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Abstract: This paper proposes a non-smooth human influenza model with logistic source to describe
the impact on media coverage and quarantine of susceptible populations of the human influenza trans-
mission process. First, we choose two thresholds IT and S T as a broken line control strategy: Once
the number of infected people exceeds IT , the media influence comes into play, and when the number
of susceptible individuals is greater than S T , the control by quarantine of susceptible individuals is
open. Furthermore, by choosing different thresholds IT and S T and using Filippov theory, we study
the dynamic behavior of the Filippov model with respect to all possible equilibria. It is shown that the
Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium
or bistability endemic equilibria under some conditions. The regular/virtulal equilibrium bifurcations
are also given. Lastly, numerical simulation results show that choosing appropriate threshold values
can prevent the outbreak of influenza, which implies media coverage and quarantine of susceptible
individuals can effectively restrain the transmission of influenza. The non-smooth system with logistic
source can provide some new insights for the prevention and control of human influenza.

Keywords: Filippov human influenza model; logistic source; two-thresholds policy; bistability;
bifurcations

1. Introduction

With the development of society, the number of deaths caused by influenza infection has had grad-
ually increased. For example, the global pandemic in 1918 caused more deaths in the world than in
the First World War [1, 2]. According to statistical analysis, the global influenza pandemic is caused
by H2N2 virus, which is called “Asian influenza” because it first occurred in Asia. The incidence rate
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was about 15–30% [3, 4]. Recently, COVID-19 also has a great impact on human life. According to
the latest real-time statistics of the World Health Organization, as of October 10, 2022, the cumulative
number of confirmed cases worldwide exceeded 600 million, and the cumulative number of deaths was
about 6.5 million [5]. Therefore, in order to better control and reduce the number of deaths, how to
effectively and quickly control the spread of disease is worthy of further study.

In the face of the global pandemic, many countries have responded to and mitigated the impact of
influenza on human life through media reports, vaccination, disinfection, the use of protective equip-
ment (such as masks), quarantine and other measures. In addition, some biological mathematicians
have also established many mathematical models in order to better understand influenza infection and
quantify the effectiveness of various control measures [6–13]. For example, considering social factors
such as vaccination, media reports and protective measures, [14–21] established some different forms
of disease models to analyze the impact of disease transmission. Practice shows that frequent hand
washing, disinfection or wearing protective masks, as well as reducing or avoiding close contact with
infected persons, can effectively reduce transmission [22–29]. However, media reports on influenza
cases and deaths may have a great impact on the public, because the public will take some protective
measures after media reports. In addition, quarantine and other measures will greatly reduce the effec-
tive contact rate between vulnerable people and infected people, thus reducing the spread of disease.

Recently, many different control strategies have been proposed to apply to the control of some
disease models. For example, by using multiple optimal control, Ndii and Adi [12] have studied the
effects of individual awareness and vector controls on Malaria transmission dynamics. By using a
non-smooth control strategy, Li et al. [13] have considered the bifurcations and dynamics of a plant
disease system. By using the two thresholds control strategy, Li et al. [30] have considered the global
dynamics of a Filippov predator-prey model. Chen et al. [31] have considered a two-thresholds policy
for a Filippov model in combating influenza. Zhou et al. [32] have discussed a two-thresholds policy
to interrupt transmission of West Nile Virus to birds. Meanwhile, based on the above mentioned
transmission factors, some scholars have also done a lot of meaningful work. For example, Dong et
al. [33] studied a kind of nonlinear incidence Filippov epidemic model to describe the impact of media
in the process of epidemic transmission. They found that choosing an appropriate threshold value and
control intensity can prevent the outbreak of infectious diseases, and media coverage can reduce the
burden of disease outbreaks and shorten the duration of disease outbreaks. Can et al. [25] have studied
a Filippov model describing the effects of media coverage and quarantine on the spread of human
influenza. Xiao et al. [28] have discussed a media impact switching surface during an infectious disease
outbreak. In real life, when the influenza started to spread, that is, when the epidemic was not serious,
the public paid little attention to the influenza. Generally, only when the number of people who have
already felt it reaches and exceeds a certain threshold level will the mass media begin to coverage in
large numbers and the public begin take some countermeasures [11,17,19,20]. Currently, many control
managements have been developed, including threshold [30], harvesting control management [34–36],
impulsive control management [37, 38] and other controls [39–45]. However, the implementation of
this measure may cause some social impacts, such as socioeconomic decline and psychological impact
on the quarantined people. It is important to consider when to take these control measures. Therefore,
an appropriate threshold policy is needed to deal with the influenza outbreak, or at least reduce the
number of infected people to an acceptable level. As far as we know, under logistic source and broken
line control strategy, the sliding dynamics and bifurcations of a human influenza system have been
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seldom reported in existing work.
Motivation and inspiration come from the discussion above. In this paper, we propose a human

influenza system under logistic source and broken line control strategy. The main contributions of this
paper include three points: First, choose two thresholds IT and S T as a broken line control strategy:
Once the number of infected people exceeds IT , the media influence comes into play, and when the
number of susceptible individuals is greater than S T , the control by quarantine of susceptible individu-
als control is open. Furthermore, by choosing different thresholds IT and S T , the existence and stability
of all possible equilibria considered, and then the Filippov system tends to the pseudo-equilibrium on
sliding mode domain or one endemic equilibrium or bistability endemic equilibria under some condi-
tions. It is worth pointing out that in our paper there exists a new phenomenon of two real equilibrium
points co-existing.

In fact, from the perspective of control strategy, our paper puts forward a broken line control strat-
egy. Different from the previous single-stage control strategy [30,34,35,37,38], our control strategy is
divided into two stages and can control and simulate the real life situation well.

This paper is structured as follows. In Section 2, we propose a non-smooth model under logistic
source and broken line control strategy. By changing the infection threshold values and susceptibility
threshold values, in Section 3, we consider the global dynamics of the system under Case 1: S T < S ∗1 <
S ∗2 = S ∗3. In Section 4, we study the global dynamics of the system under Case 2: S ∗1 < S T < S ∗2 = S ∗3.
Section 5 considers the global dynamics of the system under Case 3: S ∗2 = S ∗3 < S T .The regular/virtulal
equilibrium bifurcations are given in Section 6. Finally, we summarize the main results of this paper
and discuss some biological conclusions in Section 7.

2. Model description and basic knowledge

2.1. Model description

In [25], a Filippov human influenza model with effects of media coverage and quarantine was con-
sidered. Because a logistic source can better depict the real situation, motivated by the above discussion
and the existing multiple threshold conditions [25, 30–32, 45], we consider the logistic source factor
with the susceptible population, and then the new human influenza model can be described by

S t = γS
(
1 −

S
K

)
− βS I,

It = βS I − (d + δ + r)I,
Rt = rI − dI,

(2.1)

where S is susceptible individuals, I is infected individuals, and R is recovered individuals. γ is an
intrinsic growth rate of susceptible individuals, and K is carrying capacity. β is the transmission rate.
d is the natural death rate. δ is the death rate caused by disease, and r is the recovered rate.

To better control the spread of the disease, we give the following broken line control strategy. If the
infected populations is lower than IT , no control is required. When the infected populations is greater
than IT , the media coverage control is open. That is, the mass media being coverage of information
about the disease, including the route of transmission, the number of infected cases and the number of
deaths.
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Therefore, the public realizes the harm of the disease, and they changed their behavior, leading to
a decline in the contact rate β. In this paper, we consider that the positive number v1(0 ≤ v1 ≤ 1) is
the reduction amount of contact rate. In addition, we consider the quarantine control as follows. If
the number of susceptible individuals is less than S T , we do not quarantine susceptible individuals.
If S > S T holds, the quarantine control is open, and this time we assume that the positive number
v2(0 ≤ v2 ≤ 1) is the quarantine rate of susceptible individuals. Figure 1 shows the broken line control
strategy.

S=ST

I=IT

S

I

(V ,V )=( ,0)1 2 (V ,V )=(P, )1 2

(V ,V )=(0,0)1 2

qP

Figure 1. Schematic diagram of the broken line control strategy.

Based on system (2.1) and the broken line control strategy, in this paper, we propose a Filippov
influenza system with media control and quarantine of susceptible populations as follows:

S t = γS
(
1 −

S
K

)
− β(1 − v1)S I − v2S ,

It = β(1 − v1)S I − (d + δ + r)I,
Rt = rI − dI

(2.2)

with

(v1, v2) =


(0, 0), for I < IT ,

(p, 0), for I > IT and S < S T ,

(p, q), for I > IT and S > S T .

(2.3)

Notice that the third equation R does not contain the variables S and I of (2.2), so we can not
consider the third equation R of the system. Then, in this paper, we investigate a Filippov systemS t = γS

(
1 −

S
K

)
− β(1 − v1)S I − v2S ,

It = β(1 − v1)S I − (d + δ + r)I.
(2.4)
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Then, the first quadrant is divided by the following five regions:

Γ1 = {(S , I) ∈ R2
+ : I < IT },

Γ2 = {(S , I) ∈ R2
+ : I > IT and S < S T },

Γ3 = {(S , I) ∈ R2
+ : I > IT and S > S T },

Π1 = {(S , I) ∈ R2
+ : I = IT },

Π2 = {(S , I) ∈ R2
+ : I > IT and S = S T }.

The non-smooth system in region Γi for i = 1, 2, 3 is described by(
S t

It

)
=

(
γS (1 − S

K ) − βS I
βS I − (d + δ + r)I

)
= F1(S , I), (S , I) ∈ Γ1;(

S t

It

)
=

(
γS (1 − S

K ) − β(1 − p)S I
β(1 − p)S I − (d + δ + r)I

)
= F2(S , I), (S , I) ∈ Γ2;(

S t

It

)
=

(
γS (1 − S

K ) − β(1 − p)S I − qS
β(1 − p)S I − (d + δ + r)I

)
= F3(S , I), (S , I) ∈ Γ3.

(2.5)

2.2. Basic knowledge

The normal vector of the system is defined as n1 = (0, 1)T in Π1, while the normal vector of the
system is n2 = (1, 0)T in Π2 . Denote the right-hand side of system (2.4) by f . The following definitions
are necessary in this paper [14, 46, 47].

Definition 1. [14] A point E is called a real equilibrium of system (2.4) if there exists i ∈ {1, 2, 3} such
that Fi (E) = 0 and E ∈ Γi, denoted by ER.

Definition 2. [14] A point E is called a virtual equilibrium of system (2.4) if there exists i ∈ {1, 2, 3}
such that Fi (E) = 0 and E < Γi, where Γi is the closure of Γi, denoted by EV .

Denote the equations that describe the sliding mode dynamics on the sliding mode domain `i ⊂ Πi

by Fsi(S , I), i ∈ {1, 2} .

Definition 3. [14] A point E is called a pseudo-equilibrium of system (2.4) if point E is an equilibrium
of Fsi(S , I) on sliding mode domain `. That is, Fsi (E) = 0, and point E ∈ ` ⊂ Πi, i ∈ {1, 2}.

2.3. Positiveness, boundedness and dynamics analysis of (2.4) in Γi(i=1,2,3)

Lemma 1. The solution (S (t), I(t)) of system (2.4) with the positive initial value S (0) and I(0) satisfy
S (t) > 0 and I(t) > 0 for t ∈ [0,+∞).

Proof. First, we prove that S (t) > 0. If not, we assume that there is a time t1 satisfying the solution
S (t1) ≤ 0. Then we know that there exists the other time t∗ > 0 such that the solution S (t∗) = 0 and
S (t) > 0 for t ∈ [0, t∗). From the first equation of system (2.4), one has

dS
dt

= γS
(
1 −

S
K

)
− β(1 − v1)S I − v2S = S

[
r
(
1 −

S
K

)
− β(1 − v1)I − v2

]
.

Further, we obtain
S (t∗) = S (0)e

∫ t∗

0 [r(1− S
K )−β(1−v1)I−v2]ds > 0,
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which is a contradiction with S (t∗) = 0. Thus, S (t) > 0, for all t > 0.
Next, we prove that I(t) > 0. If not, we assume there is a time t2 satisfying the solution I (t2) ≤ 0.

Then, there exists the other time t̃ > 0 such that the solution I(t̃) = 0, and I(t) > 0 for time t ∈ [0, t̃).
From the second equation of system (2.4), one gets

dI
dt

= I
[
(β(1 − v1)S − (d + δ + r)

]
≥ −(d + δ + r)I, t ∈ [0, t̃].

Then, if t = t̃, we have
I(t̃) ≥ I0e−(d+δ+r)t̃ > 0,

which is a contradiction with I(t̃) = 0. Thus, I(t) > 0, for all t > 0. In a word, we have that (S (t), I(t))
of (2.4) with the positive initial value S (0) and I(0) satisfies S (t) > 0 and I(t) > 0 for t ∈ [0,+∞). The
proof is finished.

Lemma 2. The solution (S , I) of system (2.4) is bounded.

Proof. Notice the first equation of system (2.4). Then,

dS
dt
|x=K= −β(1 − v1)KI − v2S < 0, and

dS
dt
|x>K< 0.

Hence, there is a positive number T such that the solution S (t) < K for t ≥ T .
Let N = S + I, and then for t ≥ T , we obtain

dN
dt

= γS (1 −
S
K

) − v2S − (d + δ + r)I

≤ γK(1 −
S
K

) − v2S − (d + δ + r)I

≤ γK −min{γ + v2, d + δ + r}N.

Moreover,

lim sup
t→∞

N ≤
γK

min{γ + v2, d + δ + r}
.

Therefore, under Lemma 1, we know that the solution of (2.4) is bounded. The proof is finished.

Next, we give the basic reproduction number R0i, i = 1, 2, 3, of the system. For example, in region
Γ1, the basic reproduction number is defined as R01 =

Kβ
d+δ+r . In region Γ2, the basic reproduction number

is defined as R02 =
Kβ(1−p)
d+δ+r . In region Γ3, the basic reproduction number is defined as R03 =

(γ−p)Kβ(1−p)
γ(d+δ+r) .

For system (2.4), clearly, in region Γ1, (2.4) has three equilibria, i.e., E10 = (0, 0), E11 = (K, 0) and
E1 = (S ∗1, I

∗
1) = ( d+δ+r

β
, γ
β
(1 − d+δ+r

Kβ )), which is a stable node if R01 > 1.
In region Γ2, system (2.4) has three equilibria, i.e., E20 = (0, 0), E21 = (K, 0) and E2 = (S ∗2, I

∗
2) =

( d+δ+r
β(1−p) ,

γ

β(1−p) (1 −
d+δ+r

Kβ(1−p) )), which is a stable node (focus) if R02 > 1.
In region Γ3, system (2.4) has three equilibria, i.e., E30 = (0, 0), E31 = (K γ−q

γ
, 0) and E3 = (S ∗3, I

∗
3) =

( d+δ+r
β(1−p) ,

γ

β(1−p) (1 −
d+δ+r

Kβ(1−p) −
q
r )), which is a stable node (focus) if R03 > 1.

Theorem 1. Suppose that R0i < 1, and the disease free equilibrium Ei1(i = 1, 2, 3) of (2.4) is glob-
ally asymptotically stable. In addition, the endemic equilibrium Ei(i = 1, 2, 3) of (2.4) is globally
asymptotically stable if R0i > 1.
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Proof. Since R0i < 1, i = 1, 2, 3, a Lyapunov function is considered as

L(t) = S − S i1 − S i1 ln
S

S i1
+ I.

Applying LaSalle’s invariance principle [13, 14], we know that Ei1(i = 1, 2, 3) of system (2.4) is glob-
ally asymptotically stable.

When R0i > 1, i = 1, 2, 3, the following Lyapunov function is considered:

L(t) = S − S ∗i − S ∗i ln
S
S ∗i

+ I − I∗i − I∗i ln
I
I∗i
.

Using LaSalle’s invariance principle [13, 14], we know that points Ei(i = 1, 2, 3) of system (2.4) are-
globally asymptotically stable. The proof is finished.

This paper only considers the global dynamics of (2.4) under case R0i > 1 (i = 1, 2, 3). Next, we
aim to address the richness of the possible equilibria and sliding modes on Π1 and Π2 that the system
with can exhibit.

From (2.4), when S ∗1 < S ∗2 = S ∗3 and I∗3 < I∗2, we consider the following three cases: S T < S ∗1, S
∗
1 <

S T < S ∗2 = S ∗3, and S ∗2 = S ∗3 < S T with varied IT . Further, according to the dynamics in each case, the
biological phenomena of (2.4) are described in this section.

Throughout the paper, the S -nullclines and I-nullclines of (2.4) are represented by the dashed curves
and dash-dot lines, respectively. Thus, S = S ∗1, S

∗
2 and S ∗3 are the I-nullclines of F1, F2 and F3, denoted

by L12, L22 and L32, respectively. That is, the curves

L12 :=
{
(S , I) ∈ Γ1 : γS

(
1 −

S
K

)
− βS I = 0

}
,

L22 :=
{
(S , I) ∈ Γ2 : γS

(
1 −

S
K

)
− β(1 − p)S I = 0

}
and

L32 :=
{
(S , I) ∈ Γ3 : γS

(
1 −

S
K

)
− β(1 − p)S I − qS = 0

}
are the S -nullclines of systems F1, F2 and F3, denoted by L11, L21 and L31, respectively.

3. Sliding dynamics and bifurcations of (2.4) under Case 1: S T < S ∗1 < S ∗2 = S ∗3

In this part, we first consider sliding mode dynamics of (2.4) on Π1 under Case 1: S T < S ∗1 < S ∗2 =

S ∗3. Second, the sliding mode dynamics on Π2 are also given under Case 1: S T < S ∗1 < S ∗2 = S ∗3. In
addition, we investigate the bifurcations of (2.4) under Case 1: S T < S ∗1 < S ∗2 = S ∗3. Finally, some
numerical simulations are displayed to confirm the results.

3.1. Sliding mode dynamics of (2.4) on Π1 under Case 1: S T < S ∗1 < S ∗2 = S ∗3
This part investigates the existence of the sliding mode region on Π1. Based on Definition 3, if

〈n1, F1〉 > 0 and 〈n1, F3〉 < 0 hold, then we know that there is the sliding mode region `1, which is
expressed as
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`1 = {(S , I) ∈ Π1 : S ∗1 < S < S ∗3}.

Using the Filippov convex method [13, 14], we obtain(
S t

It

)
= λ1F1(S , I) + (1 − λ1)F3(S , I),where λ1 =

〈n1, F3〉

〈n1, F3 − F1〉
.

So, we have the differential equations describing the sliding mode dynamics along the manifold `1

for system (2.4): (
S t

It

)
=

(
γS (1 − S

K ) − q
pS − (d + δ + r)IT +

(d+δ+r)q
βp

0

)
. (3.1)

Next, we analyze the existence of the positive equilibriums on `1 of (3.1). Let

∆1 = (γ −
q
p

)2 − 4
γ

K
[(d + δ + r)IT −

(d + δ + r)q
βp

], I∗T =
q
βp

+
(γ − q

p )2K

4γ(d + δ + r)
.

Proposition 1. For varied IT , we have the following results.

• If IT > I∗T , then system (3.1) has no equilibrium.

• If I∗T > IT >
q
βp , system (3.1) has two positive equilibria E±s1 = (S ±s1, IT ), where S ±s1 =

(γ− q
p )±
√

∆1

2γ K.

• If IT < q
βp , then system (3.1) has a unique positive equilibrium Es2 = (S s2, IT ), where S s2 =

(γ− q
p )+
√

∆1

2γ K.

In addition, when the sliding mode `1 has a pseudo-equilibrium, we have

S ∗T =
γ − q

p

2γ
K. (3.2)

Proposition 2. Under the condition S ∗T < S ∗1, E−s1 < `1, and the following results are given.

• If IT < I∗3, we have E+
s1 < `1.

• If I∗3 < IT < I∗1, we have E+
s1 ∈ `1.

• If IT > I∗1, we have E+
s1 < `1.

Proposition 3. Under the condition S ∗1 < S ∗T < S ∗3, the following results hold.

(1) Assume that I∗1 < I∗3, and then

• if I∗1 < IT < I∗3, we have E−s1 ∈ `1, E+
s1 < `1;

• if I∗3 < IT < I∗T , we have E−s1 ∈ `1, E+
s1 ∈ `1.

(2) Assume that I∗1 > I∗3, and then

• if I∗3 < IT < I∗1, we have E−s1 < `1, E+
s1 ∈ `1;
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• if I∗1 < IT < I∗T , we have E−s1 ∈ `1, E+
s1 ∈ `1.

Proposition 4. Under the condition S ∗T > S ∗3, E+
s1 < `1, and the following conclusions hold.

• If IT < I∗1, we have E−s1 < `1.

• If I∗1 < IT < I∗3, we have E−s1 ∈ `1.

• If IT > I∗3, we have E−s1 < `1.

Theorem 2. If I∗T > IT >
q
βp , then a stable pseudo-equilibriums E+

s1 is located on the sliding mode `1,
and the unstable pseudo-equilibriums E−s1 is located on the sliding mode `1.

Proof. Notice that

∂

∂S

(
rS (1 −

S
K

) −
q
p

S − (d + δ + r)IT +
(d + δ + r)q

βp

)∣∣∣∣∣∣
S ±s1

= ∓
√

∆1.

Therefore, the point E+
s1 is attracting, and the point E−s1 is repelling.

Proposition 5. Assume that
γ−

q
p

γ
K > d+δ+r

β(1−p) , and then the pseudo-equilibrium Es2 is not located on `1.

Proof. From Proposition 1, Eq (3.2) and the condition of Proposition 5, one has

S s2 =
(γ − q

p ) +
√

∆1

2γ
K > 2S ∗T = 2

γ − q
p

γ
K >

d + δ + r
β(1 − p)

= S ∗3,

which implies that S s2 ≥ 2S ∗T > S ∗3. Based on the definition of sliding mode region `1, we know that
S s2 < `1. Then, `1 does not have a pseudo-equilibrium Es2. The proof is completed.

3.2. Sliding mode dynamics on Π2 under Case 1: S T < S ∗1 < S ∗2 = S ∗3
Let

J1 =
γ

β(1 − p)
(1 −

S T

K
−

q
γ

), J2 =
γ

β(1 − p)
(1 −

S T

K
).

Clearly J1 < J2. A subset of Π2 is a sliding mode domain if 〈F2, n2〉 〈F3, n2〉 < 0. If IT > J2, there
is no sliding mode domain on Π2. If IT < J2, then the sliding mode domain of (2.4) on Π2 is given as

`2 = {(S , I) ∈ Π2 : max{IT , J1} < I < J2}. (3.3)

Using the Filippov convex method [13], we have the differential equations describing the sliding
mode dynamics along the manifold `2 for system (2.4) with (2.3):(

S t

It

)
=

(
0

β(1 − p)S T I − (d + δ + r)I

)
. (3.4)

Clearly, there is not a positive equilibrium. Thus, if there exists a sliding domain `2 on Π2, we know
the system does not have a pseudo-equilibrium.
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3.3. Bifurcations of (2.4) under Case 1: S T < S ∗1 < S ∗2 = S ∗3

Due to S T < S ∗1 < S ∗2 = S ∗3, we know that E2 < Γ2 is a virtual equilibrium, denoted by EV
2 . However,

point E1 and point E3 may exist depending on IT , and we have the following three Propositions:

Proposition 6. Assume that S ∗T < S ∗1, and the following assertions hold.

• If IT < I∗3, we have E−s1 < `1, E+
s1 < `1, E1 < Γ1, E3 ∈ Γ3.

• If I∗3 < IT < I∗1, we have E−s1 < `1, E+
s1 ∈ `1, E1 < Γ1, E3 < Γ3.

• If I∗1 < IT < I∗T , we have E−s1 < `1, E+
s1 < `1, E1 ∈ Γ1, E3 < Γ3.

• If IT > I∗T , we have E−s1 and E+
s1 don’t exist, E1 ∈ Γ1, E3 < Γ3.

Proposition 7. Under the condition S ∗1 < S ∗T < S ∗3, the following assertions hold.

(1) Assume that I∗1 < I∗3, and further,

• if IT < I∗1, we have E−s1 < `1, E+
s1 < `1, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < I∗3, we have E−s1 ∈ `1, E+
s1 < `1, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗T , we have E−s1 ∈ `1, E+
s1 ∈ `1, E1 ∈ Γ1, E3 < Γ3;

• if IT > I∗T , we have E−s1 and E+
s1 don’t exist, E1 ∈ Γ1, E3 < Γ3.

(2) Assume that I∗1 > I∗3, and further,

• if IT < I∗3, we have E−s1 < `1, E+
s1 < `1, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗1 , we have E−s1 < `1, E+
s1 ∈ `1, E1 < Γ1, E3 < Γ3;

• if I∗1 < IT < I∗T , we have E−s1 ∈ `1, E+
s1 ∈ `1, E1 ∈ Γ1, E3 < Γ3;

• if IT > I∗T , we have E−s1 and E+
s1 don’t exist, E1 ∈ Γ1, E3 < Γ3.

Proposition 8. Under the condition S ∗T > S ∗3, the following assertions hold.

• If IT < I∗1, we have E−s1 < `1, E+
s1 < `1, E1 < Γ1, E3 ∈ Γ3.

• If I∗1 < IT < I∗3, we have E−s1 ∈ `1, E+
s1 < `1, E1 ∈ Γ1, E3 ∈ Γ3.

• If I∗3 < IT < I∗T , we have E−s1 < `1, E+
s1 < `1, E1 ∈ Γ1, E3 < Γ3.

• If IT > I∗T , we have E−s1 and E+
s1 don’t exist, E1 ∈ Γ1, E3 < Γ3.
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Figure 2. The trajectory of (2.4) under Case 1: S T < S ∗1 < S ∗2 = S ∗3, d = 0.01, δ =

0.01, r = 0.01, γ = 0.2,K = 3, (a) where β = 0.7, p = 0.2, q = 0.2, S T = 1.5, IT = 1;
(b) where β = 0.7, p = 0.2, q = 0.2, S T = 1.5, IT = 2.8; (c) where β = 0.7, p = 0.2, q =

0.2, S T = 1.5, IT = 3.5; (d) where β = 1.5, p = 0.5, q = 0.2, S T = 1, IT = 2.8; (e) where
β = 1.2, p = 0.5, q = 0.2, S T = 1, IT = 3.
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Based on Propositions 6–8, we have the following summary:

B1. Let E−s1 < `1, E+
s1 < `1, E1 < Γ1, E3 ∈ Γ3, and the value Υ = (S T , IT ) belongs to the set B1−1. Then,

we conclude that there does not exist a pseudo-equilibrium, and all trajectories of the system (2.4)
will converge to ER

3 , as shown in Figure 2(a), where

B1−1 =
{
Υ ∈ R2

+ : S T < S ∗1, IT < min{I∗1, I
∗
3}
}
.

B2. Let E−s1 < `1, E+
s1 ∈ `1, E1 < Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to the set B2−1. Then,

we know that E+
s1 ∈ `1 ⊂ Π1 is a stable pseudo-equilibrium, and all solutions of the system will

approach E+
s1, as shown in Figure 2(b), where

B2−1 =
{
Υ ∈ R2

+ : S T < S ∗1, I
∗
3 < IT < I∗1

}
.

B3. Let E−s1 < `1, E+
s1 < `1, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to the set B3−1 ∪

B3−2 ∪ B3−3. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and
all trajectories of the system (2.4) will converge to the equilibrium point ER

1 , as shown in Figure
2(c), where

B3−1 =
{
Υ ∈ R2

+ : S T < S ∗1, I
∗
1 < IT < I∗T , if S ∗T < S ∗1

}
,

B3−2 =
{
Υ ∈ R2

+ : S T < S ∗1, IT > I∗T , if S ∗1 < S ∗T < S ∗3
}
,

B3−3 =
{
Υ ∈ R2

+ : S T < S ∗1, I
∗
3 < IT < I∗T , if S ∗T > S ∗3

}
.

B4. Let E−s1 ∈ `1, E+
s1 < `1, E1 ∈ Γ1, E3 ∈ Γ3, and the value Υ = (S T , IT ) belongs to the set B4−1. Then,

we know that E−s1 ∈ `1 ⊂ Π1 is an unstable pseudo-equilibrium, and all solutions will approach
ER

1 or ER
3 . The result of this numerical simulation is shown in Figure 2(d), where

B4−1 =
{
Υ ∈ R2

+ : S T < S ∗1, I
∗
1 < IT < I∗3

}
.

B5. Let E−s1 ∈ `1, E+
s1 ∈ `1, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to the set B5−1. Then,

we conclude that E−s1 ∈ `1 ⊂ Π1 is an unstable pseudo-equilibrium, and all solutions of the system
(2.4) will tend to ER

1 or E+
s1. The result of this numerical simulation is shown in Figure 2(e), where

B5−1 =
{
Υ ∈ R2

+ : S T < S ∗1,max{I∗1, I
∗
3} < IT < I∗T , if S ∗1 < S ∗T < S ∗3

}
.

For the B1 of case 1, when system (2.4) has a unique equilibrium ER
3 , we have the following.

Theorem 3. If S T < S ∗1 < S ∗3 = S ∗2 and IT < min{I∗1, I
∗
3}, then the point ER

3 of system (2.4) is globally
asymptotically stable.

Proof. Suppose that the system (2.4) has a closed orbit U (shown in Figure 3(a)) that surrounds the
real equilibrium ER

32 and the sliding mode `1. Define U = U1 + U2 + U3, where Ui = U ∩ Γi, i = 1, 2, 3.
Let Ω be the bounded region delimited by U and Ωi = Ω ∩ Γi for i = 1, 2, 3. Considering the Dulac
function D = 1

S I . Three Steps are given as follows:
Step 1: System (2.4) does not have a closed orbit in region Γi, i = 1, 2, 3.
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"
U

(
∂ (D f1)
∂S

+
∂ (D f2)
∂I

)
dS dI =

3∑
i=1

"
Ui

(
∂ (DFi1)
∂S

+
∂ (DFi2)
∂I

)
dS dI

= −
3γ
K

3∑
i=1

"
Ui

1
I

dS dI < 0,

where f1 is the first component of f , and f2 is the second component of f . Fi1 is the first component of
Fi and Fi2 is the second component of Fi, i = 1, 2, 3. Let Ω̃i be the region bounded by Ũi, Pi and Qi,
where Ω̃i and Ũi depend on ε and converge to Ωi and Ui as ε approaches 0.

Step 2: System (2.4) does not have a closed trajectory in region Γ.
We can get"

Ωi

(
∂ (DFi1)
∂S

+
∂ (DFi2)
∂I

)
dS dI = lim

ε→0

"
Ω̃i

(
∂ (DFi1)
∂S

+
∂ (DFi2)
∂I

)
dS dI.

~

I

T
S

T
S

1
A

2
A

3
A

2
P 3

P

1
P

1
Q

2
Q

2
3

1

1
l

1
U

2
U 3

U

2 3

1

~

~
~

S

3

RE
~ ~

ε
T
S ε

T
I

T
I

ε

T
I ε+

+

(a)

I

T
I

T
S S

3

R
E

1

32

(b)

I

T
I

T
S S

3

R
E

1

32

(c)

I

T
I

T
S S

1

R
E

1

32

(d)

Figure 3. The schematic diagram of limit cycle.
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Since dS = F11dt and dI = F12dt along Ũ1 and dI = 0 along P1, by using Green’s theorem, for
region Ω̃1, we have"

Ω̃1

(
∂ (DF11)
∂S

+
∂ (DF12)

∂I

)
dS dI =

∮
∂Ω̃1

DF11dI − DF12dS

=

∫
Ũ1

DF11dI − DF12dS +

∫
P1

DF11dI − DF12dS

= −

∫
P1

DF12dS .

(3.5)

Similarly, we obtain"
Ω̃2

(
∂ (DF21)
∂S

+
∂ (DF22)

∂I

)
dS dI = −

∫
P2

DF22dS +

∫
Q2

DF21dI (3.6)

and "
Ω̃3

(
∂ (DF31)
∂S

+
∂ (DF32)

∂I

)
dS dI = −

∫
P3

DF32dS +

∫
Q3

DF31dI. (3.7)

From Eqs (3.5)–(3.7), we have

0 >
3∑

i=1

"
Ωi

(
∂ (DFi1)
∂S

+
∂ (DFi2)
∂I

)
dS dI

= lim
ε→0

3∑
i=1

"
Ω̃i

(
∂DFi1

∂S
+
∂DFi2

∂I

)
dS dI

= lim
ε→0

(
−

∫
P1

DF12dS −
∫

P2

DF22dS +

∫
Q2

DF21dI −
∫

P3

DF32dS +

∫
Q3

DF31dI
)
.

(3.8)

Denote the intersection points of the closed trajectory U and the line I = IT by A1 and A2 and the
intersection point of U and line S = S T if I > IT by A3. In addition, denote the intersection point of
the line I = IT and the line S = S T by ET . Note that A1S < S T < A2S and A3I > IT . Then, Eq (3.6)
becomes

0 > −
∫ A1S

A2S

(
β −

d + δ + r
S

)
dS −

∫ S T

A1S

(
β(1 − p) −

d + δ + r
S

)
dS +

∫ A3I

IT

γ(1 − S
K )

I
− β(1 − p)

 dI

−

∫ A2S

S T

(
β(1 − p) −

d + δ + r
S

)
dS +

∫ IT

A3I

γ(1 − S
K ) − q
I

− β(1 − p)
 dI

= −

∫ A2S

A1S

−pdS +

∫ IT

A3I

(
−

q
I

)
dI

=p(A2S − A1S ) + q ln
(

A3I

IT

)
>0,

(3.9)
which is a contradiction. Therefore, we know that there does not have a closed orbit U surrounding the
sliding mode `1 and the real equilibrium ER

3 .
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Step 3: System (2.4) does not have a closed trajectory in regions Γi and Γ j(i , j). With a similar
proof procedure to Step 2, it is easy to that there is no closed trajectory in Γ1 and Γ2 (see Figure 3(d)),
Γ1 and Γ3 (see Figure 3(b)) , Γ2 and Γ3 (see Figure 3(c)), respectively.

Therefore, based on Steps 1–3, we know that the point ER
3 of (2.4) is globally asymptotically stable

if S T < S ∗1 < S ∗3 = S ∗2 and IT < min{I∗1, I
∗
3}. This completes this theorem.

With a similar proof procedure to Theorem 3, we have the following.

Theorem 4. If S T < S ∗1 < S ∗2 = S ∗3 and the conditions of (B3) hold, then the point ER
1 of system (2.4)

is globally asymptotically stable.

4. Sliding dynamics and bifurcations of (2.4) under Case 2: S ∗1 < S T < S ∗2 = S ∗3

In this part, we first consider sliding mode dynamics of (2.4) on Π1 under Case 2: S ∗1 < S T < S ∗2 =

S ∗3. Second, we study the sliding mode dynamics on Π2 under Case 2: S ∗1 < S T < S ∗2 = S ∗3. In addition,
the bifurcations of (2.4) are investigated under Case 2: S ∗1 < S T < S ∗2 = S ∗3. Finally, some numerical
simulations are displayed to confirm the results.

4.1. Sliding mode dynamics of system (2.4) on Π1 under Case 2: S ∗1 < S T < S ∗2 = S ∗3
For Case 2, S ∗1 < S T < S ∗2 = S ∗3, two sliding domains on Π1 are given as

`3 = {(S , I) ∈ Π1 : S ∗1 < S < S T }, `4 = {(S , I) ∈ Π1 : S T < S < S ∗3}.

The dynamics on `3 are governed by(
S t

It

)
=

(
γS (1 − S

K ) − (d + δ + r)IT

0

)
. (4.1)

Now, we investigate the existence of a positive equilibrium on `3 of system (4.1). Let

∆2 = γ2 − 4
γ(d + δ + r)IT

K
, I∗

′

T =
γK

4(d + δ + r)
.

Proposition 9. For varied IT , we have the following results.

(1) If IT > I∗
′

T , then system (4.1) does not have an equilibrium;

(2) If 0 < IT < I∗
′

T , system (4.1) has two positive equilibria E±s3 = (S ±s3, IT ), where S ±s3 =
γ±
√

∆2
2γ K.

Next, we find the conditions of the pseudo-equilibrium on the sliding mode `3. Let

H1 =
−
γ

K

d + δ + r
S T

2 +
γ

d + δ + r
S T , S ∗

′

T =
K
2
.

Proposition 10. Under the condition S ∗
′

T < S ∗1 < S T , E−s3 < `3, and the following assertions hold.

(1) If IT > I∗1, we have E+
s3 < `3;

(2) If H1 < IT < I∗1, we have E+
s3 ∈ `3;
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(3) If IT < H1, we have E+
s3 < `3.

Proposition 11. Under the condition S ∗1 < S ∗
′

T < S T , we have the following results.

(1) If IT < min{I∗1,H1}, we have E±s3 < `3.

(2) If min{I∗1,H1} < IT < max{I∗1,H1}, we have

• E−s3 ∈ `3, E+
s3 < `3 if I∗1 < H1;

• E−s3 < `3, E+
s3 ∈ `3 if I∗1 > H1.

(3) If max{I∗1,H1} < IT < I∗
′

T , we have E±s3 ∈ `3.

Proposition 12. Under the condition S ∗1 < S T < S ∗
′

T , E+
s3 < `3, and the following assertions hold.

(1) If IT < I∗1, we have E−s3 < `3;

(2) If I∗1 < IT < H1, we have E−s3 ∈ `3;

(3) If IT > H1, we have E−s3 < `3.

Theorem 5. If 0 < IT < I∗
′

T , then a stable pseudo-equilibrium E+
s3 of (2.4) is located on the sliding

mode `3, and the unstable pseudo-equilibrium E−s3 of (2.4) is located on the sliding mode `3.

Proof. Notice that
∂

∂S

(
γS (1 −

S
K

) − (d + δ + r)IT

)∣∣∣∣∣
E±s3

= ∓
√

∆2.

Therefore, the point E+
s3 is attracting, and the point E−s3 is repelling.

The dynamics on region `4 are described by (3.1). Let

H2 =
q
βp
−

γ

K(d + δ + r)
S T

2 + (
γ

d + δ + r
−

q
p(d + δ + r)

)S T .

From Proposition 1, we have the following.

Proposition 13. Under the condition S ∗T < S T < S ∗3, E−s1 < `4, and the following assertions hold.

(1) If IT < I∗3, we have E+
s1 < `4;

(2) If I∗3 < IT < H2, we have E+
s1 ∈ `4;

(3) If IT > H2, we have E+
s1 < `4.

Proposition 14. Under the condition S T < S ∗T < S ∗3, we have the following results.

(1) If IT < min{I∗3,H2}, we have E±s1 < `4.

(2) If min{I∗3,H2} < IT < max{I∗3,H2}, we have

• E−s1 ∈ `4, E+
s1 < `4 if I∗3 > H2;

• E−s1 < `4, E+
s1 ∈ `4 if I∗3 < H2.

(3) If max{I∗3,H2} < IT < I∗T , we have E±s1 ∈ `4.
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Proposition 15. Under the condition S T < S ∗3 < S ∗T , E+
s1 < `4, and the following assertions hold.

(1) If IT < H2, we have E−s1 < `4;

(2) If H2 < IT < I∗3 , we have E−s1 ∈ `4;

(3) If IT > I∗3, we have E−s1 < `4.

Theorem 6. If 0 < IT < I∗
′

T , then a stable pseudo-equilibrium E+
s1 is located on `4, and the unstable

pseudo-equilibrium E−s1 is located on `4.

4.2. Sliding mode dynamics of (2.4) on Π2 under Case 2: S ∗1 < S T < S ∗2 = S ∗3
If S ∗1 < S T < S ∗2 = S ∗3, the sliding mode dynamics on region Π2 are the same as Section 3.2. We

omit it here.

4.3. Bifurcations of system (2.4) under Case 2: S ∗1 < S T < S ∗2 = S ∗3
For this case, we conclude that the point E2 is a virtual equilibrium. E1 and E3 are changeable

depending on IT , and we have the following five situation.

Proposition 16. Under the conditions S ∗
′

T < S ∗1 < S T and S ∗T < S T < S ∗3, the following assertions
hold.

(1) If IT < I∗3, we have E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 ∈ Γ3;

(2) If I∗3 < IT < H2, we have E+
s3 < `3, E+

s1 ∈ `4, E1 < Γ1, E3 < Γ3;

(3) If H2 < IT < H1, we have E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 < Γ3;

(4) If H1 < IT < I∗1, we have E+
s3 ∈ `3, E+

s1 < `4, E1 < Γ1, E3 < Γ3;

(5) If I∗1 < IT < I∗T , we have E+
s3 < `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3.

Proposition 17. Under the conditions S ∗1 < S ∗
′

T < S T and S ∗T < S T < S ∗3, the following assertions
hold.

(1) Assume that I∗1 > H1, and further,

• if IT < I∗3, we have E−s3 < `3, E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H2, we have E−s3 < `3, E+
s3 < `3, E+

s1 ∈ `4, E1 < Γ1, E3 < Γ3;

• if H2 < IT < H1, we have E−s3 < `3, E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 < Γ3;

• if H1 < IT < I∗1, we have E−s3 < `3, E+
s3 ∈ `3, E+

s1 < `4, E1 < Γ1, E3 < Γ3;

• if I∗1 < IT < I∗
′

T , we have E−s3 ∈ `3, E+
s3 ∈ `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(2) Assume that H2 < I∗1 < H1, and further,

• if IT < I∗3, we have E−s3 < `3, E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H2, we have E−s3 < `3, E+
s3 < `3, E+

s1 ∈ `4, E1 < Γ1, E3 < Γ3;

• if H2 < IT < I∗1, we have E−s3 < `3, E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 < Γ3;
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• if I∗1 < IT < H1, we have E−s3 ∈ `3, E+
s3 < `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3;

• if H1 < IT < I∗
′

T , we have E−s3 ∈ `3, E+
s3 ∈ `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(3) Assume that I∗3 < I∗1 < H2, and

• if IT < I∗3, then E−s3 < `3, E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗1, we have E−s3 < `3, E+
s3 < `3, E+

s1 ∈ `4, E1 < Γ1, E3 < Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E+
s3 < `3, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if H2 < IT < H1, we have E−s3 ∈ `3, E+
s3 < `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3;

• if H1 < IT < I∗
′

T , we have E−s3 ∈ `3, E+
s3 ∈ `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(4) Assume that I∗1 < I∗3, and further,

• if IT < I∗1, we have E−s3 < `3, E+
s3 < `3, E+

s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < I∗3, we have E−s3 ∈ `3, E+
s3 < `3, E+

s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H2, we have E−s3 ∈ `3, E+
s3 < `3, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if H2 < IT < H1, we have E−s3 ∈ `3, E+
s3 < `3, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if H1 < IT < I∗
′

T , we have E−s3 ∈ `3 E+
s3 ∈ `3, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3.

Proposition 18. Under the conditions S ∗1 < S T < S ∗
′

T and S ∗T < S T < S ∗3, we have the following
results.

(1) Assume that I∗1 > H2, and further,

• if IT < I∗3, we have E−s3 < `3, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H2, we have E−s3 < `3, E+
s1 ∈ `4, E1 < Γ1, E3 < Γ3;

• if H2 < IT < I∗1, we have E−s3 < `3, E+
s1 < `4, E1 < Γ1, E3 < Γ3;

• if I∗1 < IT < H1, we have E−s3 ∈ `3, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3;

• if H1 < IT < I∗
′

T , we have E−s3 < `3, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(2) Assume that I∗3 < I∗1 < H2, and further,

• if IT < I∗3, we have E−s3 < `3, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗1, we have E−s3 < `3, E+
s1 ∈ `4, E1 < Γ1, E3 < Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E+
s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if H2 < IT < H1, we have E−s3 ∈ `3, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3;

• if H1 < IT < I∗
′

T , we have E−s3 < `3, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(3) Assume that I∗1 < I∗3, and further,

• if IT < I∗1, we have E−s3 < `3, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < I∗3, we have E−s3 ∈ `3, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H2, we have E−s3 ∈ `3, E+
s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if H2 < IT < H1, we have E−s3 ∈ `3, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3;
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• if H1 < IT < I∗
′

T , we have E−s3 < `3, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3.

Proposition 19. Under the conditions S ∗1 < S T < S ∗
′

T and S T < S ∗T < S ∗3, we have the following
results.

(1) Assume that I∗3 > H1, I∗1 < H2 < H1 < I∗3, and

• if IT < I∗1, we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E−s1 < `4, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if H2 < IT < H1, we have E−s3 ∈ `3, E−s1 ∈ `4, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if H1 < IT < I∗3, we have E−s3 < `3, E−s1 ∈ `4, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗T , we have E−s3 < `3, E−s1 ∈ `4, E+
s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3.

(2) Assume that H2 < I∗3 < H1, I∗1 < H2 < I∗3 < H1, and further,

• if IT < I∗1, we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E−s1 < `4, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if H2 < IT < I∗3, we have E−s3 ∈ `3, E−s1 ∈ `4, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if IT > I∗3, then

♦ if I∗T > H1, and further,
� if I∗3 < IT < H1, we have E−s3 ∈ `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;
� if H1 < IT < I∗T , we have E−s3 < `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3.
♦ if I∗T < H1, and
� if I∗3 < IT < I∗T , we have E−s3 ∈ `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;
� if I∗T < IT < H1, we have E−s3 ∈ `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3;
� if H1 < IT < I∗

′

T , we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(3) Assume that I∗1 < I∗3 < H2, I∗1 < I∗3 < H2 < H1, and

• if IT < I∗1, we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < I∗3, we have E−s3 ∈ `3, E−s1 < `4, E+
s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H2, we have E−s3 ∈ `3, E−s1 < `4, E+
s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if IT > H2,

♦ if I∗T > H1, and further,
� if H2 < IT < H1, we have E−s3 ∈ `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;
� if H1 < IT < I∗T , we have E−s3 < `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3.
♦ if I∗T < H1, and further,
� if H2 < IT < I∗T , we have E−s3 ∈ `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;
� if I∗T < IT < H1, we have E−s3 ∈ `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3;
� if H1 < IT < I∗

′

T , we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(4) Assume that I∗3 < I∗1, further, I∗3 < I∗1 < H2 < H1, and
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• if IT < I∗3, we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗1, we have E−s3 < `3, E−s1 < `4, E+
s1 ∈ `4, E1 < Γ1, E3 < Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E−s1 < `4, E+
s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;

• if IT > H2, and further,

♦ if I∗T > H1, and
� if H2 < IT < H1, we have E−s3 ∈ `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;
� if H1 < IT < I∗T , we have E−s3 < `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3.
♦ if I∗T < H1, and further
� if H2 < IT < I∗T , we have E−s3 ∈ `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3;
� if I∗T < IT < H1, we have E−s3 ∈ `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3;
� if H1 < IT < I∗

′

T , we have E−s3 < `3, E−s1 < `4, E+
s1 < `4, E1 ∈ Γ1, E3 < Γ3.

Proposition 20. Suppose S ∗1 < S T < S ∗
′

T and S T < S ∗3 < S ∗T , E+
s3 < `3 and E+

s1 < `4 ⊂ Π1, we have the
following results.

(1) Assume that I∗3 > H1, and further,

• if IT < I∗1, we have E−s3 < `3, E−s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E−s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if H2 < IT < H1, we have E−s3 ∈ `3, E−s1 ∈ `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if H1 < IT < I∗3, we have E−s3 < `3, E−s1 ∈ `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < I∗
′

T , we have E−s3 < `3 E−s1 < `4, E1 ∈ Γ1, E3 < Γ3.

(2) Assume that I∗3 < H1, and further,

• if IT < I∗1, we have E−s3 < `3, E−s1 < `4, E1 < Γ1, E3 ∈ Γ3;

• if I∗1 < IT < H2, we have E−s3 ∈ `3, E−s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if H2 < IT < I∗3, we have E−s3 ∈ `3, E−s1 ∈ `4, E1 ∈ Γ1, E3 ∈ Γ3;

• if I∗3 < IT < H1, we have E−s3 ∈ `3, E−s1 < `4, E1 ∈ Γ1, E3 < Γ3;

• if H1 < IT < I∗
′

T , we have E−s3 < `3, E−s1 < `4, E1 ∈ Γ1, E3 < Γ3.

Based on Propositions 16–20, the following summary is given.

C1. Let E−s3 < `3, E+
s3 < `3, E−s1 < `4, E+

s1 < `4, E1 < Γ1, E3 ∈ Γ3, and the value Υ = (S T , IT ) belongs
to the set C1−1. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and
all trajectories of the system (2.4) will converge to the equilibrium point ER

3 . The result of this
numerical simulation is shown in Figure 4(a), where

C1−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3, IT < min{I∗1, I
∗
3}
}
.

C2. Let E−s3 < `3, E+
s3 < `3, E−s1 < `4, E+

s1 ∈ `4, E1 < Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to
the set C2−1. Then, we know that E+

s1 ∈ `4 ⊂ Π1 is a stable pseudo-equilibrium, and all solutions
of the system (2.4) will approach the point E+

s1, as shown in Figure 4(b), where

C2−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3, I
∗
3 < IT < min{H2, I∗1}

}
.
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C3. Let E−s3 < `3, E+
s3 < `3, E−s1 < `4, E+

s1 < `4, E1 < Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs
to the set C3−1. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and
all trajectories of the system (2.4) will converge to the point ET = (S T , IT ). The result of this
numerical simulation is shown in Figure 4(c), where

C3−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H2 < IT < min{H1, I∗1}
}
.

C4. Let E−s3 < `3, E+
s3 ∈ `3, E−s1 < `4, E+

s1 < `4 ⊂ Π1, E1 < Γ1, E3 < Γ3, and the value Υ = (S T , IT )
belongs to the set C4−1. Then, we know that the point E+

s3 ∈ `3 is a stable pseudo-equilibrium, and
all solutions of the system (2.4) will approach the point E+

s3, as shown in Figure 4(d), where

C4−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H1 < IT < I∗1
}
.

C5. Let E−s3 < `3, E+
s3 < `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to
the set C5−1 ∪ C5−2 ∪ C5−3 ∪ C5−4. Then, we know that the system (2.4) does not have a pseudo-
equilibrium, and all trajectories of the system (2.4) will converge to the point ER

1 . The result of
this numerical simulation is shown in Figure 4(e), where

C5−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3, I
∗
1 < IT < I∗T , if S ∗

′

T < S ∗1 < S T and S ∗T < S T < S ∗3
}
,

C5−2 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H1 < IT < I∗
′

T , if S ∗1 < S T < S ∗
′

T and S ∗T < S T < S ∗3
}
,

C5−3 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H1 < IT < I∗
′

T , if S ∗1 < S T < S ∗
′

T and S T < S ∗T < S ∗3, I
∗
3 < H1

}
,

C5−4 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,max{H1, I∗3} < IT < I∗
′

T , if S ∗1 < S T < S ∗
′

T and S T < S ∗3 < S ∗T
}
.

C6. Let E−s3 ∈ `3, E+
s3 < `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3, and the value Υ = (S T , IT ) belongs to
the set C6−1. Then, we conclude that E−s3 ∈ `3 is an unstable pseudo-equilibrium, and the solution
of the system (2.4) will approach the point ER

1 or ER
3 or ET . The result of this numerical simulation

is shown in Figure 4(f), where

C6−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3, I
∗
1 < IT < min{H2, I∗3}

}
.

C7. Let E−s3 ∈ `3, E+
s3 < `3, E−s1 < `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to
the set C7−1. Then, we know that E−s3 ∈ `3 is an unstable pseudo-equilibrium, where E+

s1 ∈ `4 is
stable. The solution of the system (2.4) will tend to E+

s1 or ER
1 or ET . The result of this numerical

simulation is shown in Figure 5(a), where

C7−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,max{I∗1, I
∗
3} < IT < H2

}
.

C8. Let E−s3 ∈ `3, E+
s3 < `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs
to the set C8−1 ∪ C8−2 ∪ C8−3 ∪ C8−4. Then, we conclude that E−s3 ∈ `3 is an unstable pseudo-
equilibrium. The solution of the system (2.4) will approach the equilibrium point ER

1 or ET , as
shown in Figure 5(b), where

C8−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,max{I∗1,H2} < IT < H1, if S ∗1 < S ∗
′

T < S T and S ∗T < S T < S ∗3
}
,

C8−2 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,max{I∗1,H2} < IT < H1, if S ∗1 < S T < S ∗
′

T and S ∗T < S T < S ∗3
}
,

C8−3 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3, I
∗
T < IT < H1, if S ∗1 < S T < S ∗

′

T and S T < S ∗T < S ∗3
}
,

C8−4 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3, I
∗
3 < IT < H1, if S ∗1 < S T < S ∗

′

T and S T < S ∗3 < S ∗T
}
.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6800–6837.



6821

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

S

0

1

2

3

4

5

6

7
I

I=I
T

S=S
T

E
1
V E

2
V

E
3
R

L
11

L
12

L
21

L
22

=L
32

L
31

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

S

0

1

2

3

4

5

6

7

I

I=I
T

S=S
T

E
1
V E

2
V

E
3
V

E
s1
+

L
11

L
12

L
21

L
22

=L
32

L
31

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

S

0

1

2

3

4

5

6

7

I

I=I
T

S=S
T

E
1
V E

2
V

E
3
V

E
T

L
11

L
12

L
21

L
22

=L
32

L
31

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

S

0

1

2

3

4

5

6

7

I

I=I
T

S=S
T

E
1
V E

2
V

E
3
V

E
s3
+

L
11

L
12

L
21

L
22

=L
32

L
31

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

S

0

1

2

3

4

5

6

7

I

I=I
T

S=S
T

E
1
R E

2
V

E
3
V

L
11

L
12

L
21

L
22

=L
32

L
31

(e)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

S

0

1

2

3

4

5

6

7

I

I=I
T

S=S
T

E
1
R

E
2
V

E
3
R

E
T

L
11

L
12

L
21

L
22

=L
32

L
31

(f)

Figure 4. The trajectory of system (2.4) under Case 2: S ∗1 < S T < S ∗2 = S ∗3, d = 0.1, δ =

0.1, r = 0.1, γ = 0.2,K = 1, (a) where β = 0.7, p = 0.2, q = 0.2, S T = 3, IT = 1; (b) where
β = 0.7, p = 0.2, q = 0.2, S T = 3, IT = 2.8; (c) where β = 0.7, p = 0.2, q = 0.2, S T = 3, IT =

3.1; (d) where β = 0.7, p = 0.2, q = 0.2, S T = 3, IT = 3.21; (e) where β = 0.7, p = 0.2, q =

0.2, S T = 3, IT = 3.4; (f) where β = 1.8, p = 0.6, q = 0.4, S T = 2.3, IT = 2.5.
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Figure 5. The trajectory of system (2.4) under Case 2: S ∗1 < S T < S ∗2 = S ∗3, d = 0.1, δ =

0.1, r = 0.1, γ = 0.2,K = 3, (a) where β = 1.8, p = 0.6, q = 0.4, S T = 2.3, IT = 2.8; (b)
where β = 1.8, p = 0.6, q = 0.4, S T = 2.3, IT = 3; (c) where β = 1.2, p = 0.5, q = 0.4, S T =

3, IT = 3.2; (d) where β = 1.5, p = 0.5, q = 0.4, S T = 1.46, IT = 2.67; (e) where β = 1.5, p =

0.5, q = 0.4, S T = 1.31, IT = 2.64; (f) where β = 1.5, p = 0.5, q = 0.4, S T = 1.7, IT = 2.8.
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Figure 6. Dynamics of system (2.4) under Case 2: S ∗1 < S T < S ∗2 = S ∗3. Here, the parameter
values are β = 1.5, d = 0.01, δ = 0.01, r = 0.01, γ = 0.2,K = 3, p = 0.5, q = 0.4, S T =

1.48, IT = 2.8 and d + δ + r = 0.03.

C9. Let E−s3 ∈ `3, E+
s3 ∈ `3, E−s1 < `4, E+

s1 < `4, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs to
C9−1. Then, we conclude that E−s3 ∈ `3 is a unstable pseudo-equilibrium, where E+

s3 ∈ `3 is stable.
The solution of the system (2.4) will tend to the equilibrium point E+

s3 or ER
1 or ET . The results of

this numerical simulation are shown in Figure 5(c), where

C9−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H1 < IT < I∗
′

T , if S ∗1 < S ∗
′

T < S T and S ∗T < S T < S ∗3
}
.

C10. Let E−s3 ∈ `3, E+
s3 < `3, E−s1 ∈ `4, E+

s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3, and the value Υ = (S T , IT ) belongs
to the set C10−1 ∪ C10−2. Then, we conclude that E−s3 ∈ `3 is an unstable pseudo-equilibrium. The
solution of the system (2.4) will converge to ER

1 or ER
3 or ET , as shown in Figure 5(d), where

C10−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H2 < IT < min{H1, I∗3}, if S ∗1 < S T < S ∗
′

T and S T < S ∗T < S ∗3
}
,

C10−2 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H2 < IT < min{H1, I∗3}, if S ∗1 < S T < S ∗
′

T and S T < S ∗3 < S ∗T
}
.

C11. Let E−s3 < `3, E+
s3 < `3, E−s1 ∈ `4, E+

s1 < `4, E1 ∈ Γ1, E3 ∈ Γ3, and the value Υ = (S T , IT ) belongs
to the set C11−1 ∪ C11−2. Then, we show that E−s1 ∈ `4 is an unstable pseudo-equilibrium. The
solution of the system (2.4) will tend to ER

1 or ER
3 or ET , as shown in Figure 5(e), where

C11−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H1 < IT < I∗3, if S ∗1 < S T < S ∗
′

T and S T < S ∗T < S ∗3
}
,

C11−2 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,H1 < IT < I∗3, if S ∗1 < S T < S ∗
′

T and S T < S ∗3 < S ∗T
}
.

C12. Let E−s3 ∈ `3, E+
s3 < `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3, if S ∗1 < S T < S ∗
′

T and S T < S ∗T < S ∗3,
and the value Υ = (S T , IT ) belongs to the set C12−1. Then, we know that the point E−s3 ∈ `3 and
the value E−s1 ∈ `4 are unstable pseudo-equilibriums, where E+

s1 ∈ `4 is stable. The solution of the
system (2.4) will approach E+

s1 or ER
1 or ET . The result of this numerical simulation is shown in

Figure 5(f), where

C12−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,max{I∗3,H2} < IT < min{H1, I∗T }
}
.
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C13. Let E−s3 < `3, E+
s3 < `3, E−s1 ∈ `4, E+

s1 ∈ `4, E1 ∈ Γ1, E3 < Γ3, and the value Υ = (S T , IT ) belongs
to the set C13−1. Then, we conclude that E−s1 ∈ `4 is an unstable pseudo-equilibrium, where
E+

s1 ∈ `4 ⊂ Π1 is stable. The solution of the system (2.4) will converge to E+
s1 or ER

1 or ET , as
shown in Figure 6, where

C13−1 =
{
Υ ∈ R2

+ : S ∗1 < S T < S ∗3,max{I∗3,H1} < IT < I∗T , if S ∗1 < S T < S ∗
′

T and S T < S ∗T < S ∗3
}
.

5. Sliding dynamics and bifurcations of (2.4) under Case 3: S ∗2 = S ∗3 < S T

In this part, we first consider sliding mode dynamics of (2.4) on Π1 under Case 3: S ∗2 = S ∗3 < S T .
Second, the sliding mode dynamics on Π2 are given under Case 3: S ∗2 = S ∗3 < S T . In addition, we
investigate the bifurcations of (2.4) under Case 3: S ∗2 = S ∗3 < S T . Finally, some numerical simulations
are displayed to confirm the results.

5.1. Sliding mode dynamics on Π1 under Case 3: S ∗2 = S ∗3 < S T

If 〈n1, F1〉 > 0 and 〈n1, F2〉 < 0 on `5, then `5 is described as

`5 = {(S , I) ∈ Π1 : S ∗1 < S < S ∗2}.

Next, the conditions of a pseudo-equilibrium on the sliding mode `5 are given as follows.

Proposition 21. Under the condition S ∗
′

T > S ∗2, E+
s3 < `5 and the following assertions hold.

(1) If IT < I∗1, we have E−s3 < `5;

(2) If I∗1 < IT < I∗2, we have E−s3 ∈ `5;

(3) If IT > I∗2, we have E−s3 < `5.

Proposition 22. Under the condition S ∗1 < S ∗
′

T < S ∗2, the following assertions hold.

(1) Assume that I∗1 < I∗2, and further,

• if I∗1 < IT < I∗2, we have E−s3 ∈ `5, E+
s3 < `5;

• if I∗2 < IT < I∗
′

T , we have E−s3 ∈ `5, E+
s3 ∈ `5.

(2) Assume that I∗1 > I∗2, and further,

• if I∗2 < IT < I∗1, we have E−s3 < `5, E+
s3 ∈ `5;

• if I∗1 < IT < I∗
′

T , we have E−s3 ∈ `5, E+
s3 ∈ `5.

Proposition 23. Under the condition S ∗
′

T < S ∗1, E−s3 < `5 and the following assertions hold.

(1) If IT < I∗2, we have E+
s3 < `5;

(2) If I∗2 < IT < I∗1, we have E+
s3 ∈ `5;

(3) If IT > I∗1, we have E+
s3 < `5.

Theorem 7. If 0 < IT < I∗
′

T , the sliding mode `5 has a stable pseudo-equilibrium E+
s3, and the sliding

mode `5 E−s3 has an unstable pseudo-equilibrium.
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5.2. Sliding mode dynamics on Π2 under Case 3: S ∗2 = S ∗3 < S T

When S ∗2 = S ∗3 < S T , the sliding mode dynamics on Π2 are the same as Section 3.2. We omit it
here.

5.3. Bifurcations of system (2.4) under Case 3: S ∗2 = S ∗3 < S T

For this Case 3, the point E3 is a virtual equilibrium, denoted by EV
3 . Points E1 and E2 are change-

able depending on IT , and then we have the following.

Proposition 24. Under the condition S ∗
′

T > S ∗2, the following assertions hold.

(1) If IT < I∗1, we have E−s3 < `5, E+
s3 < `5, E1 < Γ1, E2 ∈ Γ2;

(2) If I∗1 < IT < I∗2, we have E−s3 ∈ `5, E+
s3 < `1, E1 ∈ Γ1, E2 ∈ Γ2;

(3) If I∗2 < IT < I∗
′

T , we have E−s3 < `5, E+
s3 < `5, E1 ∈ Γ1, E2 < Γ2;

(4) If IT > I∗
′

T , we have that E−s3 and E+
s3 do not exist, E1 ∈ Γ1, E2 < Γ2.

Proposition 25. Under the condition S ∗1 < S ∗
′

T < S ∗2, the following assertions hold.

(1) Assume that I∗1 < I∗2, and further,

• if IT < I∗1, we have E−s3 < `5, E+
s3 < `5, E1 < Γ1, E2 ∈ Γ2;

• if I∗1 < IT < I∗2 , we have E−s3 ∈ `5, E+
s3 < `5, E1 ∈ Γ1, E2 ∈ Γ2;

• if I∗2 < IT < I∗
′

T , we have E−s3 ∈ `1, E+
s3 ∈ `5, E1 ∈ Γ1, E2 < Γ2;

• if IT > I∗
′

T , we have that E−s1 and E+
s1 do not exist, E1 ∈ Γ1, E2 < Γ2.

(2) Assume that I∗1 > I∗2, and further,

• if IT < I∗2, we have E−s3 < `5, E+
s3 < `5, E1 < Γ1, E2 ∈ Γ2;

• if I∗2 < IT < I∗1 , we have E−s3 < `5, E+
s3 ∈ `5, E1 < Γ1, E2 < Γ2;

• if I∗1 < IT < I∗
′

T , we have E−s3 ∈ `5, E+
s3 ∈ `5 E1 ∈ Γ1, E2 < Γ2;

• if IT > I∗
′

T , we have that E−s3 and E+
s3 do not exist, E1 ∈ Γ1, E2 < Γ2.
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Figure 7. The trajectory of the system (2.4) under Case 3: S ∗2 = S ∗3 < S T , d = 0.01, δ =

0.01, r = 0.01, γ = 0.2,K = 3, (a) where β = 0.7, p = 0.2, q = 0.2, S T = 3.8, IT = 1; (b)
where β = 1.5, p = 0.5, q = 0.2, S T = 3.8, IT = 2.8; (c) where β = 0.7, p = 0.2, q =

0.2, S T = 3.8, IT = 3.5; (d) where β = 1.2, p = 0.5, q = 0.2, S T = 3.8, IT = 3.15; (e) where
β = 0.7, p = 0.2, q = 0.2, S T = 3.8, IT = 3.
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Proposition 26. Under the condition S ∗
′

T < S ∗1, the following assertions hold.

(1) If IT < I∗2, we have E−s3 < `5, E+
s3 < `5, E1 < Γ1, E2 ∈ Γ2;

(2) If I∗2 < IT < I∗1, we have E−s3 < `5, E+
s3 ∈ `5, E1 < Γ1, E2 < Γ2;

(3) If I∗1 < IT < I∗
′

T , we have E−s3 < `5, E+
s3 < `5, E1 ∈ Γ1, E2 < Γ2;

(4) If IT > I∗
′

T ,we have that E−s3 and E+
s3 do not exist, E1 ∈ Γ1, E2 < Γ2.

Based on Propositions 24–26, the following summary is given.

D1. Let E−s3 < `5, E+
s3 < `5, E1 < Γ1, E2 ∈ Γ2, and the value Υ = (S T , IT ) belongs to the set D1−1. Then,

we conclude that the system (2.4) does not have a pseudo-equilibrium, and all trajectories of the
system (2.4) will converge to ER

2 . The result of this numerical simulation is shown in Figure 7(a),
where

D1−1 =
{
Υ ∈ R2

+ : S ∗2 < S T , IT < min{I∗1, I
∗
2}
}
.

D2. Let E−s3 ∈ `5, E+
s3 < `5, E1 ∈ Γ1, E2 ∈ Γ2, and the value Υ = (S T , IT ) belongs to the set D2−1. Then,

we show that E−s3 ∈ `5 is an unstable pseudo-equilibrium. The solution of the system (2.4) will
approach ER

1 or ER
2 , as shown in Figure 7(b), where

D2−1 =
{
Υ ∈ R2

+ : S ∗2 < S T , I∗1 < IT < I∗2
}
.

D3. Let E−s3 < `5, E+
s3 < `5, E1 ∈ Γ1, E2 < Γ2, and the value Υ = (S T , IT ) belongs to the set D3−1 ∪

D3−2 ∪ D3−3. Then, we know that the system (2.4) does not have a pseudo-equilibrium, and all
trajectories of the system (2.4) will converge to ER

1 , as shown in Figure 7(c), where

D3−1 =
{
Υ ∈ R2

+ : S ∗2 < S T , I∗2 < IT < I∗
′

T , if S ∗
′

T > S ∗2
}
,

D3−2 =
{
Υ ∈ R2

+ : S ∗2 < S T , IT > I∗
′

T if S ∗1 < S ∗
′

T < S ∗2
}
,

D3−3 =
{
Υ ∈ R2

+ : S ∗2 < S T , I∗1 < IT < I∗
′

T , if S ∗
′

T < S ∗1
}
.

D4. Let E−s3 ∈ `5, E+
s3 ∈ `5, E1 ∈ Γ1, E2 < Γ2, and the value Υ = (S T , IT ) belongs to the set D4−1. Then,

we show that E−s3 ∈ `5 is an unstable pseudo-equilibrium, and the solution of system (2.4) will
approach ER

1 or E+
s3, as shown in Figure 7(d), where

D4−1 =
{
Υ ∈ R2

+ : S ∗2 < S T ,max{I∗1, I
∗
2} < IT < I∗

′

T , if S ∗1 < S ∗
′

T < S ∗2
}
.

D5. Let E−s3 < `5, E+
s3 ∈ `5, E1 < Γ1, E2 < Γ2 , and the value Υ = (S T , IT ) belongs to the set D5−1. Then,

we conclude that E+
s3 ∈ `5 is a stable pseudo-equilibrium. All solutions of the system (2.4) will

tend to E+
s3. The result of this numerical simulation is shown in Figure 7(e), where

D5−1 =
{
Υ ∈ R2

+ : S ∗2 < S T , I∗2 < IT < I∗1
}
.

Remark 1. For smooth system (2.1), we have discussed the three equilibrium points, that is, (0, 0),
the disease free equilibrium point Ei1(i = 1, 2, 3) and the endemic equilibrium point Ei(i = 1, 2, 3) of
(2.4). By constructing a Lyapunov function, we obtain the global stability of system (2.1) in Theorem 1.
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For the non-smooth system (2.4), we investigate the non-smooth system (2.4) with two threshold control
strategies. Using a Filippov analysis method, Green’s formula, the comparison theorem and numerical
simulation method, the rich dynamics of the system are given, such as the bistability phenomenon, the
globally stable pseudo-equilibrium and the regular/virtulal equilibrium bifurcations. Through the two
control strategies, we can control the disease individuals to the appropriate balance. In particular,
Theorems 3, 6 and 7 in this paper cannot appear in the smooth system (2.1); please see Figure 4(b),(c).
There is bistability in the system (2.4).

Remark 2. In [25], a Filippov model describing the effects of media coverage and quarantine on the
spread of human influenza was considered, and the threshold conditions for stability switches were
obtained analytically. The discontinuous system (2.4) considered in our paper is a logistic source,
and [25] considered a linear source. Second, the dynamics are different. Our paper employs the
Green’s theorem and a Dulac function. Then, we show that two real equilibria occur simultaneously
in our paper. Using numerical simulation methods, the sliding dynamics and bifurcations of a human
influenza system under logistic source and broken line control strategy are given. The results of this
paper are new with respect to [25].

6. The regular/virtulal equilibrium bifurcations

Based on the previous discussion, it is shown that system (2.4) will exhibit multiple equilibriums and
sliding modes. In order to better construct the bifurcation diagram, we choose γ and IT as bifurcation
parameters, and the other parameters are fixed as shown in Figure 8. With the expressions of equilibria
found in Section 2.3, the lines to divide the relevant parameter plane are given as follows:

l1 :=
{

(γ, IT )|IT = I∗1 =
γ

β
(1 −

d + δ + r
Kβ

)
}
,

l2 :=
{

(γ, IT )|IT = I∗2 =
γ

β(1 − p)
(1 −

d + δ + r
Kβ(1 − p)

)
}
,

l3 :=
{

(γ, IT )|IT = I∗3 =
γ

β(1 − p)
(1 −

d + δ + r
Kβ(1 − p)

−
q
r

)
}
.

The three solid lines l1, l2 and l3 divide the γ − IT two-dimensional plane space into four regions in
the first quadrant. Suppose that the control value IT satisfies I∗3 < IT < I∗2 and I∗1 < I∗3 (that is, regions
Ω∗2 and region Ω∗3; see Figure 8), the points E2 and E3 are virtual equilibria points (denoted by Ev

2, and
Ev

3, respectively), and E−s1 exists with the sliding mode domain. If the control value IT satisfies IT > I∗2
(that is, Ω∗1, as shown Figure 8), E2 is a regular equilibrium, while the point E3 is a virtual equilibrium
(denoted by the equilibrium ER

2 and the equilibrium Ev
3, respectively), and point E−s1 does not exist with

the sliding mode domain. If IT < I∗3 (that is, Ω∗4; see Figure 8), E3 is a regular equilibrium, while point
E2 is a virtual equilibrium (denoted by ER

3 and Ev
2), and point E−s1 does not exist with the sliding mode

domain.
Next, we choose q and IT as bifurcation parameters, and the other parameters are fixed. From

Proposition 1 in this paper, the lines to divide the relevant parameter plane are given as follows:

l4 :=

(q, IT )|IT = I∗T =
q
βp

+
(γ − q

p )2K

4γ(d + δ + r)

 ,
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l5 :=
{

(q, IT )|IT =
q
βp

}
.

The two solid lines l4 and l5 divide the q − IT two-dimensional plane space into three regions in the
first quadrant R+. Suppose that the control value IT satisfies IT > I∗T (that is, region Ω7; see Figure 9(a)),
then system (3.1) has no equilibrium. If the control value IT satisfies I∗T > IT >

q
βp (that is, region Ω6,

as shown in Figure 9(a)), system (3.1) has two positive equilibria E+
s1 = (S +

s1, IT ) and E−s1 = (S −s1, IT ),

where S ±s1 =
(γ− q

p )±
√

∆1

2γ K. When the control value IT satisfies 0 < IT <
q
βp (that is, region Ω5; see Figure

9(a)), system (3.1) has a unique positive equilibrium Es2 = (S s2, IT ), where S s2 =
(γ− q

p )+
√

∆1

2γ K.

Figure 8. The regular/virtulal equilibrium bifurcations where β = 0.7, p = 0.2, q = 0.2, d =

0.01, δ = 0.01, r = 0.01,K = 3.

We choose γ and IT as bifurcation parameters, and the other parameters are fixed. With Proposition
9 in this paper, the line to divide the relevant parameter plane is given as

l6 :=
{

(γ, IT )|IT = I∗
′

T =
γK

4(d + δ + r)

}
.

The solid line l6 divides the γ− IT two-dimensional plane space into two regions in the first quadrant
R+. Suppose that the control value IT satisfies IT > I∗

′

T (that is, region Ω8, as shown in Figure 9(b)),
and then system (4.1) does not have an equilibrium. If the control value IT satisfies 0 < IT < I∗

′

T (that
is, region Ω9, as shown in Figure 9(b)), system (4.1) has two positive equilibria E+

s3 = (S +
s3, IT ) and

E−s3 = (S −s3, IT ), where S ±s3 =
γ±
√

∆2
2γ K.
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(a) (b)

Figure 9. The pseudo-equilibrium bifurcations, (a) where β = 0.7, p = 0.2, d = 0.01, δ =

0.01, r = 0.01, γ = 0.2,K = 3; (b) where β = 0.7, p = 0.2, d = 0.01, δ = 0.01, r = 0.01, q =

0.2,K = 3.

Remark 3. Notice that [30] considered the global dynamics of a Filippov predator-prey model with
two thresholds for integrated pest management. By using Filippov theory, the sliding mode dynamics
and global dynamics were established. Different from [30], our paper shows the dynamic behavior of
the Filippov model with respect to all possible equilibria. It is shown that the Filippov system tends to
the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or two endemic equilibria
under some conditions. Second, although both this paper and [30] discuss the global dynamics of a
Filippov model with two thresholds, this paper first gives different control strategies. In particular, the
two real equilibria occur simultaneously using methods such as Green’s theorem and a Dulac function.

7. Discussion

In this paper, we have established a non-smooth system to determine whether it is necessary to
adopt the control strategy of media coverage and quarantine of susceptible individuals according to
the number of infected and susceptible individuals. Media coverage changes the transmission mode
of influenza. Further, in order to reduce the spread of influenza, when the number of cases exceeds
the larger infection threshold IT , and the number of susceptible individuals is greater than S T , we will
quarantine the susceptible individuals. It is worth noting that there are two difficulties in this paper.
First, the traditional continuity theory cannot be applied due to the non-smooth system with the broken
line control strategy. For example, when proving the global stability of discontinuous systems, the
traditional Lyapunov function cannot be similarly constructed. Second, Green’s formula of continu-
ous systems cannot be used to prove the existence of global stability of the pseudo equilibriums in
discontinuous systems. In this paper, by choosing different thresholds IT and S T and using Filippov
theory, we study the dynamic behavior of the Filippov model with respect to all possible equilibria.
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The regular/virtulal equilibrium bifurcations are given. It is shown that the Filippov system tends to
the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or two endemic equilibria
under some conditions.

Table 1. Dynamics of Filippov model (2.4).

Condition 1 Condition 2 Result

S T < S ∗1 (S T , IT ) ∈ B1−1 Figure 2(a)
S ∗1 < S T < S ∗2 (S T , IT ) ∈ C1−1 Figure 4(a)
S ∗2 < S T (S T , IT ) ∈ D1−1 Figure 7(a)

Table 2. Dynamics of Filippov model (2.4).

Condition 1 Condition 2 Result

S T < S ∗1 (S T , IT ) ∈ B2−1 Figure 2(b)
(S T , IT ) ∈ B3−1 ∪ B3−2 ∪ B3−3 Figure 2(c)

S ∗1 < S T < S ∗2 (S T , IT ) ∈ C2−1 Figure 4(b)
(S T , IT ) ∈ C3−1 Figure 4(c)
(S T , IT ) ∈ C4−1 Figure 4(d)
(S T , IT ) ∈ C5−1 ∪C5−2 ∪C5−3 ∪C5−4 Figure 4(e)

S ∗2 < S T (S T , IT ) ∈ D3−1 ∪ D3−2D3−3 Figure 7(c)
(S T , IT ) ∈ D5−1 Figure 7(e)

Table 3. Dynamics of Filippov model (2.4).

Condition 1 Condition 2 Result

S T < S ∗1 (S T , IT ) ∈ B4−1 Figure 2(d)
(S T , IT ) ∈ B5−1 Figure 2(e)

S ∗1 < S T < S ∗2 (S T , IT ) ∈ C6−1 Figure 4(f)
(S T , IT ) ∈ C7−1 Figure 5(a)
(S T , IT ) ∈ C8−1 ∪C8−2 ∪C8−3 ∪C8−4 Figure 5(b)
(S T , IT ) ∈ C9−1 Figure 5(c)
(S T , IT ) ∈ C10−1 ∪C10−2 Figure 5(e)
(S T , IT ) ∈ C11−1 ∪C11−2 Figure 5(e)
(S T , IT ) ∈ C12−1 Figure 5(f)
(S T , IT ) ∈ C13−1 Figure 6

S ∗2 < S T (S T , IT ) ∈ D2−1 Figure 7(b)
(S T , IT ) ∈ D4−1 Figure 7(d)
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Next, we summarize the corresponding biological results of Tables 1–3. These results show that the
choice of values of IT and S T is very important, and it determines whether to adopt control strategies.

• In Table 1, we know that the infection threshold value IT is chosen to be small enough, i.e., I � IT ,
and then the number of infected individuals will reach the equilibrium ER

1 of system (2.4).

• From Table 2, system (2.4) has a unique globally asymptotically stable pseudo-equilibrium E+
s1

or E+
s3 if I = IT or admits a unique globally asymptotically stable equilibrium when I < IT . Our

control goal can be achieved finally, and there is no need to adjust the threshold strategy.

• In Table 3, the solution of system (2.4) will converge to a locally asymptotically stable equilibrium
if I < IT or tends to a locally asymptotically stable equilibrium ER

3 when I > IT or pseudo-
equilibrium E+

s1, E
+
s3 if I = IT . We show that it may be necessary to adjust the threshold policy

according to the initial number of susceptible individuals and infected individuals. The results
obtained have certain guiding significance for choosing thresholds and designing a corresponding
threshold strategy.

Next, we consider the effect of key parameters in the subsystem on the basic regeneration number
R0i as follows.

The three-dimensional diagram of the parameter space (δ, d,R01) is shown in Figure 10(a) under
the parameter values of K = 4, β = 0.5, r = 0.2. It observe when the parameter δ = 0.8, d increase
from 0.83 to 1, the basic reproduction number R01 decreases correspondingly and is less than unit 1.
The trajectory of the subsystem (2.4) will converge globally to the free equilibrium (see Theorem 1),
implying that the infected individuals extinct and then a stable free steady state occurs.

The three-dimensional diagram of the parameter space (β, p,R02) is shown in Figure 10(b) under the
parameter values of K = 2, d = 0.1, r = 0.05, δ = 0.05. It is easy to observe when fixing the p = 0.5,
β increase from 0.78 to 1, R02 decreases correspondingly and is less than unit 1. By using Theorem 1,
the infected individuals persist and the trajectory of the subsystem (2.4) will converge globally to the
endemic steady state.

The three-dimensional diagram of the parameter space (β, δ,R01) is shown in Figure 10(c) under
the parameter values of K = 2, d = 0.1, r = 0.1. We observe when the parameters δ, β increase
from 0.6 to 1, R01 also increases correspondingly and is greater than the unit 1. By using Theorem 1,
the infected individuals persist and the trajectory of the subsystem (2.4) will converge globally to the
endemic steady state.

The three-dimensional diagram of the parameter space (β, p,R03) is shown in Figure 10(d) under
the parameter values of K = 1, γ = 1.8, r = 1

27 , δ = 1
27 , d = 1

27 . It is easy to observe when fixing the
parameter p = 0.2, with a transmission rate β increase from 0.81 to 1, R03 increases correspondingly
and is greater than the unit 1. By using Theorem 1, the infected individuals persist, and the trajectory
of the subsystem (2.4) will converge globally to the endemic steady state. When fixing the parameters
p = 0.6, transmission rate β increase from 0.81 to 1, R03 decreases correspondingly and is less than
the unit 1. The trajectory of the subsystem (2.4) will converge globally to the free equilibrium (see
Theorem 1 of our paper), implying that the infected individuals become extinct, and then a stable free
steady state occurs.
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(a) (b)

(c) (d)

Figure 10. (a) Variation of the basic reproduction number R01 with the effect of parameters
d and δ. (b) Variation of R02 with the effect of parameters β and p. (c) Variation of R01 with
the effect of parameters β and δ. (d) Variation of R03 with the effect of parameters β and p.

In addition, this model has not been validated by actual influenza data, and we only have analyzed
theoretically. In the next stage, we will verify and simulate the validity of the conclusions in actual
time from some websites and statistics of health departments. However, the paper has studied the
non-smooth system of two threshold control strategies and has validated the correctness of the theory
through numerical simulation. Due to the serious lack of current influenza data from SARS-CoV-2
infections, the verification of the work is extremely difficult. However, the theory of this paper can

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6800–6837.
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provide appropriate guidance for the current influenza by SARS-CoV-2 infection. In this paper, we
only consider the dynamics of the system (2.4) if the basic reproduction number R0i > 1. However,
under the saturation rate βS I

1+I , and the conditions R02 < R01 < 1 and R02 < 1 < R01, the dynamical
behaviors of system (2.4) and the method of proving global stability are not yet fully clear and would
be our further topic.
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