Mathematical Biosciences
and Engineering

Research article

Sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy

Guodong $\mathbf{L i}^{1}$, Wenjie $\mathbf{L i}^{1,2, *}$, Ying Zhang ${ }^{1}$ and Yajuan Guan ${ }^{1}$
${ }^{1}$ Department of System Science and Applied Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
${ }^{2}$ Key Laboratory of Applied Statistics and Data Analysis of Department of Education of Yunnan Province, Kunming, Yunnan 650500, China
* Correspondence: Email: forliwenjie2008@163.com.

Abstract

This paper proposes a non-smooth human influenza model with logistic source to describe the impact on media coverage and quarantine of susceptible populations of the human influenza transmission process. First, we choose two thresholds I_{T} and S_{T} as a broken line control strategy: Once the number of infected people exceeds I_{T}, the media influence comes into play, and when the number of susceptible individuals is greater than S_{T}, the control by quarantine of susceptible individuals is open. Furthermore, by choosing different thresholds I_{T} and S_{T} and using Filippov theory, we study the dynamic behavior of the Filippov model with respect to all possible equilibria. It is shown that the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or bistability endemic equilibria under some conditions. The regular/virtulal equilibrium bifurcations are also given. Lastly, numerical simulation results show that choosing appropriate threshold values can prevent the outbreak of influenza, which implies media coverage and quarantine of susceptible individuals can effectively restrain the transmission of influenza. The non-smooth system with logistic source can provide some new insights for the prevention and control of human influenza.

Keywords: Filippov human influenza model; logistic source; two-thresholds policy; bistability; bifurcations

1. Introduction

With the development of society, the number of deaths caused by influenza infection has had gradually increased. For example, the global pandemic in 1918 caused more deaths in the world than in the First World War [1,2]. According to statistical analysis, the global influenza pandemic is caused by H2N2 virus, which is called "Asian influenza" because it first occurred in Asia. The incidence rate
was about $15-30 \%$ [3, 4]. Recently, COVID-19 also has a great impact on human life. According to the latest real-time statistics of the World Health Organization, as of October 10, 2022, the cumulative number of confirmed cases worldwide exceeded 600 million, and the cumulative number of deaths was about 6.5 million [5]. Therefore, in order to better control and reduce the number of deaths, how to effectively and quickly control the spread of disease is worthy of further study.

In the face of the global pandemic, many countries have responded to and mitigated the impact of influenza on human life through media reports, vaccination, disinfection, the use of protective equipment (such as masks), quarantine and other measures. In addition, some biological mathematicians have also established many mathematical models in order to better understand influenza infection and quantify the effectiveness of various control measures [6-13]. For example, considering social factors such as vaccination, media reports and protective measures, [14-21] established some different forms of disease models to analyze the impact of disease transmission. Practice shows that frequent hand washing, disinfection or wearing protective masks, as well as reducing or avoiding close contact with infected persons, can effectively reduce transmission [22-29]. However, media reports on influenza cases and deaths may have a great impact on the public, because the public will take some protective measures after media reports. In addition, quarantine and other measures will greatly reduce the effective contact rate between vulnerable people and infected people, thus reducing the spread of disease.

Recently, many different control strategies have been proposed to apply to the control of some disease models. For example, by using multiple optimal control, Ndii and Adi [12] have studied the effects of individual awareness and vector controls on Malaria transmission dynamics. By using a non-smooth control strategy, Li et al. [13] have considered the bifurcations and dynamics of a plant disease system. By using the two thresholds control strategy, Li et al. [30] have considered the global dynamics of a Filippov predator-prey model. Chen et al. [31] have considered a two-thresholds policy for a Filippov model in combating influenza. Zhou et al. [32] have discussed a two-thresholds policy to interrupt transmission of West Nile Virus to birds. Meanwhile, based on the above mentioned transmission factors, some scholars have also done a lot of meaningful work. For example, Dong et al. [33] studied a kind of nonlinear incidence Filippov epidemic model to describe the impact of media in the process of epidemic transmission. They found that choosing an appropriate threshold value and control intensity can prevent the outbreak of infectious diseases, and media coverage can reduce the burden of disease outbreaks and shorten the duration of disease outbreaks. Can et al. [25] have studied a Filippov model describing the effects of media coverage and quarantine on the spread of human influenza. Xiao et al. [28] have discussed a media impact switching surface during an infectious disease outbreak. In real life, when the influenza started to spread, that is, when the epidemic was not serious, the public paid little attention to the influenza. Generally, only when the number of people who have already felt it reaches and exceeds a certain threshold level will the mass media begin to coverage in large numbers and the public begin take some countermeasures [11,17,19,20]. Currently, many control managements have been developed, including threshold [30], harvesting control management [34-36], impulsive control management [37,38] and other controls [39-45]. However, the implementation of this measure may cause some social impacts, such as socioeconomic decline and psychological impact on the quarantined people. It is important to consider when to take these control measures. Therefore, an appropriate threshold policy is needed to deal with the influenza outbreak, or at least reduce the number of infected people to an acceptable level. As far as we know, under logistic source and broken line control strategy, the sliding dynamics and bifurcations of a human influenza system have been
seldom reported in existing work.
Motivation and inspiration come from the discussion above. In this paper, we propose a human influenza system under logistic source and broken line control strategy. The main contributions of this paper include three points: First, choose two thresholds I_{T} and S_{T} as a broken line control strategy: Once the number of infected people exceeds I_{T}, the media influence comes into play, and when the number of susceptible individuals is greater than S_{T}, the control by quarantine of susceptible individuals control is open. Furthermore, by choosing different thresholds I_{T} and S_{T}, the existence and stability of all possible equilibria considered, and then the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or bistability endemic equilibria under some conditions. It is worth pointing out that in our paper there exists a new phenomenon of two real equilibrium points co-existing.

In fact, from the perspective of control strategy, our paper puts forward a broken line control strategy. Different from the previous single-stage control strategy [30,34,35,37,38], our control strategy is divided into two stages and can control and simulate the real life situation well.

This paper is structured as follows. In Section 2, we propose a non-smooth model under logistic source and broken line control strategy. By changing the infection threshold values and susceptibility threshold values, in Section 3, we consider the global dynamics of the system under Case 1: $S_{T}<S_{1}^{*}<$ $S_{2}^{*}=S_{3}^{*}$. In Section 4, we study the global dynamics of the system under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$. Section 5 considers the global dynamics of the system under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$.The regular/virtulal equilibrium bifurcations are given in Section 6. Finally, we summarize the main results of this paper and discuss some biological conclusions in Section 7.

2. Model description and basic knowledge

2.1. Model description

In [25], a Filippov human influenza model with effects of media coverage and quarantine was considered. Because a logistic source can better depict the real situation, motivated by the above discussion and the existing multiple threshold conditions [25, 30-32,45], we consider the logistic source factor with the susceptible population, and then the new human influenza model can be described by

$$
\left\{\begin{array}{l}
S_{t}=\gamma S\left(1-\frac{S}{K}\right)-\beta S I, \tag{2.1}\\
I_{t}=\beta S I-(d+\delta+r) I, \\
R_{t}=r I-d I
\end{array}\right.
$$

where S is susceptible individuals, I is infected individuals, and R is recovered individuals. γ is an intrinsic growth rate of susceptible individuals, and K is carrying capacity. β is the transmission rate. d is the natural death rate. δ is the death rate caused by disease, and r is the recovered rate.

To better control the spread of the disease, we give the following broken line control strategy. If the infected populations is lower than I_{T}, no control is required. When the infected populations is greater than I_{T}, the media coverage control is open. That is, the mass media being coverage of information about the disease, including the route of transmission, the number of infected cases and the number of deaths.

Therefore, the public realizes the harm of the disease, and they changed their behavior, leading to a decline in the contact rate β. In this paper, we consider that the positive number $v_{1}\left(0 \leq v_{1} \leq 1\right)$ is the reduction amount of contact rate. In addition, we consider the quarantine control as follows. If the number of susceptible individuals is less than S_{T}, we do not quarantine susceptible individuals. If $S>S_{T}$ holds, the quarantine control is open, and this time we assume that the positive number $v_{2}\left(0 \leq v_{2} \leq 1\right)$ is the quarantine rate of susceptible individuals. Figure 1 shows the broken line control strategy.

Figure 1. Schematic diagram of the broken line control strategy.

Based on system (2.1) and the broken line control strategy, in this paper, we propose a Filippov influenza system with media control and quarantine of susceptible populations as follows:

$$
\left\{\begin{array}{l}
S_{t}=\gamma S\left(1-\frac{S}{K}\right)-\beta\left(1-v_{1}\right) S I-v_{2} S \tag{2.2}\\
I_{t}=\beta\left(1-v_{1}\right) S I-(d+\delta+r) I \\
R_{t}=r I-d I
\end{array}\right.
$$

with

$$
\left(v_{1}, v_{2}\right)=\left\{\begin{array}{l}
(0,0), \text { for } I<I_{T}, \tag{2.3}\\
(p, 0), \text { for } I>I_{T} \text { and } S<S_{T}, \\
(p, q), \text { for } I>I_{T} \text { and } S>S_{T}
\end{array}\right.
$$

Notice that the third equation R does not contain the variables S and I of (2.2), so we can not consider the third equation R of the system. Then, in this paper, we investigate a Filippov system

$$
\left\{\begin{array}{l}
S_{t}=\gamma S\left(1-\frac{S}{K}\right)-\beta\left(1-v_{1}\right) S I-v_{2} S, \tag{2.4}\\
I_{t}=\beta\left(1-v_{1}\right) S I-(d+\delta+r) I .
\end{array}\right.
$$

Then, the first quadrant is divided by the following five regions:

$$
\begin{aligned}
& \Gamma_{1}=\left\{(S, I) \in \mathbb{R}_{+}^{2}: I<I_{T}\right\}, \\
& \Gamma_{2}=\left\{(S, I) \in \mathbb{R}_{+}^{2}: I>I_{T} \text { and } S<S_{T}\right\}, \\
& \Gamma_{3}=\left\{(S, I) \in \mathbb{R}_{+}^{2}: I>I_{T} \text { and } S>S_{T}\right\}, \\
& \Pi_{1}=\left\{(S, I) \in \mathbb{R}_{+}^{2}: I=I_{T}\right\}, \\
& \Pi_{2}=\left\{(S, I) \in \mathbb{R}_{+}^{2}: I>I_{T} \text { and } S=S_{T}\right\} .
\end{aligned}
$$

The non-smooth system in region Γ_{i} for $i=1,2,3$ is described by

$$
\begin{array}{lll}
\binom{S_{t}}{I_{t}} & =\binom{\gamma S\left(1-\frac{S}{K}\right)-\beta S I}{\beta S I-(d+\delta+r) I}=F_{1}(S, I), & (S, I) \in \Gamma_{1} ; \\
\binom{S_{t}}{I_{t}}=\binom{\gamma S\left(1-\frac{S}{K}\right)-\beta(1-p) S I}{\beta(1-p) S I-(d+\delta+r) I}=F_{2}(S, I), & (S, I) \in \Gamma_{2} ; \tag{2.5}\\
\binom{S_{t}}{I_{t}}=\binom{\gamma S\left(1-\frac{S}{K}\right)-\beta(1-p) S I-q S}{\beta(1-p) S I-(d+\delta+r) I}=F_{3}(S, I), & (S, I) \in \Gamma_{3} .
\end{array}
$$

2.2. Basic knowledge

The normal vector of the system is defined as $n_{1}=(0,1)^{T}$ in Π_{1}, while the normal vector of the system is $n_{2}=(1,0)^{T}$ in Π_{2}. Denote the right-hand side of system (2.4) by f. The following definitions are necessary in this paper [14, 46, 47].
Definition 1. [14] A point E is called a real equilibrium of system (2.4) if there exists $i \in\{1,2,3\}$ such that $F_{i}(E)=0$ and $E \in \Gamma_{i}$, denoted by E^{R}.

Definition 2. [14] A point E is called a virtual equilibrium of system (2.4) if there exists $i \in\{1,2,3\}$ such that $F_{i}(E)=0$ and $E \notin \overline{\Gamma_{i}}$, where $\overline{\Gamma_{i}}$ is the closure of Γ_{i}, denoted by E^{V}.

Denote the equations that describe the sliding mode dynamics on the sliding mode domain $\ell_{i} \subset \Pi_{i}$ by $F_{s i}(S, I), i \in\{1,2\}$.

Definition 3. [14] A point E is called a pseudo-equilibrium of system (2.4) if point E is an equilibrium of $F_{\text {si }}(S, I)$ on sliding mode domain ℓ. That is, $F_{s i}(E)=0$, and point $E \in \ell \subset \Pi_{i}, i \in\{1,2\}$.

2.3. Positiveness, boundedness and dynamics analysis of (2.4) in $\Gamma_{i}(i=1,2,3)$

Lemma 1. The solution $(S(t), I(t))$ of system (2.4) with the positive initial value $S(0)$ and $I(0)$ satisfy $S(t)>0$ and $I(t)>0$ for $t \in[0,+\infty)$.

Proof. First, we prove that $S(t)>0$. If not, we assume that there is a time t_{1} satisfying the solution $S\left(t_{1}\right) \leq 0$. Then we know that there exists the other time $t^{*}>0$ such that the solution $S\left(t^{*}\right)=0$ and $S(t)>0$ for $t \in\left[0, t^{*}\right)$. From the first equation of system (2.4), one has

$$
\frac{d S}{d t}=\gamma S\left(1-\frac{S}{K}\right)-\beta\left(1-v_{1}\right) S I-v_{2} S=S\left[r\left(1-\frac{S}{K}\right)-\beta\left(1-v_{1}\right) I-v_{2}\right] .
$$

Further, we obtain

$$
S\left(t^{*}\right)=S(0) \mathrm{e}_{0}^{\int_{0}^{*}\left[r\left(1-\frac{s}{K}\right)-\beta\left(1-v_{1}\right) I-v_{2}\right] d s}>0
$$

which is a contradiction with $S\left(t^{*}\right)=0$. Thus, $S(t)>0$, for all $t>0$.
Next, we prove that $I(t)>0$. If not, we assume there is a time t_{2} satisfying the solution $I\left(t_{2}\right) \leq 0$. Then, there exists the other time $\tilde{t}>0$ such that the solution $I(\tilde{t})=0$, and $I(t)>0$ for time $t \in[0, \tilde{t})$. From the second equation of system (2.4), one gets

$$
\frac{d I}{d t}=I\left[\left(\beta\left(1-v_{1}\right) S-(d+\delta+r)\right] \geq-(d+\delta+r) I, \quad t \in[0, \tilde{t}] .\right.
$$

Then, if $t=\tilde{t}$, we have

$$
I(\tilde{t}) \geq I_{0} e^{-(d+\delta+r) \tilde{t}}>0,
$$

which is a contradiction with $I(\tilde{t})=0$. Thus, $I(t)>0$, for all $t>0$. In a word, we have that $(S(t), I(t))$ of (2.4) with the positive initial value $S(0)$ and $I(0)$ satisfies $S(t)>0$ and $I(t)>0$ for $t \in[0,+\infty)$. The proof is finished.

Lemma 2. The solution (S, I) of system (2.4) is bounded.
Proof. Notice the first equation of system (2.4). Then,

$$
\left.\frac{d S}{d t}\right|_{x=K}=-\beta\left(1-v_{1}\right) K I-v_{2} S<0, \quad \text { and }\left.\frac{d S}{d t}\right|_{x>K}<0 .
$$

Hence, there is a positive number T such that the solution $S(t)<K$ for $t \geq T$.
Let $N=S+I$, and then for $t \geq T$, we obtain

$$
\begin{aligned}
\frac{d N}{d t} & =\gamma S\left(1-\frac{S}{K}\right)-v_{2} S-(d+\delta+r) I \\
& \leq \gamma K\left(1-\frac{S}{K}\right)-v_{2} S-(d+\delta+r) I \\
& \leq \gamma K-\min \left\{\gamma+v_{2}, d+\delta+r\right\} N .
\end{aligned}
$$

Moreover,

$$
\limsup _{t \rightarrow \infty} N \leq \frac{\gamma K}{\min \left\{\gamma+v_{2}, d+\delta+r\right\}}
$$

Therefore, under Lemma 1, we know that the solution of (2.4) is bounded. The proof is finished.
Next, we give the basic reproduction number $R_{0 i}, i=1,2,3$, of the system. For example, in region Γ_{1}, the basic reproduction number is defined as $R_{01}=\frac{K \beta}{d+\delta+r}$. In region Γ_{2}, the basic reproduction number is defined as $R_{02}=\frac{K \beta(1-p)}{d+\delta+r}$. In region Γ_{3}, the basic reproduction number is defined as $R_{03}=\frac{(\gamma-p) K \beta(1-p)}{\gamma(d+\delta+r)}$.

For system (2.4), clearly, in region Γ_{1}, (2.4) has three equilibria, i.e., $E_{10}=(0,0), E_{11}=(K, 0)$ and $E_{1}=\left(S_{1}^{*}, I_{1}^{*}\right)=\left(\frac{d+\delta+r}{\beta}, \frac{\gamma}{\beta}\left(1-\frac{d+\delta+r}{K \beta}\right)\right)$, which is a stable node if $R_{01}>1$.

In region Γ_{2}, system (2.4) has three equilibria, i.e., $E_{20}=(0,0), E_{21}=(K, 0)$ and $E_{2}=\left(S_{2}^{*}, I_{2}^{*}\right)=$ $\left(\frac{d+\delta+r}{\beta(1-p)}, \frac{\gamma}{\beta(1-p)}\left(1-\frac{d+\delta+r}{K \beta(1-p)}\right)\right)$, which is a stable node (focus) if $R_{02}>1$.

In region Γ_{3}, system (2.4) has three equilibria, i.e., $E_{30}=(0,0), E_{31}=\left(K \frac{\gamma-q}{\gamma}, 0\right)$ and $E_{3}=\left(S_{3}^{*}, I_{3}^{*}\right)=$ $\left(\frac{d+\delta+r}{\beta(1-p)}, \frac{\gamma}{\beta(1-p)}\left(1-\frac{d+\delta+r}{K \beta(1-p)}-\frac{q}{r}\right)\right)$, which is a stable node (focus) if $R_{03}>1$.
Theorem 1. Suppose that $R_{0 i}<1$, and the disease free equilibrium $E_{i 1}(i=1,2,3)$ of (2.4) is globally asymptotically stable. In addition, the endemic equilibrium $E_{i}(i=1,2,3)$ of (2.4) is globally asymptotically stable if $R_{0 i}>1$.

Proof. Since $R_{0 i}<1, i=1,2,3$, a Lyapunov function is considered as

$$
L(t)=S-S_{i 1}-S_{i 1} \ln \frac{S}{S_{i 1}}+I .
$$

Applying LaSalle's invariance principle [13,14], we know that $E_{i 1}(i=1,2,3)$ of system (2.4) is globally asymptotically stable.

When $R_{0 i}>1, i=1,2,3$, the following Lyapunov function is considered:

$$
L(t)=S-S_{i}^{*}-S_{i}^{*} \ln \frac{S}{S_{i}^{*}}+I-I_{i}^{*}-I_{i}^{*} \ln \frac{I}{I_{i}^{*}} .
$$

Using LaSalle's invariance principle [13, 14], we know that points $E_{i}(i=1,2,3)$ of system (2.4) areglobally asymptotically stable. The proof is finished.

This paper only considers the global dynamics of (2.4) under case $R_{0 i}>1$ ($i=1,2,3$). Next, we aim to address the richness of the possible equilibria and sliding modes on Π_{1} and Π_{2} that the system with can exhibit.

From (2.4), when $S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$ and $I_{3}^{*}<I_{2}^{*}$, we consider the following three cases: $S_{T}<S_{1}^{*}, S_{1}^{*}<$ $S_{T}<S_{2}^{*}=S_{3}^{*}$, and $S_{2}^{*}=S_{3}^{*}<S_{T}$ with varied I_{T}. Further, according to the dynamics in each case, the biological phenomena of (2.4) are described in this section.

Throughout the paper, the S-nullclines and I-nullclines of (2.4) are represented by the dashed curves and dash-dot lines, respectively. Thus, $S=S_{1}^{*}, S_{2}^{*}$ and S_{3}^{*} are the I-nullclines of F_{1}, F_{2} and F_{3}, denoted by L_{12}, L_{22} and L_{32}, respectively. That is, the curves

$$
\begin{gathered}
L_{12}:=\left\{(S, I) \in \Gamma_{1}: \gamma S\left(1-\frac{S}{K}\right)-\beta S I=0\right\}, \\
L_{22}:=\left\{(S, I) \in \Gamma_{2}: \gamma S\left(1-\frac{S}{K}\right)-\beta(1-p) S I=0\right\}
\end{gathered}
$$

and

$$
L_{32}:=\left\{(S, I) \in \Gamma_{3}: \gamma S\left(1-\frac{S}{K}\right)-\beta(1-p) S I-q S=0\right\}
$$

are the S-nullclines of systems F_{1}, F_{2} and F_{3}, denoted by L_{11}, L_{21} and L_{31}, respectively.

3. Sliding dynamics and bifurcations of (2.4) under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$

In this part, we first consider sliding mode dynamics of (2.4) on Π_{1} under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=$ S_{3}^{*}. Second, the sliding mode dynamics on Π_{2} are also given under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$. In addition, we investigate the bifurcations of (2.4) under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$. Finally, some numerical simulations are displayed to confirm the results.

3.1. Sliding mode dynamics of (2.4) on Π_{1} under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$

This part investigates the existence of the sliding mode region on Π_{1}. Based on Definition 3, if $\left\langle n_{1}, F_{1}\right\rangle>0$ and $\left\langle n_{1}, F_{3}\right\rangle<0$ hold, then we know that there is the sliding mode region ℓ_{1}, which is expressed as

$$
\ell_{1}=\left\{(S, I) \in \Pi_{1}: S_{1}^{*}<S<S_{3}^{*}\right\} .
$$

Using the Filippov convex method [13,14], we obtain

$$
\binom{S_{t}}{I_{t}}=\lambda_{1} F_{1}(S, I)+\left(1-\lambda_{1}\right) F_{3}(S, I) \text {, where } \lambda_{1}=\frac{\left\langle n_{1}, F_{3}\right\rangle}{\left\langle n_{1}, F_{3}-F_{1}\right\rangle} .
$$

So, we have the differential equations describing the sliding mode dynamics along the manifold ℓ_{1} for system (2.4):

$$
\begin{equation*}
\binom{S_{t}}{I_{t}}=\binom{\gamma S\left(1-\frac{S}{K}\right)-\frac{q}{p} S-(d+\delta+r) I_{T}+\frac{(d+\delta+r) q}{\beta p}}{0} . \tag{3.1}
\end{equation*}
$$

Next, we analyze the existence of the positive equilibriums on ℓ_{1} of (3.1). Let

$$
\Delta_{1}=\left(\gamma-\frac{q}{p}\right)^{2}-4 \frac{\gamma}{K}\left[(d+\delta+r) I_{T}-\frac{(d+\delta+r) q}{\beta p}\right], I_{T}^{*}=\frac{q}{\beta p}+\frac{\left(\gamma-\frac{q}{p}\right)^{2} K}{4 \gamma(d+\delta+r)} .
$$

Proposition 1. For varied I_{T}, we have the following results.

- If $I_{T}>I_{T}^{*}$, then system (3.1) has no equilibrium.
- If $I_{T}^{*}>I_{T}>\frac{q}{\beta \text { p }}$, system (3.1) has two positive equilibria $E_{s 1}^{ \pm}=\left(S_{s 1}^{ \pm}, I_{T}\right)$, where $S_{s 1}^{ \pm}=\frac{\left(\gamma-\frac{q}{p}\right) \pm \sqrt{\Delta_{1}}}{2 \gamma} K$.
- If $I_{T}<\frac{q}{\beta p}$, then system (3.1) has a unique positive equilibrium $E_{s 2}=\left(S_{s 2}, I_{T}\right)$, where $S_{s 2}=$ $\frac{\left(\gamma-\frac{q}{p}\right)+\sqrt{\Delta_{1}}}{2 \gamma} K$.

In addition, when the sliding mode ℓ_{1} has a pseudo-equilibrium, we have

$$
\begin{equation*}
S_{T}^{*}=\frac{\gamma-\frac{q}{p}}{2 \gamma} K \tag{3.2}
\end{equation*}
$$

Proposition 2. Under the condition $S_{T}^{*}<S_{1}^{*}, E_{s 1}^{-} \notin \ell_{1}$, and the following results are given.

- If $I_{T}<I_{3}^{*}$, we have $E_{s 1}^{+} \notin \ell_{1}$.
- If $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 1}^{+} \in \ell_{1}$.
- If $I_{T}>I_{1}^{*}$, we have $E_{s 1}^{+} \notin \ell_{1}$.

Proposition 3. Under the condition $S_{1}^{*}<S_{T}^{*}<S_{3}^{*}$, the following results hold.
(1) Assume that $I_{1}^{*}<I_{3}^{*}$, and then

- if $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \notin \ell_{1}$;
- if $I_{3}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \in \ell_{1}$.
(2) Assume that $I_{1}^{*}>I_{3}^{*}$, and then
- if $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \in \ell_{1}$;
- if $I_{1}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \in \ell_{1}$.

Proposition 4. Under the condition $S_{T}^{*}>S_{3}^{*}, E_{s 1}^{+} \notin \ell_{1}$, and the following conclusions hold.

- If $I_{T}<I_{1}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}$.
- If $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}$.
- If $I_{T}>I_{3}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}$.

Theorem 2. If $I_{T}^{*}>I_{T}>\frac{q}{\beta p}$, then a stable pseudo-equilibriums $E_{s 1}^{+}$is located on the sliding mode ℓ_{1}, and the unstable pseudo-equilibriums $E_{s 1}^{-}$is located on the sliding mode ℓ_{1}.

Proof. Notice that

$$
\left.\frac{\partial}{\partial S}\left(r S\left(1-\frac{S}{K}\right)-\frac{q}{p} S-(d+\delta+r) I_{T}+\frac{(d+\delta+r) q}{\beta p}\right)\right|_{S_{s 1}^{ \pm}}=\mp \sqrt{\Delta}_{1} .
$$

Therefore, the point $E_{s 1}^{+}$is attracting, and the point $E_{s 1}^{-}$is repelling.
Proposition 5. Assume that $\frac{\gamma-\frac{q}{p}}{\gamma} K>\frac{d+\delta+r}{\beta(1-p)}$, and then the pseudo-equilibrium $E_{s 2}$ is not located on ℓ_{1}.
Proof. From Proposition 1, Eq (3.2) and the condition of Proposition 5, one has

$$
S_{s 2}=\frac{\left(\gamma-\frac{q}{p}\right)+\sqrt{\Delta}_{1}}{2 \gamma} K>2 S_{T}^{*}=2 \frac{\gamma-\frac{q}{p}}{\gamma} K>\frac{d+\delta+r}{\beta(1-p)}=S_{3}^{*},
$$

which implies that $S_{s 2} \geq 2 S_{T}^{*}>S_{3}^{*}$. Based on the definition of sliding mode region ℓ_{1}, we know that $S_{s 2} \notin \ell_{1}$. Then, ℓ_{1} does not have a pseudo-equilibrium $E_{s 2}$. The proof is completed.
3.2. Sliding mode dynamics on Π_{2} under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$

Let

$$
J_{1}=\frac{\gamma}{\beta(1-p)}\left(1-\frac{S_{T}}{K}-\frac{q}{\gamma}\right), J_{2}=\frac{\gamma}{\beta(1-p)}\left(1-\frac{S_{T}}{K}\right) .
$$

Clearly $J_{1}<J_{2}$. A subset of Π_{2} is a sliding mode domain if $\left\langle F_{2}, n_{2}\right\rangle\left\langle F_{3}, n_{2}\right\rangle<0$. If $I_{T}>J_{2}$, there is no sliding mode domain on Π_{2}. If $I_{T}<J_{2}$, then the sliding mode domain of (2.4) on Π_{2} is given as

$$
\begin{equation*}
\ell_{2}=\left\{(S, I) \in \Pi_{2}: \max \left\{I_{T}, J_{1}\right\}<I<J_{2}\right\} . \tag{3.3}
\end{equation*}
$$

Using the Filippov convex method [13], we have the differential equations describing the sliding mode dynamics along the manifold ℓ_{2} for system (2.4) with (2.3):

$$
\begin{equation*}
\binom{S_{t}}{I_{t}}=\binom{0}{\beta(1-p) S_{T} I-(d+\delta+r) I} \tag{3.4}
\end{equation*}
$$

Clearly, there is not a positive equilibrium. Thus, if there exists a sliding domain ℓ_{2} on Π_{2}, we know the system does not have a pseudo-equilibrium.
3.3. Bifurcations of (2.4) under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$

Due to $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$, we know that $E_{2} \notin \Gamma_{2}$ is a virtual equilibrium, denoted by E_{2}^{V}. However, point E_{1} and point E_{3} may exist depending on I_{T}, and we have the following three Propositions:

Proposition 6. Assume that $S_{T}^{*}<S_{1}^{*}$, and the following assertions hold.

- If $I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$.
- If $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \in \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
- If $I_{1}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
- If $I_{T}>I_{T}^{*}$, we have $E_{s 1}^{-}$and $E_{s 1}^{+}$don't exist, $E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Proposition 7. Under the condition $S_{1}^{*}<S_{T}^{*}<S_{3}^{*}$, the following assertions hold.
(1) Assume that $I_{1}^{*}<I_{3}^{*}$, and further,

- if $I_{T}<I_{1}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \in \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{T}>I_{T}^{*}$, we have $E_{s 1}^{-}$and $E_{s 1}^{+}$don't exist, $E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(2) Assume that $I_{1}^{*}>I_{3}^{*}$, and further,
- if $I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \in \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \in \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{T}>I_{T}^{*}$, we have $E_{s 1}^{-}$and $E_{s 1}^{+}$don't exist, $E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Proposition 8. Under the condition $S_{T}^{*}>S_{3}^{*}$, the following assertions hold.

- If $I_{T}<I_{1}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$.
- If $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$.
- If $I_{3}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
- If $I_{T}>I_{T}^{*}$, we have $E_{s 1}^{-}$and $E_{s 1}^{+}$don't exist, $E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Figure 2. The trajectory of (2.4) under Case 1: $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}, d=0.01, \delta=$ $0.01, r=0.01, \gamma=0.2, K=3$, (a) where $\beta=0.7, p=0.2, q=0.2, S_{T}=1.5, I_{T}=1$; (b) where $\beta=0.7, p=0.2, q=0.2, S_{T}=1.5, I_{T}=2.8$; (c) where $\beta=0.7, p=0.2, q=$ $0.2, S_{T}=1.5, I_{T}=3.5$; (d) where $\beta=1.5, p=0.5, q=0.2, S_{T}=1, I_{T}=2.8$; (e) where $\beta=1.2, p=0.5, q=0.2, S_{T}=1, I_{T}=3$.

Based on Propositions 6-8, we have the following summary:
B1. Let $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set B_{1-1}. Then, we conclude that there does not exist a pseudo-equilibrium, and all trajectories of the system (2.4) will converge to E_{3}^{R}, as shown in Figure 2(a), where

$$
B_{1-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, I_{T}<\min \left\{I_{1}^{*}, I_{3}^{*}\right\}\right\} .
$$

B2. Let $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \in \ell_{1}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set B_{2-1}. Then, we know that $E_{s 1}^{+} \in \ell_{1} \subset \Pi_{1}$ is a stable pseudo-equilibrium, and all solutions of the system will approach $E_{s 1}^{+}$, as shown in Figure 2(b), where

$$
B_{2-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, I_{3}^{*}<I_{T}<I_{1}^{*}\right\} .
$$

B3. Let $E_{s 1}^{-} \notin \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set $B_{3-1} \cup$ $B_{3-2} \cup B_{3-3}$. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and all trajectories of the system (2.4) will converge to the equilibrium point E_{1}^{R}, as shown in Figure 2(c), where

$$
\begin{aligned}
& B_{3-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, I_{1}^{*}<I_{T}<I_{T}^{*}, \text { if } S_{T}^{*}<S_{1}^{*}\right\}, \\
& B_{3-2}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, I_{T}>I_{T}^{*}, \text { if } S_{1}^{*}<S_{T}^{*}<S_{3}^{*}\right\}, \\
& B_{3-3}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, I_{3}^{*}<I_{T}<I_{T}^{*}, \text { if } S_{T}^{*}>S_{3}^{*}\right\} .
\end{aligned}
$$

B4. Let $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set B_{4-1}. Then, we know that $E_{s 1}^{-} \in \ell_{1} \subset \Pi_{1}$ is an unstable pseudo-equilibrium, and all solutions will approach E_{1}^{R} or E_{3}^{R}. The result of this numerical simulation is shown in Figure 2(d), where

$$
B_{4-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, I_{1}^{*}<I_{T}<I_{3}^{*}\right\} .
$$

B5. Let $E_{s 1}^{-} \in \ell_{1}, E_{s 1}^{+} \in \ell_{1}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set B_{5-1}. Then, we conclude that $E_{s 1}^{-} \in \ell_{1} \subset \Pi_{1}$ is an unstable pseudo-equilibrium, and all solutions of the system (2.4) will tend to E_{1}^{R} or $E_{s 1}^{+}$. The result of this numerical simulation is shown in Figure 2(e), where

$$
B_{5-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{T}<S_{1}^{*}, \max \left\{I_{1}^{*}, I_{3}^{*}\right\}<I_{T}<I_{T}^{*}, \text { if } S_{1}^{*}<S_{T}^{*}<S_{3}^{*}\right\} .
$$

For the B 1 of case 1 , when system (2.4) has a unique equilibrium E_{3}^{R}, we have the following.
Theorem 3. If $S_{T}<S_{1}^{*}<S_{3}^{*}=S_{2}^{*}$ and $I_{T}<\min \left\{I_{1}^{*}, I_{3}^{*}\right\}$, then the point E_{3}^{R} of system (2.4) is globally asymptotically stable.

Proof. Suppose that the system (2.4) has a closed orbit U (shown in Figure 3(a)) that surrounds the real equilibrium E_{32}^{R} and the sliding mode ℓ_{1}. Define $U=U_{1}+U_{2}+U_{3}$, where $U_{i}=U \cap \Gamma_{i}, i=1,2,3$. Let Ω be the bounded region delimited by U and $\Omega_{i}=\Omega \cap \Gamma_{i}$ for $i=1,2,3$. Considering the Dulac function $D=\frac{1}{S I}$. Three Steps are given as follows:

Step 1: System (2.4) does not have a closed orbit in region $\Gamma_{i}, i=1,2,3$.

$$
\begin{aligned}
\iint_{U}\left(\frac{\partial\left(D f_{1}\right)}{\partial S}+\frac{\partial\left(D f_{2}\right)}{\partial I}\right) d S d I & =\sum_{i=1}^{3} \iint_{U_{i}}\left(\frac{\partial\left(D F_{i 1}\right)}{\partial S}+\frac{\partial\left(D F_{i 2}\right)}{\partial I}\right) d S d I \\
& =-\frac{3 \gamma}{K} \sum_{i=1}^{3} \iint_{U_{i}} \frac{1}{I} d S d I<0
\end{aligned}
$$

where f_{1} is the first component of f, and f_{2} is the second component of f. $F_{i 1}$ is the first component of F_{i} and $F_{i 2}$ is the second component of $F_{i}, i=1,2,3$. Let $\tilde{\Omega}_{i}$ be the region bounded by \tilde{U}_{i}, P_{i} and Q_{i}, where $\tilde{\Omega}_{i}$ and \tilde{U}_{i} depend on ϵ and converge to Ω_{i} and U_{i} as ϵ approaches 0 .

Step 2: System (2.4) does not have a closed trajectory in region Γ.
We can get

$$
\iint_{\Omega_{i}}\left(\frac{\partial\left(D F_{i 1}\right)}{\partial S}+\frac{\partial\left(D F_{i 2}\right)}{\partial I}\right) d S d I=\lim _{\epsilon \rightarrow 0} \iint_{\tilde{\Omega}_{i}}\left(\frac{\partial\left(D F_{i 1}\right)}{\partial S}+\frac{\partial\left(D F_{i 2}\right)}{\partial I}\right) d S d I .
$$

Figure 3. The schematic diagram of limit cycle.

Since $d S=F_{11} d t$ and $d I=F_{12} d t$ along \tilde{U}_{1} and $d I=0$ along P_{1}, by using Green's theorem, for region $\tilde{\Omega}_{1}$, we have

$$
\begin{align*}
\iint_{\tilde{\Omega}_{1}}\left(\frac{\partial\left(D F_{11}\right)}{\partial S}+\frac{\partial\left(D F_{12}\right)}{\partial I}\right) d S d I & =\oint_{\partial \tilde{\Omega}_{1}} D F_{11} d I-D F_{12} d S \\
& =\int_{\tilde{U}_{1}} D F_{11} d I-D F_{12} d S+\int_{P_{1}} D F_{11} d I-D F_{12} d S \tag{3.5}\\
& =-\int_{P_{1}} D F_{12} d S
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\iint_{\tilde{\Omega}_{2}}\left(\frac{\partial\left(D F_{21}\right)}{\partial S}+\frac{\partial\left(D F_{22}\right)}{\partial I}\right) d S d I=-\int_{P_{2}} D F_{22} d S+\int_{Q_{2}} D F_{21} d I \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\iint_{\tilde{\Omega}_{3}}\left(\frac{\partial\left(D F_{31}\right)}{\partial S}+\frac{\partial\left(D F_{32}\right)}{\partial I}\right) d S d I=-\int_{P_{3}} D F_{32} d S+\int_{Q_{3}} D F_{31} d I . \tag{3.7}
\end{equation*}
$$

From Eqs (3.5)-(3.7), we have

$$
\begin{align*}
0 & >\sum_{i=1}^{3} \iint_{\Omega_{i}}\left(\frac{\partial\left(D F_{i 1}\right)}{\partial S}+\frac{\partial\left(D F_{i 2}\right)}{\partial I}\right) d S d I \\
& =\lim _{\epsilon \rightarrow 0} \sum_{i=1}^{3} \iint_{\tilde{\Omega}_{i}}\left(\frac{\partial D F_{i 1}}{\partial S}+\frac{\partial D F_{i 2}}{\partial I}\right) d S d I \tag{3.8}\\
& =\lim _{\epsilon \rightarrow 0}\left(-\int_{P_{1}} D F_{12} d S-\int_{P_{2}} D F_{22} d S+\int_{Q_{2}} D F_{21} d I-\int_{P_{3}} D F_{32} d S+\int_{Q_{3}} D F_{31} d I\right) .
\end{align*}
$$

Denote the intersection points of the closed trajectory U and the line $I=I_{T}$ by A_{1} and A_{2} and the intersection point of U and line $S=S_{T}$ if $I>I_{T}$ by A_{3}. In addition, denote the intersection point of the line $I=I_{T}$ and the line $S=S_{T}$ by E_{T}. Note that $A_{1 S}<S_{T}<A_{2 S}$ and $A_{3 I}>I_{T}$. Then, Eq (3.6) becomes

$$
\begin{align*}
& 0>-\int_{A_{2 S}}^{A_{1 S}}\left(\beta-\frac{d+\delta+r}{S}\right) d S-\int_{A_{1 S}}^{S_{T}}\left(\beta(1-p)-\frac{d+\delta+r}{S}\right) d S+\int_{I_{T}}^{A_{3 I}}\left(\frac{\gamma\left(1-\frac{S}{K}\right)}{I}-\beta(1-p)\right) d I \\
&-\int_{S_{T}}^{A_{2 S}}\left(\beta(1-p)-\frac{d+\delta+r}{S}\right) d S+\int_{A_{3 I}}^{I_{T}}\left(\frac{\gamma\left(1-\frac{S}{K}\right)-q}{I}-\beta(1-p)\right) d I \\
&=-\int_{A_{1 S}}^{A_{2 S}}-p d S+\int_{A_{3 l}}^{I_{T}}\left(-\frac{q}{I}\right) d I \\
&= p\left(A_{2 S}-A_{1 S}\right)+q \ln \left(\frac{A_{3 I}}{I_{T}}\right) \\
&>0 \tag{3.9}
\end{align*}
$$

which is a contradiction. Therefore, we know that there does not have a closed orbit U surrounding the sliding mode ℓ_{1} and the real equilibrium E_{3}^{R}.

Step 3: System (2.4) does not have a closed trajectory in regions Γ_{i} and $\Gamma_{j}(i \neq j)$. With a similar proof procedure to Step 2, it is easy to that there is no closed trajectory in Γ_{1} and Γ_{2} (see Figure 3(d)), Γ_{1} and Γ_{3} (see Figure 3(b)), Γ_{2} and Γ_{3} (see Figure 3(c)), respectively.

Therefore, based on Steps 1-3, we know that the point E_{3}^{R} of (2.4) is globally asymptotically stable if $S_{T}<S_{1}^{*}<S_{3}^{*}=S_{2}^{*}$ and $I_{T}<\min \left\{I_{1}^{*}, I_{3}^{*}\right\}$. This completes this theorem.

With a similar proof procedure to Theorem 3, we have the following.
Theorem 4. If $S_{T}<S_{1}^{*}<S_{2}^{*}=S_{3}^{*}$ and the conditions of (B3) hold, then the point E_{1}^{R} of system (2.4) is globally asymptotically stable.

4. Sliding dynamics and bifurcations of (2.4) under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$

In this part, we first consider sliding mode dynamics of (2.4) on Π_{1} under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=$ S_{3}^{*}. Second, we study the sliding mode dynamics on Π_{2} under Case 2 : $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$. In addition, the bifurcations of (2.4) are investigated under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$. Finally, some numerical simulations are displayed to confirm the results.

4.1. Sliding mode dynamics of system (2.4) on Π_{1} under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$

For Case $2, S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$, two sliding domains on Π_{1} are given as

$$
\ell_{3}=\left\{(S, I) \in \Pi_{1}: S_{1}^{*}<S<S_{T}\right\}, \quad \ell_{4}=\left\{(S, I) \in \Pi_{1}: S_{T}<S<S_{3}^{*}\right\} .
$$

The dynamics on ℓ_{3} are governed by

$$
\begin{equation*}
\binom{S_{t}}{I_{t}}=\binom{\gamma S\left(1-\frac{S}{K}\right)-(d+\delta+r) I_{T}}{0} \tag{4.1}
\end{equation*}
$$

Now, we investigate the existence of a positive equilibrium on ℓ_{3} of system (4.1). Let

$$
\Delta_{2}=\gamma^{2}-4 \frac{\gamma(d+\delta+r) I_{T}}{K}, I_{T}^{*^{\prime}}=\frac{\gamma K}{4(d+\delta+r)} .
$$

Proposition 9. For varied I_{T}, we have the following results.
(1) If $I_{T}>I_{T}^{*^{\prime}}$, then system (4.1) does not have an equilibrium;
(2) If $0<I_{T}<I_{T}^{*^{\prime}}$, system (4.1) has two positive equilibria $E_{s 3}^{ \pm}=\left(S_{s 3}^{ \pm}, I_{T}\right)$, where $S_{s 3}^{ \pm}=\frac{\gamma \pm \sqrt{\Delta_{2}}}{2 \gamma} K$.

Next, we find the conditions of the pseudo-equilibrium on the sliding mode ℓ_{3}. Let

$$
H_{1}=\frac{-\frac{\gamma}{K}}{d+\delta+r} S_{T}^{2}+\frac{\gamma}{d+\delta+r} S_{T}, S_{T}^{*^{\prime}}=\frac{K}{2} .
$$

Proposition 10. Under the condition $S_{T}^{*^{\prime}}<S_{1}^{*}<S_{T}, E_{s 3}^{-} \notin \ell_{3}$, and the following assertions hold.
(1) If $I_{T}>I_{1}^{*}$, we have $E_{s 3}^{+} \notin \ell_{3}$;
(2) If $H_{1}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{+} \in \ell_{3}$;
(3) If $I_{T}<H_{1}$, we have $E_{s 3}^{+} \notin \ell_{3}$.

Proposition 11. Under the condition $S_{1}^{*}<S_{T}^{*^{\prime}}<S_{T}$, we have the following results.
(1) If $I_{T}<\min \left\{I_{1}^{*}, H_{1}\right\}$, we have $E_{s 3}^{ \pm} \notin \ell_{3}$.
(2) If $\min \left\{I_{1}^{*}, H_{1}\right\}<I_{T}<\max \left\{I_{1}^{*}, H_{1}\right\}$, we have

- $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}$ if $I_{1}^{*}<H_{1}$;
- $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \in \ell_{3}$ if $I_{1}^{*}>H_{1}$.
(3) If $\max \left\{I_{1}^{*}, H_{1}\right\}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{ \pm} \in \ell_{3}$.

Proposition 12. Under the condition $S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}}, E_{s 3}^{+} \notin \ell_{3}$, and the following assertions hold.
(1) If $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}$;
(2) If $I_{1}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}$;
(3) If $I_{T}>H_{1}$, we have $E_{s 3}^{-} \notin \ell_{3}$.

Theorem 5. If $0<I_{T}<I_{T}^{*^{\prime}}$, then a stable pseudo-equilibrium $E_{s 3}^{+}$of (2.4) is located on the sliding mode ℓ_{3}, and the unstable pseudo-equilibrium $E_{s 3}^{-}$of (2.4) is located on the sliding mode ℓ_{3}.

Proof. Notice that

$$
\left.\frac{\partial}{\partial S}\left(\gamma S\left(1-\frac{S}{K}\right)-(d+\delta+r) I_{T}\right)\right|_{E_{3}^{ \pm}}=\mp \sqrt{\Delta_{2}} .
$$

Therefore, the point $E_{s 3}^{+}$is attracting, and the point $E_{s 3}^{-}$is repelling.
The dynamics on region ℓ_{4} are described by (3.1). Let

$$
H_{2}=\frac{q}{\beta p}-\frac{\gamma}{K(d+\delta+r)} S_{T}^{2}+\left(\frac{\gamma}{d+\delta+r}-\frac{q}{p(d+\delta+r)}\right) S_{T} .
$$

From Proposition 1, we have the following.
Proposition 13. Under the condition $S_{T}^{*}<S_{T}<S_{3}^{*}, E_{s 1}^{-} \notin \ell_{4}$, and the following assertions hold.
(1) If $I_{T}<I_{3}^{*}$, we have $E_{s 1}^{+} \notin \ell_{4}$;
(2) If $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 1}^{+} \in \ell_{4}$;
(3) If $I_{T}>H_{2}$, we have $E_{s 1}^{+} \notin \ell_{4}$.

Proposition 14. Under the condition $S_{T}<S_{T}^{*}<S_{3}^{*}$, we have the following results.
(1) If $I_{T}<\min \left\{I_{3}^{*}, H_{2}\right\}$, we have $E_{s 1}^{ \pm} \notin \ell_{4}$.
(2) If $\min \left\{I_{3}^{*}, H_{2}\right\}<I_{T}<\max \left\{I_{3}^{*}, H_{2}\right\}$, we have

- $E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \notin \ell_{4}$ if $I_{3}^{*}>H_{2}$;
- $E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \in \ell_{4}$ if $I_{3}^{*}<H_{2}$.
(3) If $\max \left\{I_{3}^{*}, H_{2}\right\}<I_{T}<I_{T}^{*}$, we have $E_{s 1}^{ \pm} \in \ell_{4}$.

Proposition 15. Under the condition $S_{T}<S_{3}^{*}<S_{T}^{*}, E_{s 1}^{+} \notin \ell_{4}$, and the following assertions hold.
(1) If $I_{T}<H_{2}$, we have $E_{s 1}^{-} \notin \ell_{4}$;
(2) If $H_{2}<I_{T}<I_{3}^{*}$, we have $E_{s 1}^{-} \in \ell_{4}$;
(3) If $I_{T}>I_{3}^{*}$, we have $E_{s 1}^{-} \notin \ell_{4}$.

Theorem 6. If $0<I_{T}<I_{T}^{*^{\prime}}$, then a stable pseudo-equilibrium $E_{s 1}^{+}$is located on ℓ_{4}, and the unstable pseudo-equilibrium $E_{s 1}^{-}$is located on ℓ_{4}.
4.2. Sliding mode dynamics of (2.4) on Π_{2} under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$

If $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$, the sliding mode dynamics on region Π_{2} are the same as Section 3.2. We omit it here.
4.3. Bifurcations of system (2.4) under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$

For this case, we conclude that the point E_{2} is a virtual equilibrium. E_{1} and E_{3} are changeable depending on I_{T}, and we have the following five situation.

Proposition 16. Under the conditions $S_{T}^{*^{\prime}}<S_{1}^{*}<S_{T}$ and $S_{T}^{*}<S_{T}<S_{3}^{*}$, the following assertions hold.
(1) If $I_{T}<I_{3}^{*}$, we have $E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
(2) If $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
(3) If $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
(4) If $H_{1}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
(5) If $I_{1}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Proposition 17. Under the conditions $S_{1}^{*}<S_{T}^{*^{\prime}}<S_{T}$ and $S_{T}^{*}<S_{T}<S_{3}^{*}$, the following assertions hold.
(1) Assume that $I_{1}^{*}>H_{1}$, and further,

- if $I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(2) Assume that $H_{2}<I_{1}^{*}<H_{1}$, and further,
- if $I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(3) Assume that $I_{3}^{*}<I_{1}^{*}<H_{2}$, and
- if $I_{T}<I_{3}^{*}$, then $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(4) Assume that $I_{1}^{*}<I_{3}^{*}$, and further,
- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{3} E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Proposition 18. Under the conditions $S_{1}^{*}<S_{T}<S_{T}^{*}$ and $S_{T}^{*}<S_{T}<S_{3}^{*}$, we have the following results.
(1) Assume that $I_{1}^{*}>H_{2}$, and further,

- if $I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(2) Assume that $I_{3}^{*}<I_{1}^{*}<H_{2}$, and further,
- if $I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(3) Assume that $I_{1}^{*}<I_{3}^{*}$, and further,
- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{* \prime}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Proposition 19. Under the conditions $S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}}$ and $S_{T}<S_{T}^{*}<S_{3}^{*}$, we have the following results.
(1) Assume that $I_{3}^{*}>H_{1}, I_{1}^{*}<H_{2}<H_{1}<I_{3}^{*}$, and

- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(2) Assume that $H_{2}<I_{3}^{*}<H_{1}, I_{1}^{*}<H_{2}<I_{3}^{*}<H_{1}$, and further,
- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $H_{2}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{T}>I_{3}^{*}$, then
\diamond if $I_{T}^{*}>H_{1}$, and further,
\diamond if $I_{3}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
\diamond if $I_{T}^{*}<H_{1}$, and
\diamond if $I_{3}^{*}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3} ;$
\diamond if $I_{T}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(3) Assume that $I_{1}^{*}<I_{3}^{*}<H_{2}, I_{1}^{*}<I_{3}^{*}<H_{2}<H_{1}$, and
- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{T}>H_{2}$,
\diamond if $I_{T}^{*}>H_{1}$, and further,
\diamond if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
\diamond if $I_{T}^{*}<H_{1}$, and further,
\diamond if $H_{2}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $I_{T}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(4) Assume that $I_{3}^{*}<I_{1}^{*}$, further, $I_{3}^{*}<I_{1}^{*}<H_{2}<H_{1}$, and
- if $I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $I_{T}>H_{2}$, and further,
\diamond if $I_{T}^{*}>H_{1}$, and
\diamond if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $H_{1}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
\diamond if $I_{T}^{*}<H_{1}$, and further
\diamond if $H_{2}<I_{T}<I_{T}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3} ;$
\diamond if $I_{T}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
\diamond if $H_{1}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
Proposition 20. Suppose $S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}}$ and $S_{T}<S_{3}^{*}<S_{T}^{*}, E_{s 3}^{+} \notin \ell_{3}$ and $E_{s 1}^{+} \notin \ell_{4} \subset \Pi_{1}$, we have the following results.
(1) Assume that $I_{3}^{*}>H_{1}$, and further,
- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $H_{2}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \notin \ell_{3} E_{s 1}^{-} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.
(2) Assume that $I_{3}^{*}<H_{1}$, and further,
- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{1}^{*}<I_{T}<H_{2}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $H_{2}<I_{T}<I_{3}^{*}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$;
- if $I_{3}^{*}<I_{T}<H_{1}$, we have $E_{s 3}^{-} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$;
- if $H_{1}<I_{T}<I_{T}^{* \prime}$, we have $E_{s 3}^{-} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$.

Based on Propositions 16-20, the following summary is given.
C1. Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \in \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{1-1}. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and all trajectories of the system (2.4) will converge to the equilibrium point E_{3}^{R}. The result of this numerical simulation is shown in Figure 4(a), where

$$
C_{1-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, I_{T}<\min \left\{I_{1}^{*}, I_{3}^{*}\right\}\right\} .
$$

C 2 . Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{2-1}. Then, we know that $E_{s 1}^{+} \in \ell_{4} \subset \Pi_{1}$ is a stable pseudo-equilibrium, and all solutions of the system (2.4) will approach the point $E_{s 1}^{+}$, as shown in Figure 4(b), where

$$
C_{2-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, I_{3}^{*}<I_{T}<\min \left\{H_{2}, I_{1}^{*}\right\}\right\} .
$$

C3. Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{3-1}. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and all trajectories of the system (2.4) will converge to the point $E_{T}=\left(S_{T}, I_{T}\right)$. The result of this numerical simulation is shown in Figure 4(c), where

$$
C_{3-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{2}<I_{T}<\min \left\{H_{1}, I_{1}^{*}\right\}\right\} .
$$

C4. Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4} \subset \Pi_{1}, E_{1} \notin \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{4-1}. Then, we know that the point $E_{s 3}^{+} \in \ell_{3}$ is a stable pseudo-equilibrium, and all solutions of the system (2.4) will approach the point $E_{s 3}^{+}$, as shown in Figure 4(d), where

$$
C_{4-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{1}<I_{T}<I_{1}^{*}\right\} .
$$

C5. Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set $C_{5-1} \cup C_{5-2} \cup C_{5-3} \cup C_{5-4}$. Then, we know that the system (2.4) does not have a pseudoequilibrium, and all trajectories of the system (2.4) will converge to the point E_{1}^{R}. The result of this numerical simulation is shown in Figure 4(e), where

$$
\begin{aligned}
& C_{5-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, I_{1}^{*}<I_{T}<I_{T}^{*}, \text { if } S_{T}^{*^{\prime}}<S_{1}^{*}<S_{T} \text { and } S_{T}^{*}<S_{T}<S_{3}^{*}\right\}, \\
& C_{5-2}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{1}<I_{T}<I_{T}^{*^{\prime}}, \text { if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}^{*}<S_{T}<S_{3}^{*}\right\}, \\
& C_{5-3}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{1}<I_{T}<I_{T}^{*^{\prime}} \text {, if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{T}^{*}<S_{3}^{*}, I_{3}^{*}<H_{1}\right\}, \\
& C_{5-4}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, \max \left\{H_{1}, I_{3}^{*}\right\}<I_{T}<I_{T}^{*^{*}}, \text { if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{3}^{*}<S_{T}^{*}\right\} .
\end{aligned}
$$

C6. Let $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{6-1}. Then, we conclude that $E_{s 3}^{-} \in \ell_{3}$ is an unstable pseudo-equilibrium, and the solution of the system (2.4) will approach the point E_{1}^{R} or E_{3}^{R} or E_{T}. The result of this numerical simulation is shown in Figure 4(f), where

$$
C_{6-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, I_{1}^{*}<I_{T}<\min \left\{H_{2}, I_{3}^{*}\right\}\right\} .
$$

C7. Let $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{7-1}. Then, we know that $E_{s 3}^{-} \in \ell_{3}$ is an unstable pseudo-equilibrium, where $E_{s 1}^{+} \in \ell_{4}$ is stable. The solution of the system (2.4) will tend to $E_{s 1}^{+}$or E_{1}^{R} or E_{T}. The result of this numerical simulation is shown in Figure 5(a), where

$$
C_{7-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, \max \left\{I_{1}^{*}, I_{3}^{*}\right\}<I_{T}<H_{2}\right\} .
$$

C8. Let $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set $C_{8-1} \cup C_{8-2} \cup C_{8-3} \cup C_{8-4}$. Then, we conclude that $E_{s 3}^{-} \in \ell_{3}$ is an unstable pseudoequilibrium. The solution of the system (2.4) will approach the equilibrium point E_{1}^{R} or E_{T}, as shown in Figure 5(b), where

$$
\begin{aligned}
& C_{8-1}=\left\{\begin{array}{l}
\left.\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, \max \left\{I_{1}^{*}, H_{2}\right\}<I_{T}<H_{1}, \text { if } S_{1}^{*}<S_{T}^{*^{\prime}}<S_{T} \text { and } S_{T}^{*}<S_{T}<S_{3}^{*}\right\}, \\
C_{8-2}
\end{array}=\left\{\begin{array}{l}
\text { a } \\
C_{8-3}
\end{array}=\left\{\begin{array}{l}
\left.R_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, \max \left\{I_{1}^{*}, H_{2}\right\}<I_{T}<H_{1}, \text { if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}^{*}<S_{T}^{*}<S_{3}^{*}<S_{3}^{*}<S_{3}^{*}, I_{T}^{*}<I_{T}<H_{1}, \text { if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{T}^{*}<S_{3}^{*}\right\}, \\
C_{8-4}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, I_{3}^{*}<I_{T}<H_{1}, \text { if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{3}^{*}<S_{T}^{*}\right\} .
\end{array}\right.\right.\right.
\end{aligned}
$$

Figure 4. The trajectory of system (2.4) under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}, d=0.1, \delta=$ $0.1, r=0.1, \gamma=0.2, K=1$, (a) where $\beta=0.7, p=0.2, q=0.2, S_{T}=3, I_{T}=1$; (b) where $\beta=0.7, p=0.2, q=0.2, S_{T}=3, I_{T}=2.8$; (c) where $\beta=0.7, p=0.2, q=0.2, S_{T}=3, I_{T}=$ 3.1; (d) where $\beta=0.7, p=0.2, q=0.2, S_{T}=3, I_{T}=3.21$; (e) where $\beta=0.7, p=0.2, q=$ $0.2, S_{T}=3, I_{T}=3.4$; (f) where $\beta=1.8, p=0.6, q=0.4, S_{T}=2.3, I_{T}=2.5$.

Figure 5. The trajectory of system (2.4) under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}, d=0.1, \delta=$ $0.1, r=0.1, \gamma=0.2, K=3$, (a) where $\beta=1.8, p=0.6, q=0.4, S_{T}=2.3, I_{T}=2.8$; (b) where $\beta=1.8, p=0.6, q=0.4, S_{T}=2.3, I_{T}=3$; (c) where $\beta=1.2, p=0.5, q=0.4, S_{T}=$ $3, I_{T}=3.2$; (d) where $\beta=1.5, p=0.5, q=0.4, S_{T}=1.46, I_{T}=2.67$; (e) where $\beta=1.5, p=$ $0.5, q=0.4, S_{T}=1.31, I_{T}=2.64$; (f) where $\beta=1.5, p=0.5, q=0.4, S_{T}=1.7, I_{T}=2.8$.

Figure 6. Dynamics of system (2.4) under Case 2: $S_{1}^{*}<S_{T}<S_{2}^{*}=S_{3}^{*}$. Here, the parameter values are $\beta=1.5, d=0.01, \delta=0.01, r=0.01, \gamma=0.2, K=3, p=0.5, q=0.4, S_{T}=$ $1.48, I_{T}=2.8$ and $d+\delta+r=0.03$.

C9. Let $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \in \ell_{3}, E_{s 1}^{-} \notin \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to C_{9-1}. Then, we conclude that $E_{s 3}^{-} \in \ell_{3}$ is a unstable pseudo-equilibrium, where $E_{s 3}^{+} \in \ell_{3}$ is stable. The solution of the system (2.4) will tend to the equilibrium point $E_{s 3}^{+}$or E_{1}^{R} or E_{T}. The results of this numerical simulation are shown in Figure 5(c), where

$$
C_{9-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{1}<I_{T}<I_{T}^{*^{\prime}}, \text { if } S_{1}^{*}<S_{T}^{*^{\prime}}<S_{T} \text { and } S_{T}^{*}<S_{T}<S_{3}^{*}\right\} .
$$

C10. Let $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set $C_{10-1} \cup C_{10-2}$. Then, we conclude that $E_{s 3}^{-} \in \ell_{3}$ is an unstable pseudo-equilibrium. The solution of the system (2.4) will converge to E_{1}^{R} or E_{3}^{R} or E_{T}, as shown in Figure $5(\mathrm{~d})$, where

$$
\begin{aligned}
& C_{10-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{2}<I_{T}<\min \left\{H_{1}, I_{3}^{*}\right\} \text {, if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{T}^{*}<S_{3}^{*}\right\} \text {, } \\
& C_{10-2}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{2}<I_{T}<\min \left\{H_{1}, I_{3}^{*}\right\} \text {, if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{3}^{*}<S_{T}^{*}\right\} \text {. }
\end{aligned}
$$

C 11 . Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \notin \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \in \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set $C_{11-1} \cup C_{11-2}$. Then, we show that $E_{s 1}^{-} \in \ell_{4}$ is an unstable pseudo-equilibrium. The solution of the system (2.4) will tend to E_{1}^{R} or E_{3}^{R} or E_{T}, as shown in Figure 5(e), where

$$
\begin{aligned}
& C_{11-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{1}<I_{T}<I_{3}^{*} \text {, if } S_{1}^{*}<S_{T}<S_{T}^{*} \text { and } S_{T}<S_{T}^{*}<S_{3}^{*}\right\}, \\
& C_{11-2}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, H_{1}<I_{T}<I_{3}^{*} \text {, if } S_{1}^{*}<S_{T}<S_{T}^{*} \text { and } S_{T}<S_{3}^{*}<S_{T}^{*}\right\} \text {. }
\end{aligned}
$$

C12. Let $E_{s 3}^{-} \in \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, if $S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}}$ and $S_{T}<S_{T}^{*}<S_{3}^{*}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{12-1}. Then, we know that the point $E_{s 3}^{-} \in \ell_{3}$ and the value $E_{s 1}^{-} \in \ell_{4}$ are unstable pseudo-equilibriums, where $E_{s 1}^{+} \in \ell_{4}$ is stable. The solution of the system (2.4) will approach $E_{s 1}^{+}$or E_{1}^{R} or E_{T}. The result of this numerical simulation is shown in Figure 5(f), where

$$
C_{12-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, \max \left\{I_{3}^{*}, H_{2}\right\}<I_{T}<\min \left\{H_{1}, I_{T}^{*}\right\}\right\} .
$$

C13. Let $E_{s 3}^{-} \notin \ell_{3}, E_{s 3}^{+} \notin \ell_{3}, E_{s 1}^{-} \in \ell_{4}, E_{s 1}^{+} \in \ell_{4}, E_{1} \in \Gamma_{1}, E_{3} \notin \Gamma_{3}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set C_{13-1}. Then, we conclude that $E_{s 1}^{-} \in \ell_{4}$ is an unstable pseudo-equilibrium, where $E_{s 1}^{+} \in \ell_{4} \subset \Pi_{1}$ is stable. The solution of the system (2.4) will converge to $E_{s 1}^{+}$or E_{1}^{R} or E_{T}, as shown in Figure 6, where

$$
C_{13-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{1}^{*}<S_{T}<S_{3}^{*}, \max \left\{I_{3}^{*}, H_{1}\right\}<I_{T}<I_{T}^{*}, \text { if } S_{1}^{*}<S_{T}<S_{T}^{*^{\prime}} \text { and } S_{T}<S_{T}^{*}<S_{3}^{*}\right\} .
$$

5. Sliding dynamics and bifurcations of (2.4) under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$

In this part, we first consider sliding mode dynamics of (2.4) on Π_{1} under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$. Second, the sliding mode dynamics on Π_{2} are given under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$. In addition, we investigate the bifurcations of (2.4) under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$. Finally, some numerical simulations are displayed to confirm the results.

5.1. Sliding mode dynamics on Π_{1} under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$

If $\left\langle n_{1}, F_{1}\right\rangle>0$ and $\left\langle n_{1}, F_{2}\right\rangle<0$ on ℓ_{5}, then ℓ_{5} is described as

$$
\ell_{5}=\left\{(S, I) \in \Pi_{1}: S_{1}^{*}<S<S_{2}^{*}\right\} .
$$

Next, the conditions of a pseudo-equilibrium on the sliding mode ℓ_{5} are given as follows.
Proposition 21. Under the condition $S_{T}^{*^{\prime}}>S_{2}^{*}, E_{s 3}^{+} \notin \ell_{5}$ and the following assertions hold.
(1) If $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}$;
(2) If $I_{1}^{*}<I_{T}<I_{2}^{*}$, we have $E_{s 3}^{-} \in \ell_{5}$;
(3) If $I_{T}>I_{2}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}$.

Proposition 22. Under the condition $S_{1}^{*}<S_{T}^{*^{*}}<S_{2}^{*}$, the following assertions hold.
(1) Assume that $I_{1}^{*}<I_{2}^{*}$, and further,

- if $I_{1}^{*}<I_{T}<I_{2}^{*}$, we have $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \notin l_{5}$;
- if $I_{2}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \in \ell_{5}$.
(2) Assume that $I_{1}^{*}>I_{2}^{*}$, and further,
- if $I_{2}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \in \ell_{5}$;
- if $I_{1}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \in \ell_{5}$.

Proposition 23. Under the condition $S_{T}^{*^{\prime}}<S_{1}^{*}, E_{s 3}^{-} \notin \ell_{5}$ and the following assertions hold.
(1) If $I_{T}<I_{2}^{*}$, we have $E_{s 3}^{+} \notin \ell_{5}$;
(2) If $I_{2}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{+} \in \ell_{5}$;
(3) If $I_{T}>I_{1}^{*}$, we have $E_{s 3}^{+} \notin \ell_{5}$.

Theorem 7. If $0<I_{T}<I_{T}^{*^{\prime}}$, the sliding mode ℓ_{5} has a stable pseudo-equilibrium $E_{s 3}^{+}$, and the sliding mode $\ell_{5} E_{s 3}^{-}$has an unstable pseudo-equilibrium.
5.2. Sliding mode dynamics on Π_{2} under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$

When $S_{2}^{*}=S_{3}^{*}<S_{T}$, the sliding mode dynamics on Π_{2} are the same as Section 3.2. We omit it here.

5.3. Bifurcations of system (2.4) under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}$

For this Case 3, the point E_{3} is a virtual equilibrium, denoted by E_{3}^{V}. Points E_{1} and E_{2} are changeable depending on I_{T}, and then we have the following.

Proposition 24. Under the condition $S_{T}^{*^{\prime}}>S_{2}^{*}$, the following assertions hold.
(1) If $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \in \Gamma_{2}$;
(2) If $I_{1}^{*}<I_{T}<I_{2}^{*}$, we have $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \notin \ell_{1}, E_{1} \in \Gamma_{1}, E_{2} \in \Gamma_{2}$;
(3) If $I_{2}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$;
(4) If $I_{T}>I_{T}^{*^{\prime}}$, we have that $E_{s 3}^{-}$and $E_{s 3}^{+}$do not exist, $E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$.

Proposition 25. Under the condition $S_{1}^{*}<S_{T}^{*^{\prime}}<S_{2}^{*}$, the following assertions hold.
(1) Assume that $I_{1}^{*}<I_{2}^{*}$, and further,

- if $I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \in \Gamma_{2}$;
- if $I_{1}^{*}<I_{T}<I_{2}^{*}$, we have $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \in \Gamma_{2}$;
- if $I_{2}^{*}<I_{T}<I_{T}^{*_{2}^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{1}, E_{s 3}^{+} \in \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$;
- if $I_{T}>I_{T}^{*^{\prime}}$, we have that $E_{s 1}^{-}$and $E_{s 1}^{+}$do not exist, $E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$.
(2) Assume that $I_{1}^{*}>I_{2}^{*}$, and further,
- if $I_{T}<I_{2}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \in \Gamma_{2}$;
- if $I_{2}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \in \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \notin \Gamma_{2}$;
- if $I_{1}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \in \ell_{5} E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$;
- if $I_{T}>I_{T}^{*^{\prime}}$, we have that $E_{s 3}^{-}$and $E_{s 3}^{+}$do not exist, $E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$.

Figure 7. The trajectory of the system (2.4) under Case 3: $S_{2}^{*}=S_{3}^{*}<S_{T}, d=0.01, \delta=$ $0.01, r=0.01, \gamma=0.2, K=3$, (a) where $\beta=0.7, p=0.2, q=0.2, S_{T}=3.8, I_{T}=1$; (b) where $\beta=1.5, p=0.5, q=0.2, S_{T}=3.8, I_{T}=2.8$; (c) where $\beta=0.7, p=0.2, q=$ $0.2, S_{T}=3.8, I_{T}=3.5$; (d) where $\beta=1.2, p=0.5, q=0.2, S_{T}=3.8, I_{T}=3.15$; (e) where $\beta=0.7, p=0.2, q=0.2, S_{T}=3.8, I_{T}=3$.

Proposition 26. Under the condition $S_{T}^{*^{*}}<S_{1}^{*}$, the following assertions hold.
(1) If $I_{T}<I_{2}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \in \Gamma_{2}$;
(2) If $I_{2}^{*}<I_{T}<I_{1}^{*}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \in \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \notin \Gamma_{2}$;
(3) If $I_{1}^{*}<I_{T}<I_{T}^{*^{\prime}}$, we have $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$;
(4) If $I_{T}>I_{T}^{*^{\prime}}$, we have that $E_{s 3}^{-}$and $E_{s 3}^{+}$do not exist, $E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$.

Based on Propositions 24-26, the following summary is given.
D1. Let $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \in \Gamma_{2}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set D_{1-1}. Then, we conclude that the system (2.4) does not have a pseudo-equilibrium, and all trajectories of the system (2.4) will converge to E_{2}^{R}. The result of this numerical simulation is shown in Figure 7(a), where

$$
D_{1-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, I_{T}<\min \left\{I_{1}^{*}, I_{2}^{*}\right\}\right\} .
$$

D2. Let $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \in \Gamma_{2}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set D_{2-1}. Then, we show that $E_{s 3}^{-} \in \ell_{5}$ is an unstable pseudo-equilibrium. The solution of the system (2.4) will approach E_{1}^{R} or E_{2}^{R}, as shown in Figure 7(b), where

$$
D_{2-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, I_{1}^{*}<I_{T}<I_{2}^{*}\right\} .
$$

D3. Let $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \notin \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set $D_{3-1} \cup$ $D_{3-2} \cup D_{3-3}$. Then, we know that the system (2.4) does not have a pseudo-equilibrium, and all trajectories of the system (2.4) will converge to E_{1}^{R}, as shown in Figure 7(c), where

$$
\begin{aligned}
& D_{3-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, I_{2}^{*}<I_{T}<I_{T}^{*^{\prime}} \text {, if } S_{T}^{*^{\prime}}>S_{2}^{*}\right\}, \\
& D_{3-2}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, I_{T}>I_{T}^{*^{\prime}} \text { if } S_{1}^{*}<S_{T}^{*^{\prime}}<S_{2}^{*}\right\} \text {, } \\
& D_{3-3}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, I_{1}^{*}<I_{T}<I_{T}^{*^{\prime}} \text {, if } S_{T}^{*^{\prime}}<S_{1}^{*}\right\} \text {. }
\end{aligned}
$$

D4. Let $E_{s 3}^{-} \in \ell_{5}, E_{s 3}^{+} \in \ell_{5}, E_{1} \in \Gamma_{1}, E_{2} \notin \Gamma_{2}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set D_{4-1}. Then, we show that $E_{s 3}^{-} \in \ell_{5}$ is an unstable pseudo-equilibrium, and the solution of system (2.4) will approach E_{1}^{R} or $E_{s 3}^{+}$, as shown in Figure 7(d), where

$$
D_{4-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, \max \left\{I_{1}^{*}, I_{2}^{*}\right\}<I_{T}<I_{T}^{*^{\prime}} \text {, if } S_{1}^{*}<S_{T}^{*^{\prime}}<S_{2}^{*}\right\} .
$$

D5. Let $E_{s 3}^{-} \notin \ell_{5}, E_{s 3}^{+} \in \ell_{5}, E_{1} \notin \Gamma_{1}, E_{2} \notin \Gamma_{2}$, and the value $\Upsilon=\left(S_{T}, I_{T}\right)$ belongs to the set D_{5-1}. Then, we conclude that $E_{s 3}^{+} \in \ell_{5}$ is a stable pseudo-equilibrium. All solutions of the system (2.4) will tend to $E_{s 3}^{+}$. The result of this numerical simulation is shown in Figure 7(e), where

$$
D_{5-1}=\left\{\Upsilon \in \mathbb{R}_{+}^{2}: S_{2}^{*}<S_{T}, I_{2}^{*}<I_{T}<I_{1}^{*}\right\} .
$$

Remark 1. For smooth system (2.1), we have discussed the three equilibrium points, that is, (0,0), the disease free equilibrium point $E_{i 1}(i=1,2,3)$ and the endemic equilibrium point $E_{i}(i=1,2,3)$ of (2.4). By constructing a Lyapunov function, we obtain the global stability of system (2.1) in Theorem 1.

For the non-smooth system (2.4), we investigate the non-smooth system (2.4) with two threshold control strategies. Using a Filippov analysis method, Green's formula, the comparison theorem and numerical simulation method, the rich dynamics of the system are given, such as the bistability phenomenon, the globally stable pseudo-equilibrium and the regular/virtulal equilibrium bifurcations. Through the two control strategies, we can control the disease individuals to the appropriate balance. In particular, Theorems 3, 6 and 7 in this paper cannot appear in the smooth system (2.1); please see Figure $4(b),(c)$. There is bistability in the system (2.4).

Remark 2. In [25], a Filippov model describing the effects of media coverage and quarantine on the spread of human influenza was considered, and the threshold conditions for stability switches were obtained analytically. The discontinuous system (2.4) considered in our paper is a logistic source, and [25] considered a linear source. Second, the dynamics are different. Our paper employs the Green's theorem and a Dulac function. Then, we show that two real equilibria occur simultaneously in our paper. Using numerical simulation methods, the sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy are given. The results of this paper are new with respect to [25].

6. The regular/virtulal equilibrium bifurcations

Based on the previous discussion, it is shown that system (2.4) will exhibit multiple equilibriums and sliding modes. In order to better construct the bifurcation diagram, we choose γ and I_{T} as bifurcation parameters, and the other parameters are fixed as shown in Figure 8. With the expressions of equilibria found in Section 2.3, the lines to divide the relevant parameter plane are given as follows:

$$
\begin{gathered}
l_{1}:=\left\{\left(\gamma, I_{T}\right) \left\lvert\, I_{T}=I_{1}^{*}=\frac{\gamma}{\beta}\left(1-\frac{d+\delta+r}{K \beta}\right)\right.\right\}, \\
l_{2}:=\left\{\left(\gamma, I_{T}\right) \left\lvert\, I_{T}=I_{2}^{*}=\frac{\gamma}{\beta(1-p)}\left(1-\frac{d+\delta+r}{K \beta(1-p)}\right)\right.\right\}, \\
l_{3}:=\left\{\left(\gamma, I_{T}\right) \left\lvert\, I_{T}=I_{3}^{*}=\frac{\gamma}{\beta(1-p)}\left(1-\frac{d+\delta+r}{K \beta(1-p)}-\frac{q}{r}\right)\right.\right\} .
\end{gathered}
$$

The three solid lines l_{1}, l_{2} and l_{3} divide the $\gamma-I_{T}$ two-dimensional plane space into four regions in the first quadrant. Suppose that the control value I_{T} satisfies $I_{3}^{*}<I_{T}<I_{2}^{*}$ and $I_{1}^{*}<I_{3}^{*}$ (that is, regions Ω_{2}^{*} and region Ω_{3}^{*}; see Figure 8), the points E_{2} and E_{3} are virtual equilibria points (denoted by E_{2}^{v}, and E_{3}^{v}, respectively), and $E_{s 1}^{-}$exists with the sliding mode domain. If the control value I_{T} satisfies $I_{T}>I_{2}^{*}$ (that is, Ω_{1}^{*}, as shown Figure 8), E_{2} is a regular equilibrium, while the point E_{3} is a virtual equilibrium (denoted by the equilibrium E_{2}^{R} and the equilibrium E_{3}^{ν}, respectively), and point $E_{s 1}^{-}$does not exist with the sliding mode domain. If $I_{T}<I_{3}^{*}$ (that is, Ω_{4}^{*}; see Figure 8), E_{3} is a regular equilibrium, while point E_{2} is a virtual equilibrium (denoted by E_{3}^{R} and E_{2}^{v}), and point $E_{s 1}^{-}$does not exist with the sliding mode domain.

Next, we choose q and I_{T} as bifurcation parameters, and the other parameters are fixed. From Proposition 1 in this paper, the lines to divide the relevant parameter plane are given as follows:

$$
l_{4}:=\left\{\left(q, I_{T}\right) \left\lvert\, I_{T}=I_{T}^{*}=\frac{q}{\beta p}+\frac{\left(\gamma-\frac{q}{p}\right)^{2} K}{4 \gamma(d+\delta+r)}\right.\right\}
$$

$$
l_{5}:=\left\{\left(q, I_{T}\right) \left\lvert\, I_{T}=\frac{q}{\beta p}\right.\right\} .
$$

The two solid lines l_{4} and l_{5} divide the $q-I_{T}$ two-dimensional plane space into three regions in the first quadrant \mathbb{R}^{+}. Suppose that the control value I_{T} satisfies $I_{T}>I_{T}^{*}$ (that is, region Ω_{7}; see Figure 9 (a)), then system (3.1) has no equilibrium. If the control value I_{T} satisfies $I_{T}^{*}>I_{T}>\frac{q}{\beta p}$ (that is, region Ω_{6}, as shown in Figure 9(a)), system (3.1) has two positive equilibria $E_{s 1}^{+}=\left(S_{s 1}^{+}, I_{T}\right)$ and $E_{s 1}^{-}=\left(S_{s 1}^{-}, I_{T}\right)$, where $S_{s 1}^{ \pm}=\frac{\left(\gamma-\frac{q}{p}\right) \pm \sqrt{\Delta_{1}}}{2 \gamma} K$. When the control value I_{T} satisfies $0<I_{T}<\frac{q}{\beta p}$ (that is, region Ω_{5}; see Figure 9(a)), system (3.1) has a unique positive equilibrium $E_{s 2}=\left(S_{s 2}, I_{T}\right)$, where $S_{s 2}=\frac{\left(\gamma-\frac{q}{p}\right)+\sqrt{\Delta_{1}}}{2 \gamma} K$.

Figure 8. The regular/virtulal equilibrium bifurcations where $\beta=0.7, p=0.2, q=0.2, d=$ $0.01, \delta=0.01, r=0.01, K=3$.

We choose γ and I_{T} as bifurcation parameters, and the other parameters are fixed. With Proposition 9 in this paper, the line to divide the relevant parameter plane is given as

$$
I_{6}:=\left\{\left(\gamma, I_{T}\right) \left\lvert\, I_{T}=I_{T}^{*^{\prime}}=\frac{\gamma K}{4(d+\delta+r)}\right.\right\} .
$$

The solid line l_{6} divides the $\gamma-I_{T}$ two-dimensional plane space into two regions in the first quadrant \mathbb{R}^{+}. Suppose that the control value I_{T} satisfies $I_{T}>I_{T}^{*^{\prime}}$ (that is, region Ω_{8}, as shown in Figure $9(\mathrm{~b})$), and then system (4.1) does not have an equilibrium. If the control value I_{T} satisfies $0<I_{T}<I_{T}^{*^{\prime}}$ (that is, region Ω_{9}, as shown in Figure $9(b)$), system (4.1) has two positive equilibria $E_{s 3}^{+}=\left(S_{s 3}^{+}, I_{T}\right)$ and $E_{s 3}^{-}=\left(S_{s 3}^{-}, I_{T}\right)$, where $S_{s 3}^{ \pm}=\frac{\gamma \pm \sqrt{\Delta_{2}}}{2 \gamma} K$.

Figure 9. The pseudo-equilibrium bifurcations, (a) where $\beta=0.7, p=0.2, d=0.01, \delta=$ $0.01, r=0.01, \gamma=0.2, K=3$; (b) where $\beta=0.7, p=0.2, d=0.01, \delta=0.01, r=0.01, q=$ $0.2, K=3$.

Remark 3. Notice that [30] considered the global dynamics of a Filippov predator-prey model with two thresholds for integrated pest management. By using Filippov theory, the sliding mode dynamics and global dynamics were established. Different from [30], our paper shows the dynamic behavior of the Filippov model with respect to all possible equilibria. It is shown that the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or two endemic equilibria under some conditions. Second, although both this paper and [30] discuss the global dynamics of a Filippov model with two thresholds, this paper first gives different control strategies. In particular, the two real equilibria occur simultaneously using methods such as Green's theorem and a Dulac function.

7. Discussion

In this paper, we have established a non-smooth system to determine whether it is necessary to adopt the control strategy of media coverage and quarantine of susceptible individuals according to the number of infected and susceptible individuals. Media coverage changes the transmission mode of influenza. Further, in order to reduce the spread of influenza, when the number of cases exceeds the larger infection threshold I_{T}, and the number of susceptible individuals is greater than S_{T}, we will quarantine the susceptible individuals. It is worth noting that there are two difficulties in this paper. First, the traditional continuity theory cannot be applied due to the non-smooth system with the broken line control strategy. For example, when proving the global stability of discontinuous systems, the traditional Lyapunov function cannot be similarly constructed. Second, Green's formula of continuous systems cannot be used to prove the existence of global stability of the pseudo equilibriums in discontinuous systems. In this paper, by choosing different thresholds I_{T} and S_{T} and using Filippov theory, we study the dynamic behavior of the Filippov model with respect to all possible equilibria.

The regular/virtulal equilibrium bifurcations are given. It is shown that the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or two endemic equilibria under some conditions.

Table 1. Dynamics of Filippov model (2.4).

Condition 1	Condition 2	Result
$S_{T}<S_{1}^{*}$	$\left(S_{T}, I_{T}\right) \in B_{1-1}$	Figure 2(a)
$S_{1}^{*}<S_{T}<S_{2}^{*}$	$\left(S_{T}, I_{T}\right) \in C_{1-1}$	Figure 4(a)
$S_{2}^{*}<S_{T}$	$\left(S_{T}, I_{T}\right) \in D_{1-1}$	Figure 7(a)

Table 2. Dynamics of Filippov model (2.4).

Condition 1	Condition 2	Result
$S_{T}<S_{1}^{*}$	$\left(S_{T}, I_{T}\right) \in B_{2-1}$	Figure 2(b)
	$\left(S_{T}, I_{T}\right) \in B_{3-1} \cup B_{3-2} \cup B_{3-3}$	Figure 2(c)
$S_{1}^{*}<S_{T}<S_{2}^{*}$	$\left(S_{T}, I_{T}\right) \in C_{2-1}$	Figure 4(b)
	$\left(S_{T}, I_{T}\right) \in C_{3-1}$	Figure 4(c)
	$\left(S_{T}, I_{T}\right) \in C_{4-1}$	Figure 4(d)
	$\left(S_{T}, I_{T}\right) \in C_{5-1} \cup C_{5-2} \cup C_{5-3} \cup C_{5-4}$	Figure 4(e)
$S_{2}^{*}<S_{T}$	$\left(S_{T}, I_{T}\right) \in D_{3-1} \cup D_{3-2} D_{3-3}$	Figure 7(c)
	$\left(S_{T}, I_{T}\right) \in D_{5-1}$	Figure 7(e)

Table 3. Dynamics of Filippov model (2.4).

Condition 1	Condition 2	Result
$S_{T}<S_{1}^{*}$	$\left(S_{T}, I_{T}\right) \in B_{4-1}$	Figure 2(d)
	$\left(S_{T}, I_{T}\right) \in B_{5-1}$	Figure 2(e)
$S_{1}^{*}<S_{T}<S_{2}^{*}$	$\left(S_{T}, I_{T}\right) \in C_{6-1}$	Figure 4(f)
	$\left(S_{T}, I_{T}\right) \in C_{7-1}$	Figure 5(a)
	$\left(S_{T}, I_{T}\right) \in C_{8-1} \cup C_{8-2} \cup C_{8-3} \cup C_{8-4}$	Figure 5(b)
	$\left(S_{T}, I_{T}\right) \in C_{9-1}$	Figure 5(c)
	$\left(S_{T}, I_{T}\right) \in C_{10-1} \cup C_{10-2}$	Figure 5(e)
	$\left(S_{T}, I_{T}\right) \in C_{11-1} \cup C_{11-2}$	Figure 5(e)
	$\left(S_{T}, I_{T}\right) \in C_{12-1}$	Figure 5(f)
	$\left(S_{T}, I_{T}\right) \in C_{13-1}$	Figure 6
	$\left(S_{T}, I_{T}\right) \in D_{2-1}$	Figure 7(b)
$S_{2}^{*}<S_{T}$	$\left(S_{T}, I_{T}\right) \in D_{4-1}$	Figure 7(d)

Next, we summarize the corresponding biological results of Tables 1-3. These results show that the choice of values of I_{T} and S_{T} is very important, and it determines whether to adopt control strategies.

- In Table 1, we know that the infection threshold value I_{T} is chosen to be small enough, i.e., $I \ll I_{T}$, and then the number of infected individuals will reach the equilibrium E_{1}^{R} of system (2.4).
- From Table 2, system (2.4) has a unique globally asymptotically stable pseudo-equilibrium $E_{s 1}^{+}$ or $E_{s 3}^{+}$if $I=I_{T}$ or admits a unique globally asymptotically stable equilibrium when $I<I_{T}$. Our control goal can be achieved finally, and there is no need to adjust the threshold strategy.
- In Table 3, the solution of system (2.4) will converge to a locally asymptotically stable equilibrium if $I<I_{T}$ or tends to a locally asymptotically stable equilibrium E_{3}^{R} when $I>I_{T}$ or pseudoequilibrium $E_{s 1}^{+}, E_{s 3}^{+}$if $I=I_{T}$. We show that it may be necessary to adjust the threshold policy according to the initial number of susceptible individuals and infected individuals. The results obtained have certain guiding significance for choosing thresholds and designing a corresponding threshold strategy.

Next, we consider the effect of key parameters in the subsystem on the basic regeneration number $R_{0 i}$ as follows.

The three-dimensional diagram of the parameter space (δ, d, R_{01}) is shown in Figure 10(a) under the parameter values of $K=4, \beta=0.5, r=0.2$. It observe when the parameter $\delta=0.8, d$ increase from 0.83 to 1 , the basic reproduction number R_{01} decreases correspondingly and is less than unit 1 . The trajectory of the subsystem (2.4) will converge globally to the free equilibrium (see Theorem 1), implying that the infected individuals extinct and then a stable free steady state occurs.

The three-dimensional diagram of the parameter space (β, p, R_{02}) is shown in Figure 10(b) under the parameter values of $K=2, d=0.1, r=0.05, \delta=0.05$. It is easy to observe when fixing the $p=0.5$, β increase from 0.78 to $1, R_{02}$ decreases correspondingly and is less than unit 1 . By using Theorem 1 , the infected individuals persist and the trajectory of the subsystem (2.4) will converge globally to the endemic steady state.

The three-dimensional diagram of the parameter space $\left(\beta, \delta, R_{01}\right)$ is shown in Figure $10(\mathrm{c})$ under the parameter values of $K=2, d=0.1, r=0.1$. We observe when the parameters δ, β increase from 0.6 to $1, R_{01}$ also increases correspondingly and is greater than the unit 1 . By using Theorem 1 , the infected individuals persist and the trajectory of the subsystem (2.4) will converge globally to the endemic steady state.

The three-dimensional diagram of the parameter space $\left(\beta, p, R_{03}\right)$ is shown in Figure 10 (d) under the parameter values of $K=1, \gamma=1.8, r=\frac{1}{27}, \delta=\frac{1}{27}, d=\frac{1}{27}$. It is easy to observe when fixing the parameter $p=0.2$, with a transmission rate β increase from 0.81 to $1, R_{03}$ increases correspondingly and is greater than the unit 1 . By using Theorem 1, the infected individuals persist, and the trajectory of the subsystem (2.4) will converge globally to the endemic steady state. When fixing the parameters $p=0.6$, transmission rate β increase from 0.81 to $1, R_{03}$ decreases correspondingly and is less than the unit 1 . The trajectory of the subsystem (2.4) will converge globally to the free equilibrium (see Theorem 1 of our paper), implying that the infected individuals become extinct, and then a stable free steady state occurs.

Figure 10. (a) Variation of the basic reproduction number R_{01} with the effect of parameters d and δ. (b) Variation of R_{02} with the effect of parameters β and p. (c) Variation of R_{01} with the effect of parameters β and δ. (d) Variation of R_{03} with the effect of parameters β and p.

In addition, this model has not been validated by actual influenza data, and we only have analyzed theoretically. In the next stage, we will verify and simulate the validity of the conclusions in actual time from some websites and statistics of health departments. However, the paper has studied the non-smooth system of two threshold control strategies and has validated the correctness of the theory through numerical simulation. Due to the serious lack of current influenza data from SARS-CoV-2 infections, the verification of the work is extremely difficult. However, the theory of this paper can
provide appropriate guidance for the current influenza by SARS-CoV-2 infection. In this paper, we only consider the dynamics of the system (2.4) if the basic reproduction number $R_{0 i}>1$. However, under the saturation rate $\frac{\beta S I}{1+I}$, and the conditions $R_{02}<R_{01}<1$ and $R_{02}<1<R_{01}$, the dynamical behaviors of system (2.4) and the method of proving global stability are not yet fully clear and would be our further topic.

Acknowledgments

We sincerely thank the anonymous referees for their very detailed and helpful comments on which improved the quality of this paper. This work is supported in part by the Yunnan Fundamental Research Projects (No: 202101BE070001-051).

Conflict of interest

The authors have no conflict of interest to declare in carrying out this research work.

References

1. D. M. Morens, A. S. Fauci, The 1918 influenza pandemic: insights for the 21st century, J. Infect. Dis., 195 (2007), 1018-1028. https://doi.org/10.1086/511989
2. M. Babakir-Mina, S. Dimonte, M. Ciccozzi, C. F. Perno, M. Ciotti, The novel swine-origin H1N1 influenza A virus riddle: is it a domestic bird H1N1-derived virus, New Microbiol., 33 (2010), 77-81.
3. F. Ferrajoli, Influenza in the Italian army \& the recent Asiatic pandemic in the group. II. The so-called Asiatic flu pandemic in the army, G. Med. Mil., 108 (1958), 309-337.
4. T. D. Rozen, Daily persistent headache after a viral illness during a worldwide pandemic may not be a new occurrence: Lessons from the 1890 Russian/Asiatic flu, Cephalalgia, 40 (2020), 1406-1409. https://doi.org/10.1177/0333102420965132
5. A. Sutter, M. Vaswani, P. Denice, K. H. Choi, J. Bouchard, V. M. Esses, Ageism toward older adults during the COVID-19 pandemic: intergenerational conflict and support, J. Soc. Issues, 2022 (2022). https://doi.org/10.1111/josi. 12554
6. S. Saha, G. Samanta, J. J. Nieto, Impact of optimal vaccination and social distancing on COVID-19 pandemic, Math. Comput. Simul., 200 (2022), 285-314. https://doi.org/10.1016/j.matcom.2022.04.025
7. D. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J. Schünemann, et al., Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV2 and COVID-19: a systematic review and meta-analysis, Lancet, 395 (2020), 1973-1987. https://doi.org/10.1016/S0140-6736(20)31142-9
8. H. W. Berhe, O. D. Makinde, Computational modelling and optimal control of measles epidemic in human population, Biosystems, 190 (2020), 104102. https://doi.org/10.1016/j.biosystems.2020.104102
9. H. W. Berhe, O. D. Makinde, D. M. Theuri, Optimal control and cost-effectiveness analysis for dysentery epidemic model, Appl. Math. Inf. Sci., 12 (2018), 1183-1195. https://doi.org/10.18576/amis/120613
10. A. Omame, N. Sene, I. Nometa, C. I. Nwakanma, E. U. Nwafor, N. O. Iheonu, et al., Analysis of COVID-19 and comorbidity co-infection model with optimal control, Optim. Control. Appl. Methods, 42 (2021), 1568-1590. https://doi.org/10.1002/oca. 2748
11. A. Babaei, M. Ahmadi, H. Jafari, A. Liya, A mathematical model to examine the effect of quarantine on the spread of coronavirus, Chaos, Solitons Fractals, 142 (2021), 110418. https://doi.org/10.1016/j.chaos.2020.110418
12. M. Z. Ndii, Y. A. Adi, Understanding the effects of individual awareness and vector controls on malaria transmission dynamics using multiple optimal control, Chaos, Solitons Fractals, 153 (2021), 111476. https://doi.org/10.1016/j.chaos.2021.111476
13. W. Li, J. Ji, L. Huang, J. Wang, Bifurcations and dynamics of a plant disease system under nonsmooth control strategy, Nonlinear Dyn., 99 (2020), 3351-3371. https://doi.org/10.1007/s11071-020-05464-2
14. W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Amer. Math. Soc., 148 (2020), 4389-4403. https://doi.org/10.1090/proc/15095
15. J. Deng, S. Tang, H. Shu, Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698
16. T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos, Solitons Fractals, 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825
17. A. Kouidere, L. E. L. Youssoufi, H. Ferjouchia, O. Balatif, M. Rachik, Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness, Chaos, Solitons Fractals, 145 (2021), 110777. https://doi.org/10.1016/j.chaos.2021.110777
18. C. A. K. Kwuimy, F. Nazari, X. Jiao, P. Rohani, C. Nataraj, Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action, Nonlinear Dyn., 101 (2020), 1545-1559. https://doi.org/10.1007/s11071-020-05815-z
19. M. A. Khan, A. Atangana, E. Alzahrani, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equations, 2020 (2020), 1-22. https://doi.org/10.1186/s13662-020-02882-9
20. A. Aleta, D. Martín-Corral, A. P. Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, et al., Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19, Nat. Hum. Behav., 4 (2020), 964-971. https://doi.org/10.1038/s41562-020-0931-9
21. Y. Yuan, N. Li, Optimal control and cost-effectiveness analysis for a COVID19 model with individual protection awareness, Physica A, 603 (2022), 127804. https://doi.org/10.1016/j.physa.2022.127804
22. A. Wang, Y. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination, Int. J. Bifurcation Chaos, 23 (2013), 1350144. https://doi.org/10.1142/S0218127413501447
23. M. De la Sen, A. Ibeas, On an $\operatorname{SE}(\mathrm{Is})(\mathrm{Ih}) A R$ epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic, Adv. Differ. Equations, 2021 (2021), 1-30. https://doi.org/10.1186/s13662-021-03248-5
24. O. Agossou, M. N. Atchadé, A. M. Djibril, Modeling the effects of preventive measures and vaccination on the COVID-19 spread in Benin Republic with optimal control, Results Phys., 31 (2021), 104969. https://doi.org/10.1016/j.rinp.2021.104969
25. C. Chen, N. S. Chong, R. Smith, A Filippov model describing the effects of media coverage and quarantine on the spread of human influenza, Math. Biosci., 296 (2018), 98-112. https://doi.org/10.1016/j.mbs.2017.12.002
26. J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31-53. https://doi.org/10.1007/s10884-007-9075-0
27. J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith, C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1-14. https://doi.org/10.1186/1471-2458-11-S1-S5
28. Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 1-9. https://doi.org/10.1038/srep07838
29. Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445. https://doi.org/10.3934/mbe.2013.10.445
30. W. Li, Y. Chen, L. Huang, J. Wang, Global dynamics of a Filippov predator-prey model with two thresholds for integrated pest management, Chaos, Solitons Fractals, 157 (2022), 111881. https://doi.org/10.1016/j.chaos.2022.111881
31. C. Chen, C. Li, Y. Kang, Modelling the effects of cutting off infected branches and replanting on fire-blight transmission using Filippov systems, J. Theor. Biol., 439 (2018), 127-140. https://doi.org/10.3917/nrt.401.0127
32. W. Zhou, Y. Xiao, J. M. Heffernan, A two-thresholds policy to interrupt transmission of West Nile Virus to birds, J. Theor. Biol., 463 (2019), 22-46. https://doi.org/10.1016/j.jtbi.2018.12.013
33. C. Dong, C. Xiang, W. Qin, Y. Yang, Global dynamics for a Filippov system with media effects, Math. Biosci. Eng., 19 (2022), 2835-2852. https://doi.org/10.3934/mbe. 2022130
34. W. Li, J. Ji, L. Huang, Z. Guo, Global dynamics of a controlled discontinuous diffusive SIR epidemic system, Appl. Math. Lett., 121 (2021), 107420 https://doi.org/10.1016/j.aml.2021.107420
35. W. Li, J. Ji, L. Huang, L. Zhang, Global dynamics and control of malicious signal transmission in wireless sensor networks, Nonlinear Anal. Hybrid Syst., 48 (2023), 101324. https://doi.org/10.1016/j.nahs.2022.101324
36. Z. Cai, L. Huang, Generalized Lyapunov approach for functional differential inclusions, Automatica, 113 (2020), 108740. https://doi.org/10.1016/j.automatica.2019.108740
37. W. Li, Y. Zhang, L. Huang, Dynamics analysis of a predator-prey model with nonmonotonic functional response and impulsive control, Math. Comput. Simul., 204 (2023), 529-555. https://doi.org/10.1016/j.matcom.2022.09.002
38. W. Li, J. Ji, L. Huang, Global dynamics analysis of a water hyacinth fish ecological system under impulsive control, J. Franklin Inst., 359 (2022), 10628-10652. https://doi.org/10.1016/j.jfranklin.2022.09.030
39. Z. Cai, L. Huang, Z. Wang, Fixed/Preassigned-time stability of time-varying nonlinear system with discontinuity: application to Chua's circuit, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2022), 2987-2991. https://doi.org/10.1109/TCSII.2022.3166776
40. Z. Cai, L. Huang, Z. Wang, Novel fixed-time stability criteria for discontinuous nonautonomous systems: Lyapunov method with indefinite derivative, IEEE Trans. Cybern., 52 (2020), 42864299. https://doi.org/10.1109/TCYB.2020.3025754
41. H. Tu, X. Wang, S. Tang, Exploring COVID-19 transmission patterns and key factors during epidemics caused by three major strains in Asia, J. Theor. Biol., 557 (2023), 111336. https://doi.org/10.1016/j.jtbi.2022.111336
42. J. Wang, Z. Huang, Z. Wu, J. Cao, H. Shen, Extended dissipative control for singularly perturbed PDT switched systems and its application, Trans. Circuits Syst. I Regul. Pap., 67 (2020), 52815289. https://doi.org/10.1109/TCSI.2020.3022729
43. W. Li, J. Ji, L. Huang, Y. Zhang, Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy, Chaos, Solitons Fractals, 167 (2023), 113077. https://doi.org/10.1016/j.chaos.2022.113077
44. J. Li, Q. Zhu, Stability of neutral stochastic delayed systems with switching and distributed-delay dependent impulses, Nonlinear Anal. Hybrid Syst., 47 (2023), 101279. https://doi.org/10.1016/j.nahs.2022.101279
45. C. Chen, P. Wang, L. Zhang, A two-thresholds policy for a Filippov model in combating influenza, J. Math. Biol., 81 (2020), 435-461. https://doi.org/10.1007/s00285-020-01514-w
46. Y. A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcation Chaos, 13 (2003), 2157-2188. https://doi.org/10.1142/S0218127403007874
47. N. S. Chong, B. Dionne, R. Smith, An avian-only Filippov model incorporating culling of both susceptible and infected birds in combating avian influenza, J. Math. Biol., 73 (2016), 751-784. https://doi.org/10.1007/s00285-016-0971-y

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

