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Abstract: In this study, we investigate a delayed reaction-diffusion predator-prey system with the
effect of toxins. We first investigate whether the internal equilibrium exists. We then provide
certain requirements for the presence of Turing and Hopf bifurcations by examining the corresponding
characteristic equation. We also study Turing-Hopf and Hopf bifurcations brought on by delays.
Finally, numerical simulations that exemplify our theoretical findings are provided. The quantitatively
obtained properties are in good agreement with the findings that the theory had predicted. The effects
of toxins on the system are substantial, according to theoretical and numerical calculations.
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1. Introduction

The release of unregulated toxins into the environment has been linked to the extinction of countless
species in recent years, such as car exhaust pollution, industrial wastewater pollution, toxic metal
pollution, water pollution, military and ship noise pollution in the ocean, etc. The impact of these
pollutions on species is like “chronic poison”, its degree of harm is very horrible. For example, the
albino dolphin, which has survived on earth for more than 20 million years and is only found in China’s
Yangtze River, was officially declared extinct on August 8, 2007. Studies have shown that global
warming and environmental pollution are the main causes of the extinction of the golden toad [1].
Studying how toxins affect ecosystems is essential from a conservation and environmental standpoint.

In order to investigate the effect of toxins on the population, a large number of researchers have
developed mathematical models that are based on population models. First, Hallam et al. [2] put forth
a toxicant-population model, which places an emphasis on the influence that toxins have on a
population. They proposed that, despite the existence of limiting toxins, a colony’s susceptibility to
extinction may be influenced by the abundance of terminal organisms in the environment.
Das et al. [3] explored the bioeconomics of harvesting a prey-predator fishery in which both species
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are affected by certain toxins emitted by some other species. By considering a predator-prey model
with simultaneous harvesting, Rani and Gakkhar [4] found that the presence of toxins alters the
quality of food for both species, resulting in slower growth. Chakraborty and Das [5] investigated a
two-zooplankton and one phytoplankton system in the presence of toxicity. Wu and Wei [6] and Wei
and Chen [7] studied population models with psychological effects and partial tolerance in polluted
environments. Wei et al. [8] proposed a single-species population model with partial pollution
tolerance in a polluted environment and introduced the random perturbation of the birth rate of a
single-species population into this model.

It is noted that most of the models mentioned above didn’t consider the factor of delay. It is well
known that delay differential equations have more complicated dynamics than traditional differential
equations because of the instability of equilibrium, bifurcation, and chaotic behavior that results from
delays [9–15]. So, when researching an ecosystem, we should consider the factor of delay.
Pal et al. [16] investigated two competing fish species, one of which obeys the law of logistic growth
and produces a chemical that is harmful to the other. The delay in reproduction caused by the
gestation period was taken into account.

Furthermore, it is common knowledge that in order to improve its chances of survival, the species
will always move to less populated places [17]. But few researchers have looked at the idea of
population diffusion in hazardous situations [18]. Yan et al. [19] analyzed a diffusive predator-prey
model with toxins. The authors of [20] also thought about the effect of diffusion. However, they did
not investigate how the presence of poisonous compounds affects the spatiotemporal dynamics of the
system [21, 22]. In addition, some researchers have studied the reaction-diffusion systems with
delays. Zuo and Wei [23] investigated a delayed predator-prey system with a diffusion effect, and the
stability of the positive equilibrium and the existence of spatially homogeneous and spatially
inhomogeneous periodic solutions are investigated by analyzing the distribution of the eigenvalues.
Chen et al. [24] proposed a new technique to study the stability and associated Hopf bifurcation of a
constant equilibrium of a general reaction-diffusion system or a system of ordinary differential
equations with delay effects. Chen et al. [25] considered a delayed diffusive Leslie-Gower
predator-prey system and the stability/instability of the coexistence equilibrium and associated Hopf
bifurcation are investigated by analyzing the characteristic equations.

Motivated by the preceding debates, we consider harmful compounds that will impact the quality
of the food consumed by these two populations. The system then appears as follows:

∂u
∂t
= ru

(
1 − u

K

)
−

b1uv
u + mv

− αu3 + d1∆u, (x, t) ∈ (0, lπ) × (0,+∞) ,
∂v
∂t
=

b2uv
u + mv

− dv − βv2(t − τ) + d2∆v, (x, t) ∈ (0, lπ) × (0,+∞) ,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0,

(1.1)

where u and v represent the prey and predator population, respectively. The parameters r, K, b1, α,
b2, d, β, d1 and d2 are all positive. r is the growth rate of prey, K is the environmental capacity, m
is the consumption rate, α and β are the efficiency of toxicity. b1 is the maximum value which per
capita reduction rate of u can attain, b2 is the conversion rate, and d is the death rate of the predator.
The delay τ represents that the toxicants there is a delay in the damage of the toxin to the predator.
∆ = ∂2/∂x2 is the Laplace operator which indicates that the population is moving freely in space, and
ux(0, t) = vx(0, t) = 0 represents the homogeneous Neumann border conditions which means that the
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population is confined within the domain.
Our working hypothesis is that the rate at which hazardous chemicals are synthesized increases

in tandem with the density of the prey. Prey species are more likely to die out than predator ones.
Accordingly, we assume that αu3 is the effect of toxins on the prey and βv2 is the effect of toxicity
to the predator with 0 < α < β < 1. Here, prey species are the direct targets of toxicants, but
predators are also indirectly impacted because of the poisoned prey. It is clear that no population is
entering or leaving the system thanks to the Neumann boundary constraints requiring all points to
be homogeneous.

By letting

ū =
u
K
, v̄ =

b1

rK
v, t̄ = rt, ᾱ =

αk2

r
, m̄ =

mr
b1
,

d̄1 =
d1

r
, d̄2 =

d2

r
, d̄ =

db1

rβK
, b̄ =

b2b1

rβK
, β̄ =

βK
b1
.

(1.2)

By getting rid of the bars to make things easier, system (1.1) becomes
∂u
∂t = d1∆u + u(1 − u) − uv

u+mv − αu3,
∂v
∂t = d2∆v + β

(
buv

u+mv − dv − v2(t − τ)
)
,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0.
(1.3)

In this paper, we shall attempt to answer the following questions: In what ways do toxins’s delay
and diffusion alter the dynamics of a system? Can they lead to Hopf, Turing, or even Turing-Hopf
bifurcations?

The rest of the paper is organized as follows. In section 2, we discuss the existence of the interior
equilibrium, and the stability, Hopf bifurcations and Turing instability of system (1.3). In section 3,
theoretical analysis is verified by numerical simulations.

2. Stability and bifurcation of the interior equilibrium

2.1. The existence of the equilibria

Obviously, model (1.3) has a predator-free equilibrium E1 = (−1+
√

1+4α
2α , 0) and the interior

equilibrium satisfies the following two non-trivial prey and predator nullclines simultaneously in the
interior of the first quadrant

Φ(u, v) = 1 − u −
v

u + mv
− αu2 = 0, (2.1)

Ψ(u, v) =
bu

u + mv
− d − v = 0. (2.2)

From (2.2), we obtain that u = (d+v)mv
b−(d+v) , and substitute this into (2.1), we have

A0v4 + 4A1v3 + 6A2v2 + 4A3v + A4 = 0, (2.3)
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where

A0 =αbm3,

A1 =
1
4

(−1 − bm2 + 2αbdm3),

A2 =
1
6

(b2m2 − bm + 3b − 2bdm2 + αbd2m3 − 3d),

A3 =
1
4

(b2dm2 + 2b2m − 3b2 − bd2m2 − 2bdm + 6bd − 3d2),

A4 =3bd2 − 3b2d − b3m + b3 − d3 − bd2m + 2b2dm.

(2.4)

Clearly, if
3bd2 − 3b2d − b3m + b3 − d3 − bd2m + 2b2dm < 0, (2.5)

then Eq.(2.3) has at least a positive root v∗. Moreover, if b − (d + βv∗) > 0, then system (1.3) has an
interior E∗ = (u∗, v∗). According to [26], we define

S = A0A4 − 4A1A3 + 3A2
2,

I = Det


A0 A1 A2

A1 A2 A3

A2 A3 A4

 ,
D = S 3 − 27I2.

Then D is the discriminant of Eq (2.3). When D < 0, the equation has two real roots (one of which
is positive, and the other is negative), as well as two imaginary roots. As a consequence of this, the
equation has one and only one positive real root in this particular example. On the other hand, when
D > 0, every root can be either real or imaginary, and because this equation includes at least two real
roots, we can deduce that every root is real in this particular instance. Therefore, there is a possibility
that multiple positive roots will occur.

On the other hand, we can demonstrate the existence of unique or multiple coexistence steady states
geometrically by analyzing non-trivial nullclines (2.1) and (2.2) (see Figure 1).

Figure 1. The number of coexistence equilibrium points can vary based on the possible
crossing of non-trivial prey and predator nullclines. Both the blue and red curves represent
the non-trivial nullclines for prey and predators, respectively. The blue curve represents the
prey nullcline, while the red curve represents the predator nullcline.
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In the following, we discuss the stability of the equilibria. First, we define the real-valued
Sobolev space

X =
{
u, v ∈ H2(0, lπ) × H2(0, lπ) : (ux, vx)

∣∣∣
x=0,lπ

= 0
}
,

and the corresponding complexification space is given by

XC = X ⊕ iX = {a1 + ib1 : a1, b1 ∈ X}

Let

U(t) = (u(·, t), v(·, t))T .

Thus, we linearize system (1.3) around E∗ = (u∗, v∗) in the phase space Cτ = C([−τ, 0], XC), we have

U̇ = D∆U(t) + L(β, τ)(Ut), (2.6)

where D = diag(d1, d2), Ut = col(u(x, t), v(x, t)) ∈ Cτ and L : Cτ → XC is given by

L(β, τ)(φ) =
(

a11 −a12

βa21 βa22

)
φ(0) +

(
0 0
0 −βs

)
φ(−τ) (2.7)

with φ = (φ1, φ2)T and

a11 =
u∗v∗

(u∗ + mv∗)2 − u∗ − 2αu∗2, a12 =
u∗2

(u∗ + mv∗)2 ,

a21 =
bmv∗2

(u∗ + mv∗)2 , a22 =
bu∗2

(u∗ + mv∗)2 − d, s = 2v∗.

From [17], we obtain the characteristic equation of system (2.6) is

λy − D∆y − L(eλ·y) = 0, (2.8)

where y ∈ dom(∆), and y , 0, dom(∆) ⊂ X, and eλ· stands for (x, t) 7−→ eλt.
From the properties of the Laplacian operator defined on the bounded domain, the operator ∆ on X

has the eigenvalues n2

l2 (n = 0, 1, 2, · · · , ) with the relative eigenfunctions

ψ1
n =

(
cos nx
0

)
, ψ2

n =

(
0
cos nx

)
, n = 0, 1, 2, · · · .

Clearly, (ψ1
n, ψ

2
n))∞n=0 construct a basis of the phase space X and therefore any element y in X can be

expanded as Fourier series in the following form:

y =
∞∑

n=0

YT
n

(
ψ1

n

ψ2
n

)
,YT

n = (⟨y, ψ1
n⟩, ⟨y, ψ

2
n⟩) (2.9)

From (2.8), (2.9) is equivalent to

∞∑
n=0

YT
n

λI2 + D
n2

l2 −

 a11 − d1
n2

l2 −a12

βa21 βa22 − d2
n2

l2 − βse−λτ

 ( ψ1
n

ψ2
n

)
= 0 (2.10)
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Therefore, that characteristic Eq (2.8) admits a non-zero solution y is equivalent to equation

Wn(λ, β, τ) = λ2 + Anλ + Bn + βs(λ +Cn)e−λτ = 0, (2.11)

being satisfied for at least one n ∈ {0, 1, 2, . . . }, where

An = (d1 + d2)
n2

l2 − a11 − βa22,

Bn = d1d2
n4

l4 − (d1βa22 + d2a11)
n2

l2 + β(a22a11 + a12a21),

Cn = d1
n2

l2 − a11.

(2.12)

In the following, we will analyze stability and bifurcation of the interior equilibrium of system (1.3)
by analysis the characteristic Eq (2.11).

2.2. Dynamics analyze of system (1.3) without delay

For τ = 0, Eq (2.11) is shown as

Rn(λ) ≜ Wn(λ, β, 0) = λ2 − Tnλ + Dn = 0, (2.13)

with

Tn = −(d1 + d2)
n2

l2 + a11 − βq,

Dn = d1d2
n4

l4 − (d2a11 − d1βq)
n2

l2 + β(a12a21 − a11q),

q = s − a22 = v∗ +
bmu∗v∗

(u + mv∗)2 > 0.

(2.14)

Denote

βH
n =

1
q

(a11 − (d1 + d2)
n2

l2 ), βT
n =

d2a11
n2

l2 − d1d2
n4

l4

d1qn2

l2 + a12a21 − a11q
,

β∗ = max
n≥0

βT
n .

We make the following assumption

(H1) a12a21 − a11q > 0, β >
a11

q
.

Theorem 2.1. Suppose that (H1) and β > β∗ hold, then the interior equilibrium E∗ of system (1.3) is
locally asymptotically stable with τ = 0 .

Proof. Differential βT
n with n2

l2 , we have

dβT
n

d n2

l2

=
−d2(qd1

2 n4

l4 + 2d1(a12a21 − qa11) n2

l2 − a11(a12a21 − qa11))

(a12a21 − qa11 + qd1
n2

l2 )
2 , (2.15)
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which means that βT
n is monotonically increasing and then monotonically decreasing with respect to

n2

l2 . So, there must exists a nc ∈ N0 such that

β∗ ≜ max
n≥0

βT
n = β

T
nc
. (2.16)

When (H1) holds and β > β∗, one has

Tn < 0, Dn > 0, n = 0, 1, 2, · · · ,

which implies that the interior equilibrium E∗ is locally asymptotically stable. □

Denote

nH =

⌊
max

{
n|a11 − (d1 + d2)

n2

l2 > 0
} ⌋
,

nT =

⌊
max

{
n| − d2

1
n4

l4 + (2a11d1 −
a12a21(d1 + d2)

q
)
n2

l2 +
a11

q
(a12a21 − a11q) > 0

} ⌋
,

n∗ = min{nH + 1, nT + 1}.

(2.17)

Theorem 2.2. Suppose that a12a21−a11q > 0 and d2q < d1. Thus, Hopf bifurcation occurs at β = βH
0 =

a11
q with τ = 0.

Proof. When β = βH
0 =

a11
q , T0 = 0 an Tn < 0 for n , 0. Then Substitute βH

0 into Dn(β) yields

Dn(βH
0 ) = d1d2

n4

l4 + (
a11

q
d1 − d2a11)

n2

l2 +
a11

q
(a12a21 − a11q). (2.18)

a12a21 − a11q > 0 and d2q < d1, so Dn(βH
0 ) > 0 for any n ≥ 0. Consequently, Eq (2.13) has roots

λ(β) = ξ(β) ± iω(β),

where
ξ(βH

0 ) = 0, ω(βH
0 ) =

√
D0(βH

0 ).

Thus, when β is near βH
0

ξ(β) =
T0(β)

2
, ω(β) =

√
D0(β) − ξ2(β).

So, we have ξ′(βH
0 ) = −q

2 < 0, which meets the transversal condition. □

Theorem 2.3. If β∗ > a11
q and (H1) hold, a Turing bifurcation occurs for β = β∗ with τ = 0.

Proof. When β = β∗, we have

Tnc(β) < 0,Dnc(β) = 0 and Tn(β) < 0,Dn(β) > 0, for n , nc.

It follows that the characteristic Eq (2.13) just has a unique zero root and the remaining roots with
negative real parts.
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Obviously, we have Wnc(λ, β, 0)|β=β∗,λ=0 = 0, and ∂Wnc (λ,β,0)
∂λ

= 2λ− Tn and ∂Wnc (λ,β,0)
∂β

= −qλ+ d1q nc
2

l2 +

a12a21 − a11q , 0. By the existence theorem of the implicit function, we know that Wn(λ, β, 0) = 0
determines an implicit function λ = λ(β), which satisfies λ(β∗) = 0 and Rnc(λ(β)) = 0 when β near β∗.
So,

∂

∂β
λ(β)

∣∣∣∣∣
β=β∗
=

d1qn2
c

l2 + a12a21 − a11q

−(d1 + d2) n2
c

l2 + a11 − β∗q
, 0.

□

2.3. Dynamics analysis of system (1.3) with delay

Now, we discuss the effect of delay τ. Assume that λ = ±iω (ω > 0) are a pair of pure imaginary
roots of Eq (2.11). So, ω satisfies

− ω2 + iAnω + Bn + βs(iω +Cn)e−iωτ = 0. (2.19)

It follows that {
ω2 − Bn = ωβs sin(ωτ) + βsCn cos(ωτ),
−Anω = −βsCn sin(ωτ) + ωβs cos(ωτ).

(2.20)

Taking the modulus of Eq (2.20), we have

ω4 + Pnω
2 + Qn = 0, (2.21)

where

Pn = A2
n − 2Bn − β

2s2,Qn = B2
n − β

2s2C2
n.

Denote
D∗ = P2

n − 4Qn. (2.22)

Then, it is easily obtained the following conclusion.

Lemma 2.1. (i) Eq.(2.21) has only one positive root ω+1 (n) =
√
−Pn+

√
D∗

2 if any of the following
condition holds

(H2) : Qn < 0;
(H3) : Pn = −2

√
Qn,Qn > 0;

(H4) : Qn = 0, Pn < 0;

(ii) Eq.(2.21) has two positive roots ω±2 (n) =
√
−Pn±

√
D∗

2 if (H5) holds:
(H5) : Pn < 0,Qn > 0,D∗ > 0;
(iii) Eq.(2.21) has no positive root if one of the assumptions holds:
(H6) : D∗ < 0;
(H7) : D∗ > 0,Qn ≥ 0, Pn ≥ 0;
(H8) : D∗ = 0, Pn ≥ 0.
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From (2.20) and 2.1, we obtained that when Eq (2.21) has only one positive rootω+1 (n) =
√
−Pn+

√
D∗

2 ,
and by Eq (2.20), we obtain

τ+1, j(n) =
1

ω+1 (n)

arccos

Cn(ω+
2

1 (n) − Bn) − ω+
2

1 (n)An

αω+
2

1 (n) + αC2
n

 + 2 jπ

 , j ∈ N0. (2.23)

When Eq (2.21) has two positive real roots, and again by Eq (2.20), we have

τ±2, j(n) =
1

ω+2 (n)

arccos

Cn(ω±
2

2 (n) − Bn) − ω±
2

2 (n)An

αω±
2

2 (n) + αC2
n

 + 2 jπ

 , j ∈ N0. (2.24)

Lemma 2.2. Assume that λ(τ) = η(τ) ± iω(τ) are the roots of Eq (2.11), and it satisfies

η(τ+1, j(n)) = 0 (η(τ±2, j(n)) = 0),

ω(τ+1, j(n)) = ω+1 (n) (ω(τ±2, j(n)) = ω±2 (n)).

So, we have

d(Reλ(τ))
dτ

∣∣∣∣∣
τ=τ+1, j(n)

> 0,
d(Reλ(τ))

dτ

∣∣∣∣∣
τ=τ+2, j(n)

> 0,
d(Reλ(τ))

dτ

∣∣∣∣∣
τ=τ−2, j(n)

< 0. (2.25)

Proof. Taking the derivative of Eq (2.11) with respect to λ, we have

2λ + αe−λτ + An − βs(λ +Cn)(τ + λ
dτ
dλ

)e−λτ = 0.

Therefore, [
dλ
dτ

]−1

=
(2λ + An)eλτ

λ(βsλ + βsCn)
+

1
λ(λ +Cn)

−
τ

λ
.

Combining with Eq (2.20), we have

Re
[dλ

dτ

]−1
λ=±iω±2 (n)

=

[
2ω2 + A2

n − 2Bn − β
2s2

β2s2C2
n + β

2s2ω2

]
λ=±iω±2 (n)

=

[
2ω2 + Qn

β2s2C2
n + β

2s2ω2

]
λ=±iω±2 (n)

= ±

√
∆0

β2s2C2
n + β

2s2ω±
2

2 (n)
.

Consequently, one has

dRe(λ)
dτ

=

√
∆0

β2s2C2
n + β

2s2ω+
2

1 (n)
> 0, τ = τ+1, j(n), ω = ω+1 (n),

dRe(λ)
dτ

=

√
∆0

β2s2C2
n + β

2s2ω+
2

2 (n)
> 0, τ = τ+2, j(n), ω = ω+2 (n),

dRe(λ)
dτ

= −

√
∆0

β2s2C2
n + β

2s2ω−
2

2 (n)
< 0, τ = τ−2, j(n), ω = ω−2 (n).

□
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Denote

Γ = {n ∈ N0|(H2) or (H3) or (H4) holds} .

Obviously, τ+1, j(n) increases monotonically with respect to j, and we define

τ∗ = min
n∈Γ, j∈N0

{τ+1, j(n)} = min
n∈Γ
{τ+1,0(n)}. (2.26)

From Theorem 2.1, 2.1 and 2.2, as with the literature [23–25], we can conclude we have the
following result.

Theorem 2.4. Suppose that (H1) and β > β∗ hold, then we have the following statements:
(i) If (H6) or (H7) or (H8) holds, then the interior equilibrium E∗ is spectrally stable for all τ ≥ 0.
(ii) If (H2) or (H3) or (H4) holds, then the interior equilibrium E∗ is spectrally stable for τ ∈ [0, τ∗),

and unstable for τ ∈ (τ∗,+∞). Hopf bifurcation occurs at E∗ when τ = τ∗;

In the following, we discuss the Turing bifurcation of system (1.3) with τ > 0. First, we have the
following conclusion.

Lemma 2.3. Assume that (H1) holds, and τ , τc, where

τc =
(d1 + d2) n2

l2 − a11 + βq

βs(d1
n2

l2 − a11)
.

Then, when β = β∗ the interior equilibrium is Turing unstable.

Proof. When β = β∗, Theorem 2.3 implies that (2.11) always has a zero root. Furthermore, by (2.11),
when (λ, β, τ) = (0, β∗, τc), we have

∂

∂λ
Wnc(λ, β, τ) = (d1 + d2)

n2

l2 − a11 − βa22 + βs − τcβs(d1
n2

l2 − a11) = 0

∂2

∂λ2 Wnc(λ, β, τ) = 2 − 2βsτ + τ2βs(d1
n2

l2 − a11) , 0.

= 2 −
2(d1 + d2) n2

l2 − 2a11 + 2β∗q

d1
n2

l2 − a11

+
((d1 + d2)n2

l2 − a11 + β
∗q)2

β∗s(d1
n2

l2 − a11)
, 0.

(2.27)

It follows that (2.11) has a zero double eigenvalue. Now, let λ be an eigenvalue of Eq (2.11), and that
it satisfies the equation λ(β∗) = 0 and Wnc = 0 when β is near β∗. Thus

∂

∂β
λ(β)

∣∣∣
β=β∗
=
−qd1

n2

l2 + qa11 − a12a21

βs − βsτc(d1
n2

l2 − a11)
, 0.

This completes the proof. □

The Turing-Hopf bifurcation theorem follows from 2.3 and Theorem 2.4.

Theorem 2.5. Assume that (H1) holds, and (H2) or (H3) or (H4) holds, then the Turing-Hopf
bifurcation occurs when (β, τ) = (β∗, τ j

n) for n ∈ Γ, j = 0, 1, 2. · · · .
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3. Numerical simulations

This section will involve running some numerical simulations to verify the theoretical analysis and
demonstrate the many spatiotemporal patterns that might arise in system (1.3).

3.1. Hopf bifurcation caused by β

Choose the parameters of system (1.3) as m = 0.68, α = 0.02, b = 0.9, d = 0.06, and the diffusion
coefficients d1 = 0.2 and d2 = 2, and l = 1. A direct calculation shown that system (1.3) has two
interior equilibria E∗1 = (0.2469, 0.3798) and E∗2 = (0.2053, 0.3541). It is easily obtained that E∗2 is
always unstable. For the interior equilibrium E∗1, we obtain the Hopf bifurcation curve is

H0 : β =
a11

q
=

u∗v∗
(u∗+mv∗)2 − u∗ − 2αu∗2

2v∗ − bu∗2
(u∗+mv∗)2 + d

= 0.1954.

Therefore, when β > 0.1954 the interior equilibrium E∗1 is locally asymptotically stable (see Figure 2).
While β < 0.1954, E∗1 loses its stability and becomes unstable, and Hopf bifurcation occurs, see
Figure 3 where we use the spatial average density.

.

Figure 2. The interior equilibrium E∗1 is locally asymptotically stable with β = 0.25.
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Figure 3. Hopf bifurcation occurs when β = 0.19.

3.2. Spatial patterns of system (1.3) without delay

Choose the parameters of system (1.3) as m = 0.7, α = 0.02, b = 0.9, d = 0.06, β = 0.3, and the
diffusion coefficients d1 = 0.002 and d2 = 4, and l = 10. A direct calculation show that system (1.3)
has two interior equilibria E∗1 = (0.32, 0.4129) and E∗2 = (0.1344, 0.2949). It is easily obtained that E∗2
is always unstable. For the interior equilibrium E∗1, the instability region is depicted in Figure 4, and the
critical value of β is β∗ ≈ 7.4428 when n = 28. Thus, according to Theorem 2.1 and Theorem 2.3, when
β > 7.4428, E∗1 is locally asymptotically stable (see Figure 5). While β < 7.4428, Turing bifurcation
occurs and E∗1 becomes unstable (see Figure 6).

Figure 4. A graph of β = βT
n in n − β plane. The green region is unstable region of E∗.
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Figure 5. The interior equilibrium E∗1 is locally asymptotically stable with β = 10.

Figure 6. Turing bifurcation occurs and E∗1 becomes unstable when β = 7.

3.3. System (1.3) with delay

Taking the parameters as: m = 0.63, α = 0.02, b = 0.7, d = 0.02, and the diffusion coefficients
d1 = 0.2 and d2 = 2, and l = 10. Calculations show that system (1.3) has an interior equilibrium
E∗1 = (0.3098, 0.3765).

It is easily obtained that β∗ = 0.3301. Therefore, when β > β∗ = 0.3301, the interior equilibrium
E∗1 is locally asymptotically stable with τ = 0. While τ > 0, let β = 0.4, we obtain that the critical
value τ∗ = 3.4807. According to Theorem 2.4, when τ = 3 < τ∗ = 3.4807, E∗1 is locally asymptotically
stable (see Figure 7), and when τ = 4, Hopf bifurcation occurs (see Figure 8).

According to Theorem 2.5, when (β, τ) near (0.3301, 4.0431), from Figure 9, we can see that
system (1.3) oscillates periodically in the time direction and is spatially distributed in an
inhomogeneous manner, which means that Turing-Hopf bifurcation occurs.
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Figure 7. The interior equilibrium E∗1 is locally asymptotically stable with τ = 3.

Figure 8. E∗1 is unstable and Hopf bifurcation occurs with τ = 3.8.

Figure 9. When (β, τ) = (0.35, 4.2), Turing-Hopf bifurcation occurs.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6894–6911.



6908

4. Results and discussions

In this study, the spectral stability of a delayed reaction-diffusion predator-prey model under the
influence of poison was examined. We began by analyzing the presence of the internal equilibrium
of the system (1.3). Afterward, we evaluated the system’s dynamics. Using τ and β as bifurcation
parameters, we studied the bifurcation. In addition, numerical simulations of the system’s dynamics
are shown. Figure 8 and Figure 9 illustrate the spatial patterns that are induced by τ and β.

In the following, we further discuss the effect of toxins. We choose the parameters m = 0.63,
α = 0.02, b = 0.7, d = 0.02, and the diffusion coefficients d1 = 0.2 and d2 = 2, l = 10, which are
the same as those in subsection 3.3. If we let β = 0.4, then from the discussions in subsection 3.3 the
interior equilibrium E∗ is stable when τ = 0 (see Figure 10). However, if we change the value of the
parameter α from 0.02 to 0.05, by a direct calculation, we obtained that β∗ = 0.5980. β = 0.4 < β∗ =

0.5980, so according to Theorem 2.3, Turing bifurcation occurs. Therefore, the interior equilibrium
E∗ becomes unstable, and the system has a non-constant steady-state solution, which means that the
Turing bifurcation occurs (Figure 11). Therefore, the prey and predator are distributed unevenly in
space If the value of parameter α is further changed to 0.1, we find that the prey and the predator will
both extinct (Figure 12), which means that the toxins can cause the extinction of the population, which
is in line with reality.

The model without the effect of toxins has been studied in [27]. According to Theorem 2.5 in [27],
the condition of the stability of the predator-free equilibrium is related to the consumption rate m.
However, in our model, the condition of the predator-free equilibrium is βb < d which is not related
to the consumption rate m. In addition, due to the introduction of toxins and the delay, system (1.3)
exhibits more dynamic behaviors, such as Hopf bifurcation, Turing-Hopf bifurcation, etc.

All of these results show that toxins play an essential role in the formation of complex
spatial patterns.

Figure 10. When α = 0.02, the interior equilibrium E∗ is stable.
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Figure 11. When α = 0.05, the interior equilibrium E∗ is unstable and Turing bifurcation
occurs.

Figure 12. When α = 0.1, the prey and the predator both extinct.
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