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Abstract: Phasic small interfering RNAs are plant secondary small interference RNAs that typically 

generated by the convergence of miRNAs and polyadenylated mRNAs. A growing number of studies 

have shown that miRNA-initiated phasiRNA plays crucial roles in regulating plant growth and stress 

responses. Experimental verification of miRNA-initiated phasiRNA loci may take considerable time, 

energy and labor. Therefore, computational methods capable of processing high throughput data have 

been proposed one by one. In this work, we proposed a predictor (DIGITAL) for identifying miRNA-

initiated phasiRNAs in plant, which combined a multi-scale residual network with a bi-directional 

long-short term memory network. The negative dataset was constructed based on positive data, through 

replacing 60% of nucleotides randomly in each positive sample. Our predictor achieved the accuracy 

of 98.48% and 94.02% respectively on two independent test datasets with different sequence length. 

These independent testing results indicate the effectiveness of our model. Furthermore, DIGITAL is 

of robustness and generalization ability, and thus can be easily extended and applied for miRNA target 

recognition of other species. We provide the source code of DIGITAL, which is freely available at 

https://github.com/yuanyuanbu/DIGITAL. 
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1. Introduction  

Plant virus diseases have brought great losses to agriculture. RNA interference (RNAi) attracts 

more and more attention as one important mechanism of plant resistance to viruses [1]. There are 

mainly three types of key proteins in RNAi: Dicer-like (DCL), RNA-dependent RNA polymerase 
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(PDR) and Argonaute (AGO) [2–4]. The main process is that: (1) DCL cuts double strand RNA 

(dsRNA) into primary small interference RNA (siRNA); (2) PDR reconstitutes siRNA into dsRNA, 

and then cuts the newly synthesized dsRNA into more secondary siRNA; (3) AGO is combined with 

siRNA to form RNA silencing complex (RISC) [5]. RNAi can cut the RISC, target and ultimately 

degrade virus or RNA nucleic acid sequence through complementary base pairs. SiRNAs, in the size 

range of 21–24 nucleotides, mediate RNAi and play the most important mechanism in the whole 

process of RNAi [6]. The main activity of siRNAs is the negative regulation of specific mRNAs or 

gene expression through target degradation, translational repression, or directing chromatin 

modification [7,8]. 

Phasic small interfering RNAs (phasiRNAs) are plant secondary siRNAs that typically produced 

by miRNAs targeting polyadenylated mRNAs [9]. A growing number of studies have shown that 

miRNA-initiated phasiRNAs play crucial roles in regulating plant growth and stress responses [10–

12]. Substantial analyses in genome and small RNA (sRNA) sequence enhanced the annotations of 

sRNAs, notably phasiRNAs as well as their targets [13]; therefore relevant databases have been 

established in succession. Recently, Liu et al. [14] established a database named TarDB that contained 

62,888 cross-species conserved miRNA targets, 4304 degradome PARE-seq supported miRNA targets 

and 3182 miRNA triggered phasiRNA loci. 

Given the importance of phasiRNA in plant-pathogen interactions, we proposed an efficient deep 

learning based predictor, named DIGITAL, for identifying miRNA-triggered phasiRNA loci. We 

collected experimental verified duplex mRNA and phasiRNAs from TarDB database, and generated 

the negative dataset by randomly substituting a certain number of nucleotides in positive samples. The 

key architecture of DIGITAL consists of a multi-scale residual network (multi-scale ResNet) and a bi-

directional long-short term memory (bi-LSTM) network. Consequently, when tested on two 

independent test sets of 21-nt and 24-nt phasiRNAs, DIGITAL reached the accuracy of 98.45% and 

94.02%, respectively, which proves its good robustness and generalization ability. 

2. Materials and methods 

2.1. Overall framework 

 

Figure 1. The overall framework of DIGITAL. 
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Figure 1 illustrates the overall design of DIGITAL. The input layer transforms each nucleic acid 

into a four-dimensional binary vector by one-hot encoding, which means A, C, G and T are represented 

as (1 0 0 0), (0 1 0 0), (0 0 1 0) and (0 0 0 1), respectively. To get the feature vectors with the same 

dimension, we use the way of supplementing 0. Then a deep residual block formed by multi-scale 

CNN layers is employed to extract local relevant features in input vectors; besides, the bi-directional 

long-short term memory (bi-LSTM) network is implemented to explore long-range global contextual 

information. Finally, the resultant latent information is integrated through a flattened layer, and a 

following fully connected layer with softmax is adopted for label classification. 

2.2. Data processing 

We collected the siRNA sequence information from the TarDB database. [14] This database 

contains three categories of relatively high-confidence plant miRNA targets: (i) cross-species 

conserved miRNA targets; (ii) degradome/PARE (Parallel Analysis of RNA Ends) sequencing 

supported miRNA targets; (iii) miRNA-triggered phasiRNA loci. However, only the miRNA-triggered 

phasiRNAs were used to construct our prediction model, because they have been identified by previous 

well-documented criteria [15-18]. 

The TarDB platform deposits both 21-nt and 24-nt phasiRNA in various plants. We obtained 6389 

miRNA-phasiRNA target duplex in which miRNA triggered 21-nt phasiRNA, as well as 526 miRNA-

phasiRNA target duplex in which miRNA triggered 24-nt phasiRNA in 43 plant species. After 

removing the repetitive miRNA-target pair, there are 5,408 duplex data left for miRNA-initiated 21-nt 

phasiRNAs, altogether with 443 duplex data for miRNA-initiated 24-nt phasiRNA, as positive samples. 

 The approach to constructing corresponding negative dataset is similar to the method proposed 

by Mhaned Oubounyt et al. [19], based on the fact that positive and negative sets with less intersection 

are easier to distinguish [20]. In detail, each positive sequence is divided into multiple 1bp long 

fragments, and 60% of the fragments are selected and replaced randomly, with the remaining 40% 

conserved. In this approach, each negative sequence is generated from a positive sequence, and they 

are equal in length. Also, the number of negative data generated by this process is equivalent to that of 

positive data. 

In addition, the miRNA dataset that initiates 21-nt phasiRNAs is further divided into three subsets, 

including the training dataset (60% of the original dataset), the validation dataset (20% of the original 

dataset) and the independent test dataset (20% of the original dataset, denoted as dataset test_21), 

where the training set is used to train the classifier, the validation set is used to optimize hyper-

parameters and the independent test set is used to evaluate the performance of DIGITAL. The miRNA 

dataset that initiates 24-nt phasiRNAs is also used as an independent test set to evaluate the 

performance of DIGITAL, denoted as dataset test_24. The statistics of each dataset are shown in Table 1. 

Table 1. The statistics of datasets. 

Dataset Positive Negative 

Training 3244 3244 

Validation  1082 1082 

Test_21 1082 1082 

Test_24 443 443 
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2.3. Establishment and curation of prediction model 

Fundamental structures in DIGITAL are a multi-scale ResNet network and a bi-LSTM 

architecture, which have been used by some researches [21–23]. Compared with the traditional CNN, 

the residual network improves the interaction of information, and avoids the gradient disappearance 

and degradation problems caused by network depth. So we used multi-scale ResNet network with 

identity mapping. At the same time, in order to extract long-term global context information, we 

combined multi-scale ResNet network and BiLSTM. Details are as follows. 

The multi-scale ResNet network includes three channels of 1-dimension CNN with 64 

convolution filters. Among them, the first channel contains one convolution layer, and the size of the 

convolution kernel is fixed to 1; the second channel employs two convolution layers, with kernels in 

size 1 and 3, respectively; the third channel uses three convolution layers, and the sizes of the 

corresponding convolution kernel are set as 1, 5 and 5, respectively. The bi-LSTM with a self-attention 

network consists of 121 hidden units, followed by a fully-connected layer with 16 units. The Adam 

optimizer with a batch size of 110 simultaneously trains all layers in our model, and the learning rate 

scheduler in Keras is employed to regulate the learning rate. Early stopping is applied based on 

validation loss. To provide insight into the training process of DIGITAL, the average validation loss 

and accuracy change during training are shown in Supplementary Figure S1. 

2.4. Performance evaluation 

We evaluate DIGITAL based on four most common metrics, containing sensitivity (Sn), 

specificity (Sp), accuracy (Acc), and Matthew’s correlation coefficient (MCC). The formulas are listed 

as below: 

( )( )( )( )


= +




=
+


+ =

 + + +


 −  =
 + + + +

TN
Sp

TN FP

TP
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FN TP

TP TN
Acc

TP TN FN FP
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TP FN FP TN TP FP FN TN

 (1) 

where TP, TN, FP and FN represent the number of true positives, true negatives, false positives and 

false negatives, respectively. In addition, the area under the receiver operating characteristic curve 

(AUC) is also used to examine the performance of DIGITAL. 

3. Results 

In this study, we proposed a deep learning model, named DIGITAL, based on multi-scale ResNet 

network and bi-LSTM to predict miRNA-triggered phasiRNA loci. During training, Bayesian 
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optimization was used to search the most appropriate parameters for identifying miRNA-triggered 

phasiRNA sites. DIGITAL reaches the satisfying Acc of 98.45% and 94.02% on independent datasets 

test_21 and test_24, respectively. In addition, six traditional classification algorithms were also 

constructed and compared with DIGITAL. In empirical studies based on independent tests, DIGITAL 

outperforms six traditional classification algorithms, and this fact demonstrates the effectiveness of 

our model. In addition, the robustness and generalization ability of DIGITAL suggest it can be easily 

extended and applied for recognizing miRNA targets of other species. 

4. Discussion 

4.1. Optimization and establishment of DIGITAL 

Bayesian optimization is a very effective global optimization algorithm widely used in 

multitudinous prediction tasks in bioinformatics [24–27]. In this work, to further improve the 

performance of DIGITAL, we also applied this method to optimize key hyper-parameters in the 

training process. As works in previous [28,29], the difference between the experimental value and the 

predictive value on the validation set is defined as the fitness function evaluation of the hyper-

parameter optimization during the training process. The unit number in Bi-LSTM [30–32] and the 

fully-connected layer, as well as the batch size, all varies in the range of (16,128). Corresponding 

results for each combination are listed in Supplementary Table S1, and the best results with the Acc of 

98.71%, MCC of 96.13%, and AUC of 99.78% are achieved at the combination of (121, 16, 110).  

In addition, we also choose the parameters by empirical methods [33,34], where the unit number 

of Bi-LSTM is set as 64, the unit number of the fully-connected layer is set as 32, and the batch size 

is set as 100. Prediction performance of this combination is shown Figure 2 as DIGITAL_E. As shown 

in Figure 2, the model based on Bayesian optimization achieved superior results on the validation 

dataset. Thus, the final model for phasiRNA identification is designed as 121 units in Bi-LSTM, 16 

units in the fully-connected layer, and the batch size is designed as 110. DIGITAL denotes a Bayesian 

optimization and DIGITAL_E denotes an empirical parameter. 

 

Figure 2. Results of empirical tuning and Bayesian optimization on the validation dataset. 
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4.2. Further evaluation of DIGITAL performance 

In this section, the independent datasets test_21 and test_24 are applied to further evaluate the 

robustness and generalization ability of DIGITAL. As shown in Table 1, DIGITAL obtains the Acc of 

98.48%, Sn of 98.95%, Sp of 98.02% and MCC of 96.95% on independent dataset test_21, and 

achieves the Acc of 94.02%, Sn of 95.04%, Sp of 93.00% and MCC of 88.05% on independent dataset 

test_24. In order to display the prediction results more intuitively, we plot the ROC curves and calculate 

the AUC values, as shown in Figure 3. Our model achieves satisfactory AUC of 99.88% on the 

independent dataset test_21 and AUC of 98.41% on the independent dataset test_24. The similar 

prediction performance demonstrates that DIGITAL has good robustness and generalization ability. 

Besides, these two groups of results also demonstrate that the length of the sequence has a great 

influence on the prediction performance. With the increasing amount of data in the future, it is 

necessary to establish special predictors aiming at different sequence lengths. 

In addition, we also implemented 5-fold and 10-fold cross-validation tests to further evaluate the 

generalization capability, respectively, and listed the average results in the Supplementary Table S2. 

We observed that COPPER achieved the average Acc of 98.14% and 98.30% on 5-fold and 10-fold 

cross-validation, respectively. The k-fold (k=5, 10) results are basically consistent with those results 

on validation dataset. 

 

Figure 3. The ROC curves of two independent datasets. 

4.3. Comparison with other machine-learning models on two test datasets 

In addition to deep learning classification algorithm, we also applied six other commonly used 

traditional machine learning methods to develop predictive models, consisting of support vector 

machines (SVM), Naive Bayes (NB), k-nearest neighbors (KNN), XGBoost, logistic regression (LR), 

and random forest (RF). For each classification algorithm, we implemented parameter selection to 

achieve the best prediction results. Prediction performances before and after parameter selection on 

the validation dataset are shown in Supplementary Figure S2. It is surprising that except KNN, the 

other models do not show significant change before and after parameter selection. For this reason, we 
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tested the six models using default parameters on our two independent datasets and compared them 

with DIGITAL. As shown in Table 2, DIGITAL reveals better predictive performance relative to the 

other predictors in terms of MCC, Acc, Sn and Sp, except for Sp on which random forest reaches the 

best performance. Specifically, the MCC of DIGITAL is 1% higher than the second best method SVM 

on test_21 dataset, and 16.9% higher than the second best method XGBoost on test_24 dataset. The 

improved MCC suggests that the Sn and Sp are balanced and relatively similar. 

As shown in Table 2, for all the seven classification algorithms, prediction results on dataset 

test_24 are inferior to those on dataset test_21. This may be due to these models are established based 

on miRNA-initiated 21-nt phasiRNAs. In the future, we shall pay efforts to overcome the influence of 

sequence length on the model. 

Table 2. The performance of DIGITAL and other six machine learning algorithms on two 

independent datasets. 

Method Dataset Sn(%) Sp(%) Acc(%) MCC AUC 

 DIGITAL 
test_21 98.95 98.02 98.45 0.969 0.999 

test_24  95.04 93.00 94.02 0.881 0.984 

SVM 
test_21  96.08 99.81 97.92 0.959 0.979 

test_24  43.57 99.09 71.33 0.513 0.713 

KNN 
test_21  97.72 12.57 55.78 0.197 0.551 

test_24  83.97 73.81 78.89 0.581 0.789 

NB 
test_21  88.89 99.81 94.27 0.891 0.944 

test_24  1.58 98.65 50.11 0.009 0.501 

XGBoost 
test_21  97.63 98.87 98.24 0.965 0.983 

test_24  73.14 96.36 84.65 0.712 0.847 

LR 
test_21  95.26 94.28 94.78 0.896 0.948 

test_24  11.29 92.10 51.69 0.058 0.517 

RF 
test_21  95.81 1.0 97.87 0.958 0.979 

test_24  4.51 1.0 52.26 0.152 0.523 

4.4. Model construction based on word2vec 

In this section, we constructed the classification model based on word2vec embedding method. 

We adopted the grammar of 1, window size of context 4 and dimensions of embedding vector of 4 

because the dimension of one-hot is also 4. When training the embedding matrix, we chose our training 

set as the corpus. The comparison of one-hot and word2vec is shown in Figure 4. It can be seen that 

the model based on one-hot encoding reached the best performance on validation for all of five 

indicators, and gave relatively low Sps and high values of other for indicators on both test-21 and test-

24 datasets. Therefore, we provided the code of two models at 

https://github.com/yuanyuanbu/DIGITAL. 

4.5. Ablation study 

The hybrid network of DIGITAL is composed of multi-scale ResNet and bi-LSTM these two 

parts. To analyze the role of each part, we built two based models based on only multi-scale ResNet 

https://github.com/yuanyuanbu/DIGITAL
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and bi-LSTM, respectively. The prediction results are listed in Table 3 of measurement by five 

evaluation indictors. It can be observed that DIGITAL obviously outperformed other two models on 

for indicators of Sn, Acc, MCC and AUC, especially with the improvement of more than 5% for Sn, 

but the model based on multi-scale ResNet achieved the high Sp of 99.34% and the model based on 

only bi-LSTM achieved the high Sp of 98.88%. The reason why the integration of multi-scale ResNet 

and bi-LSTM can improve Sn significantly is worth studying in the future. 

Table 3. The performance of ablation experiment. 

Model Sn(%) Sp(%) Acc(%) MCC AUC 

DIGITAL 98.86 97.31 98.06 0.961 0.998 

Only bi-LSTM 91.57 99.34 95.37 0.910 0.994 

Only multi-scale ResNet  93.86 98.88 96.35 0.928 0.969 

4.6. Visualization of learning effects in different stages 

In order to intuitively display the process of deep learning to distinguish samples, we employed 

the popular visualization algorithm termed t-distributed stochastic neighbor embedding (t-SNE) which 

has been used in bioinformatics. [35,36] As illustrated in Figure 5A and 5B, these two kinds of points 

are mixed up in confusion by using one-hot encoding and after Multi-scale ResNet. In contrast, most 

of the points in the two kinds have been separated after bi-LSTM, except that the boundary is not 

obvious (Figure 5C). Through the last Dense layer, the two types of points are almost completely 

separated, and the boundary is clear. Taken together, it can be concluded the DIGITAL framework can 

effectively learn the effective information from the one-hot encoding mapped from the RNA sequences. 

 

Figure 4. The performance evaluation results of one-hot and word2vec models. 
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Figure 5. Visualization of training process projected in 2D space. 
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Supplementary  

Table S1. The details of Bayesian optimization. 

Iter Target Bi-LSTM Dense Batch_size 

1 0.9815 43 75 23 

2 0.9815 28 105 61 

3 0.9797 45 73 41 

4 0.9852 58 125 64 

5 0.9838 127 67 26 

6 0.9797 74 128 60 

7 0.9871 121 16 110 

8 0.9834 113 73 123 

9 0.9866 98 42 61 

10 0.9838 97 79 106 

11 0.9783 38 66 98 

12 0.9810 30 107 116 

13 0.9806 126 86 18 

14 0.9834 42 19 81 

15 0.9806 70 41 55 

16 0.9834 99 111 35 

17 0.9801 98 41 60 

18 0.9838 106 99 89 

19 0.9815 56 97 39 

20 0.9866 112 104 95 

21 0.9861 76 119 52 

22 0.9847 81 89 112 

23 0.9797 110 24 61 

24 0.9820 44 89 106 

25 0.9810 69 65 85 

26 0.9857 82 19 109 

27 0.9838 79 87 73 

28 0.9834 61 43 38 

29 0.9783 97 80 106 

30 0.9857 98 21 59 
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Table S2. The performance of the 5-fold and 10-fold cross validation tests. 

 Sn(%) Sp(%) Acc(%) MCC AUC 

5-fold 98.44 97.83 98.14 0.963 0.997 

10-fold 98.61 97.99 98.30 96.61 99.78 

 

Figure S1. The loss and accuracy trend with different number of epochs on the DIGITAL. 

 

Figure S2. Accuracy comparison of six machine learning methods before and after 

parameter selection on validation datasets. 
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