale information gain, we developed the 

DHDC block (shown in Figure 6) between the encoder and the decoder inspired by DenseASPP [23]. 

A set of atrous convolutions are connected in the form of dense connections, and atrous 

convolutional layers share information through residual connections. Among them, d represents the 

expansion rate of the hole convolution. The convolution layers with different expansion rates are 

interdependent. The feedforward process will not only form a denser feature pyramid, but also 

increase the receptive field of the convolution kernel to perceive richer contextual information. 

 

Figure 6. Construction of Dense Hybrid Dilated Convolution Block. 

2.2.4. Squeeze-and-Excitation with residual connections 

 

Figure 7. The structure of the squeeze-and-excitation with residual connections. 
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During the decoding process, we use twice transposed convolution with a kernel size of 3 × 3 to 

upsample the feature map. Besides, we introduce squeeze-and-excitation with residual connections 

(SERC) in the decoder (as shown in Figure 7).  

We first fused the feature maps obtained by sampling with that of different scales, and then 

input the residual SERC block. As a result, the weight of each scale feature is adaptively adjusted. It, 

thus, strengthens the effective channel and suppresses redundant information. Finally, the channels 

are adjusted using a 1 × 1 convolution kernel. 

2.3. Evaluation metrics 

Eight standard evaluation metrics for retinal vessel segmentation tasks include Accuracy (Acc), 

Specificity (Spe), Sensitivity (Sen), Precision (Pre), and F1_Score, Intersection over Union (IoU), 

Floating point operations (FLOPs) and Parameters (Params) [17,20,22,39].  

In addition, we depicted the receiver operating characteristic curve (ROC), which was generated 

with TP as the ordinate and FP as the abscissa. We also provided the Area under the ROC curve 

(AUC), which considers the Sen and Spe under different thresholds, and is suitable for measuring 

retinal vessel segmentation. 

3. Experiments and results 

3.1. Datasets 

We evaluated our proposed method on three public datasets of fundus images, including DRIVE, 

STARE and CHASE. Figure 8 shows some typical cases from the three datasets. 

The DRIVE dataset (https://drive.grand-challenge.org/) contains 40 fundus retinal color images, 

seven of which are from patients with early diabetic retinopathy, with a resolution of 565 × 584 and 

stored in JPEG format. The original dataset uses 20 images for training and 20 for testing with masks, 

and two experts manually annotated the dataset. In this paper, we divide the dataset into a training set, 

a validation set, and a test set according to the ratio of 18:2:20, and choose the first expert’s result as 

the ground truth. Specifically, 110,000 image patches were obtained based on the original dataset for 

the later training. 

The STARE dataset (http://cecas.clemson.edu/~ahoover/stare/) provides 20 fundus color images 

with a resolution of 700 × 605. We use 15 of these images for training and five for testing. The 

original dataset is not divided into a validation set like the DRIVE dataset. Thus, we choose 10% of 

the training data for validation. The STARE dataset also provides annotated images of two experts, 

and we chose the first ones as the ground truth. Finally, a total of 130,000 image patches were 

obtained. 

The CHASE dataset (https://blogs.kingston.ac.uk/retinal/chasedb1/) contains 28 color retinal 

images with a resolution of 996 × 960. It was taken from the left and right eyes of 14 children. We 

used 20 of these images for training and eight for testing, and a total of 230,000 patches were 

extracted for training. 

https://drive.grand-challenge.org/
http://cecas.clemson.edu/~ahoover/stare/
https://blogs.kingston.ac.uk/retinal/chasedb1/
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Figure 8. Fundus images from three different datasets. (a) Original fundus image, (b) 

ground truth, (c) mask. 

3.2. Implementation details 

All experiments were run on a GPU server with Intel Xeon Silver 4110 CPU, NVIDIA GeForce 

RTX 2080Ti GPU and 64GB RAM. The development environment is based on CUDA11.2 + 

cuDNN8.1 + TensorFlow2.6.0 + keras2.6.0, Python 3.7.13 and the Ubuntu 18.04 operating system. 

In the training process, we set the maximum number of training epochs to 30, batch_size to 4, 

and initial learning rate to 0.0001. A binary cross-entropy loss (BCE) was used as the objective 

function to supervise the model's training process. The DRIVE, STARE and CHASE datasets 

followed the same data augmentation strategy: randomly extract image patches with a resolution of 

48 × 48 from the preprocessed images.  

Unlike the training phase, we performed overlap cropping in the original image with a fixed 

step size. Since these patches had overlapping areas (i.e., each pixel appears multiple times in 

different patches), we averaged the probability value of each pixel belonging to retinal blood vessels 

and set the threshold to obtain a binarized prediction map. In addition, we used an early stopping 

mechanism to prevent the occurrence of overfitting,  

3.3. Loss of function 

The proposed MIC-Net needed to convert the vessel segmentation task into pixel-level 

classification. Therefore, we chose the BCE loss function to complete the classification task in this 

paper. Its equation is defined as follows: 
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1

1
o [ log (1 )log(1 )]

N

i i i i

i

L ss g p g p
N 

                                  (3) 

In the above formula, g represents the label value. There are only two possible values of 0 and 1, 

and p represents the predicted value of the pixel. When g is 0, the first half of the formula equals 0. If 

you want the loss value to be smaller, p should be as close to 0 as possible; conversely, when g is 1, 

the second half of the formula is 0. For a minor loss, p should be as close to 1 as possible. 

Furthermore, the sigmoid activation function is necessary to ensure that the model output is in the 

range of (0, 1). 

3.4. Ablations 

We conducted ablation experiments on the DRIVE dataset to verify each module's contribution 

to the entire model’s performance. As can be seen from Table 1, the AUC, Acc, Spe and Sen of 

MIC-Net reached 98.62, 97.02, 98.80 and 80.02%, respectively. Compared with the baseline model 

in the DRIVE dataset, the performance of the final model is improved by 0.2, 0.22, 0.23 and 0.31%, 

respectively.  

Table 1. Ablation experiments on the DRIVE dataset. 

Methods AUC (%) Acc (%) Spe (%) Sen (%) 

Baseline 98.42 96.80 98.57 78.50 

No FSC 98.48 96.89 98.85 76.40 

No DHDC 98.54 96.96 98.58 78.81 

No SERC 98.58 96.99 98.69 79.23 

MIC-Net 98.62 97.02 98.80 80.02 

*Note: For each metric, the bold value indicates that column’s best result. 

 

Figure 9. Illustration of ablation results. (a) Original fundus image, (b) Baseline, (c) 

No_FSC, (d) No_DHDC, (e) No_SERC, (f) Proposed MIC-Net, (g) Ground truth. 
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Figure 9 shows the segmentation results of the MIC-Net model for different combinations of 

ablation models. It can be observed from the figure that the segmentation results of the complete 

MIC-Net model proposed by us have more minor errors than other combinations, and are closer to 

the standard segmentation images, thus verifying the rationality of the model combination. 

3.5. Model parameters and FLOPs 

Generally, the number of parameters of a model is directly proportional to its computational 

complexity, while fewer model parameters often degrade the performance of the network. Table 2 

lists the number of parameters, FLOPs and AUC (on DRIVE dataset) of different methods. 

Compared with other existing models, the parameters and FLOPs of our proposed MIC-Net are 

comparable to those of Att-Unet, MultiResUNet, and FCN=8s (all less than 10M). Besides, the 

segmentation performance of our proposed method is slightly higher than other models. Therefore, 

the proposed MIC-Net achieves high segmentation performance with lower computational 

complexity. 

Table 2. Comparisons of different methods on Parameters, FLOPs and AUC. 

Methods Parameters (M) FLOPs (M) AUC 

SegNet 29.46 58.91 0.9294 

FCN_8s 9.01 18.01 0.9410 

MultiResUNet 7.26 14.55 0.9451 

LinkNet 11.55 23.62 0.9492 

DeepLabV3+ 41.06 82.23 0.9575 

Att-UNet 8.91 17.82 0.9793 

R2U-Net 17.65 51.03 0.9804 

MIC-Net 9.13 18.23 0.9862 

*Note: For each metric, the bold value indicates that column's best result. 

3.6. Generalization in cross-training experiments 

 

Figure 10. Comparison of generalization in cross-experiments. (a) cases from the 

STARE dataset, (b) ground truth and (c) test results. 
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To verify the model’s generalization performance, we trained on the DRIVE dataset, and 

applied the saved weights to testing on the STARE dataset. Figure 10 shows our segmentation results. 

The generalization visualization experiment shows that the detection of vessels is relatively complete, 

and the ends and bifurcations can also be completely segmented, which verifies the consistency of 

the proposed method in different data distributions, and its generalization ability is strong. 

In addition, Table 3 lists the generalization performance comparison between the proposed 

method and other methods. Among them, the method proposed in this paper has obtained the optimal 

value in the two indicators of AUC and Sen, thus verifying that the proposed method has a good 

consistency and generalization ability. 

Table 3. Comparison of generalization performance indicators. 

Methods AUC (%) Acc (%) Spe (%) Sen (%) 

Yan et al. [41] 97.08 95.69 98.40 72.11 

Jin et al. [42] 94.45 96.90 97.59 70.00 

Wu et al. [22] 96.35 95.44 97.85 73.78 

Proposed method 97.70 96.44 97.51 76.02 

3.7. Results on three datasets 

 

Figure 11. Segmentation results of the proposed method on three datasets. (a) original 

image, (b) preprocessed, (c) ground truth and (d) our results. 



6925 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 6912–6931. 

Figure 11 and Table 4 present our proposed method’s partial segmentation results on three 

datasets. As can be seen from the table and figure, the segmentation result of our proposed MIC-Net 

is very close to the ground truth, which cannot only extract the main vessel from the background, but 

also correctly segment the vessel edge.  

In addition, we also give the ROC curves of the three datasets in Figure 12. It can be seen from 

the figure that the value of AUC is relatively close to 1, which proves the superior performance of 

our proposed method on retinal vessel segmentation. 

Table 4. Performance of our method tested on three datasets. 

Dataset AUC (%) Acc (%) Spe (%) Sen (%) Pre (%) F1-score (%) IoU (%) 

DRIVE 98.62 97.02 98.80 80.02 86.32 82.20 68.32 

STARE 98.60 97.76 98.61 87.72 93.70 85.99 69.51 

CHASE 98.73 97.38 98.44 81.60 77.95 79.73 64.07 

 

Figure 12. ROC curves of the proposed MIC-Net tested on three datasets. 

Although the proposed MIC-Net can successfully segment blood vessels, some intractable 

abnormalities still occur. For example, as shown in Figure 13, in the segmentation results of the 

DRIVE dataset and the CHASE dataset, we found two cases where the optic disc boundary was 

identified as a blood vessel, which indicates that the specificity of the proposed method needs to be 

improved. 
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Figure 13. Cases of abnormalities. 

Table 5. Performance of methods on three datasets. 

Methods Year 
DRIVE(%)  STARE(%)  CHASE(%) 

AUC Acc Spe Sen  AUC Acc Spe Sen  AUC Acc Spe Sen 

Azzopardi [24] 2015 96.14 94.42 97.04 76.55 
 

95.63 94.97 97.01 77.16 
 

94.87 93.87 95.87 75.85 

Li et al. [25] 2015 97.38 95.27 98.16 75.69  98.79 96.28 98.44 77.26  97.16 95.81 97.93 75.07 

Liskowski [26] 2016 97.20 94.95 97.68 77.63  97.85 95.66 97.54 78.67  - - - - 

Fu et al. [27] 2016 - 95.23 - 76.03  - 95.85 - 74.12  - 94.89 - 71.30 

Dasgupta [28] 2016 97.44 95.33 98.01 76.91  - - - -  - - - - 

Chen et al. [29] 2017 95.16 94.53 97.35 74.26  95.57 94.49 96.96 72.95  - - - - 

Yan et al. [30] 2018 97.52 95.42 98.18 76.53  98.01 96.12 98.46 75.81  97.81 96.10 98.09 76.33 

Wu et al. [14] 2018 98.07 95.67 98.19 78.44  - - - -  98.25 96.37 98.47 75.38 

Yan et al. [31] 2019 97.50 95.38 98.20 76.31  98.33 96.38 98.57 77.35  97.76 96.07 98.06 76.41 

Jin et al. [20] 2019 98.02 95.66 98.00 79.63  98.32 96.41 98.78 75.95  98.04 96.10 97.52 81.55 

Wang et al. [32] 2020 98.23 95.81 98.13 79.91  98.81 96.73 98.44 81.86  - - - - 

Li et al. [17] 2020 98.16 95.73 98.38 77.35  98.81 97.01 98.86 77.15  98.51 96.55 98.23 79.70 

Shi et al. [33] 2021 - 96.76 98.26 80.65  - 97.32 98.66 82.90  - 97.31 98.89 75.04 

Guo et al. [34] 2021 98.53 96.67 98.17 82.21  98.97 97.24 98.59 82.10  98.69 96.97 98.45 81.89 

Xu et al. [35] 2015 96.70 96.30 98.23 87.45  - - - -  96.77 96.94 97.94 89.16 

Zhang et al. [36] 2022 88.95 97.01 97.99 77.19  83.91 96.91 99.11 69.12  91.42 98.11 99.81 85.06 

Deng et al. [37] 2022 97.93 95.39 97.12 83.68  98.55 96.43 97.79 84.35  98.06 95.87 96.93 85.43 

Our MIC-Net 2022 98.62 97.02 98.80 80.02  98.60 97.76 98.61 87.72  98.73 97.38 98.44 81.60 

*Note: For each metric, bold values are the best result in that column.  
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3.8. Comparisons with SOTA methods 

We further compare the proposed method with existing state-of-the-art (SOTA) methods to 

verify the effectiveness of the proposed method. Table 5 presents our quantitative experimental 

results on the DRIVE, STARE and CHASE datasets. All compared methods refer to open-source 

codes on GitHub. The experiment's environment configuration and the specific parameter settings, 

including batch size, epoch, learning rate, etc., are consistent with the settings of our proposed 

method in this paper during training and testing. 

 

Figure 13. Comparative results of the SOTA methods and our proposed MIC-Net on 

three datasets, where the second, fourth, and sixth rows give the local zoomed-in results 

of the vessel ends. 

In the comparative experiment, the statistical method of t-test is also used to verify whether the 

proposed method is significantly different from other methods on the accuracy. All statistical 

hypothesis tests are based on the representative metrics of Acc. 
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It can be seen that the overall performance of our proposed method achieves significant 

improvements on all performance metrics, outperforming existing SOTA methods on the three 

datasets. Besides, regarding AUC metrics, our AUC is 0.46% higher than the second on the DRIVE 

dataset, 0.52% higher than the second on the STARE dataset and 0.41% higher than the second on 

the CHASE dataset.  

However, compared with the experiments of existing methods, the proposed module has 

improved the performance of retinal vessel detection. Still, Spe and Sen performances on the three 

datasets are not outstanding, which indicates that, although the performance improvement of our 

proposed method is achieved to a certain extent, there is still a significant error on FP and FN. 

Figure 13 compares the visualization results of several SOTA methods on three datasets. Our 

method achieves satisfactory segmentation results from the locally zoom-in images. Compared with 

other improved approaches, such as scSEU-Net [38] and R2U-Net [16], our proposed MIC-Net can 

detect retinal vessels more correctly and reduce misclassified retinal vessel pixels. In addition, better 

recognition is achieved for tiny vessels and edge regions. 

4. Conclusions 

This paper proposes an end-to-end fundus retinal vessel segmentation network called MIC-Net. 

This multi-layer feature fusion mechanism can fully utilize the information on different scales to 

improve information flow. First, the HSS block we designed on the encoder side can minimize the 

loss of helpful information caused by the downsampling operation. Second, the DHDC block 

between the encoder and decoder can perceive richer contextual information without sacrificing 

feature resolution. Third, the SERC module at the decoder can strengthen the effective channel, 

while suppressing redundant information. 

The experimental results show that the performance of our proposed method on the DRIVE, 

STARE and CHASE datasets could achieve comparable segmentation results to existing SOTA 

methods on retinal vessel segmentation. Thus, it has significant application prospects in the early 

screening of diabetic retinopathy. Nevertheless, the proposed MIC-Net still has some limitations for 

segmenting tiny blood vessels that cannot be effectively distinguished by direct observation of the 

human eye. Therefore, our future work will focus on the cascaded semantic segmentation framework 

for segmenting small blood vessels. 
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