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Abstract: The origin, location and cause of Parkinson’s oscillation are not clear at present. In this 
paper, we establish a new cortex-basal ganglia model to study the origin mechanism of Parkinson beta 
oscillation. Unlike many previous models, this model includes two direct inhibitory projections from 
the globus pallidus external (GPe) segment to the cortex. We first obtain the critical calculation formula 
of Parkinson’s oscillation by using the method of Quasilinear analysis. Different from previous studies, 
the formula obtained in this paper can include the self-feedback connection of GPe. Then, we use the 
bifurcation analysis method to systematically explain the influence of some key parameters on the 
oscillation. We find that the bifurcation principle of different cortical nuclei is different. In general, the 
increase of the discharge capacity of the nuclei will cause oscillation. In some special cases, the sharp 
reduction of the discharge rate of the nuclei will also cause oscillation. The direction of bifurcation 
simulation is consistent with the critical condition curve. Finally, we discuss the characteristics of 
oscillation amplitude. At the beginning of the oscillation, the amplitude is relatively small; with the 
evolution of oscillation, the amplitude will gradually strengthen. This is consistent with the 
experimental phenomenon. In most cases, the amplitude of cortical inhibitory nuclei (CIN) is greater 
than that of cortical excitatory nuclei (CEX), and the two direct inhibitory projections feedback from 
GPe can significantly reduce the amplitude gap between them. We calculate the main frequency of the 
oscillation generated in this model, which basically falls between 13 and 30 Hz, belonging to the 
typical beta frequency band oscillation. Some new results obtained in this paper can help to better 
understand the origin mechanism of Parkinson’s disease and have guiding significance for the 
development of experiments.  
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1. Introduction  

Parkinson’s disease is the second most common neurodegenerative brain disease and has a higher 
incidence rate among the elderly [1,2]. Parkinson’s disease places a great burden on society and the 
economy, and its research has attracted more and more attention from society. Postural imbalance, 
rigidity, tremors, etc. are typical symptoms of Parkinson’s patients [3,4]. The loss of neurons in the 
substantia nigra pars compacta, which causes a large loss of dopamine in the striatum, is considered to 
be the main cause of these symptoms [5,6]. The precise pathological mechanism of dopamine loss is 
still unclear, and many different views have been formed. Moreover, the excessive beta frequency 
synchronous oscillation observed in electroencephalogram is generally considered to be closely related 
to the emergence and disappearance of Parkinson’s symptoms [7–9].  

In the past, many brain network computing models have been developed to explore the origin 
mechanism of beta oscillation [10–18]. Especially, many studies have shown that beta oscillations in 
the basal ganglia may be induced by anomalous interaction of circuits that consist of the subthalamic 
nucleus (STN) and the globus pallidus pars externa (GPe) [19–24]. The STN contains a large number 
of glutamatergic neurons that exert excitatory inputs to the GPe; in turn, the GPe is mainly composed 
of GABAergic neurons, which give inhibitory feedback to the STN. Together, they form an inhibitory-
excitatory coupling loop. Nevado Holgado et al. pointed out that the STN-GPe network can produce 
beta oscillation independently, and coupling weights and delays in the loop have great influence on 
oscillation [19]. Recently, Hu et al. explored the bidirectional Hopf bifurcation mechanism in an STN-
GPe model, which can uniformly explain the origin of the observed oscillation [24]. 

The cortex has a close input-output relationship with the basal ganglia. The cortex exerts strong 
excitatory projections to the basal ganglia, which is necessary for the existence of Parkinson’s 
oscillation [25,26]. In fact, the beta oscillation may also originate in the cortex and spread to other 
brain regions [27,28]. The loss of dopamine in the striatum can disrupt cortical function, which may 
be the cause of Parkinson’s symptoms [29]. The function of the primary motor cortex is damaged in 
Parkinson’s disease, which may be an effective goal for neurostimulation in alleviating motor 
dysfunction [30]. In anatomical structure, the cortex is mainly composed of long-range excitatory 
pyramidal neurons (CEX) and short-range inhibitory interneurons (CIN) [27,28]; they also form 
excitatory-inhibitory circuits, the structure of which allows easy generation of oscillations 
independently [31]. Pavlides et al. proposed a STN-GPe-CEX-CIN mean-field network [32]. In this 
model, the CEX-CIN loop exerts excitatory inputs to the STN. They found that beta oscillations can 
occur in the cortex, and the STN-GPe loop resonated with inputs from the cortex. Recently, Chen et 
al. obtained theoretical critical conditions for Hopf bifurcation of beta oscillation in a similar model [33]. 
We note that the mechanism of beta oscillation in the cortex is rarely discussed in previous models.  

In most previous models, the cortex had strong excitability projection to the subthalamic nucleus, 
and the effect of cortical outputs on beta oscillations has been widely studied [20,27,28,34–36]. In fact, 
there is a significant inhibitory feedback effect from basal ganglia to cortex [32], which also has a great 
influence on the origin of Parkinson’s oscillation, but there are few relevant theoretical models. 
Recently, experiments have shown that GPe has a direct inhibitory output on both excitatory and 
inhibitory neurons in the cortex [37,38]. In addition, deep brain stimulation technology has a 
significant effect on GPe to alleviate the symptoms of Parkinson’s disease [39–41], which may be 
regulated through these direct outputs to the cortex. Because many regions of the cortex have been 
reported to be closely related to the generation of Parkinson oscillations [42–44], we are interested 
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to know whether the direct inhibitory projection from the basal ganglia to the cortex can explain 
the origin and disappearance of beta oscillation. Computational models can provide some possible 
mechanisms for these pathways in inducing and controlling oscillations, which can be confirmed in 
experiments.  

In this paper, we propose a new model that consists of the STN, the GPe, the CEX and the CIN 
nucleus. In this model, there are direct inhibitory inputs from GPe to CEX and CIN, respectively. We 
mainly study the critical conditions of oscillation, Hopf bifurcation mechanism, amplitude and 
frequency characteristics of oscillation in the CEX-CIN circuit.  

The new model is described in Section 2, and the stability analysis is given in Sections 3 and 4. 
The theoretical mechanism and main results are obtained in Sections 5 and 6. Finally, the conclusions 
are summarized in Section 7. 

2. Model description 

 

Figure 1. An improved cortex-basal ganglia model. In this figure, each rectangle represents a 

neuron group. The cortex includes excitatory nuclei (CEX/E) and inhibitory nuclei (CIN/I), and 

the basal ganglia is composed of subthalamic nucleus (STN/S) and globus pallidus external (GPe/G) 

segment. Str and C represent constant inhibitory and excitatory inputs, respectively. The arrow 

represents the excitatory projection regulated by glutamate, and the dot represents the inhibitory 
projection regulated by GABAergic. 𝑇  and 𝑤 represent the time delay of signal transmission 

and coupling strength on the pathway, respectively, and subscripts p and q indicate the origin and 

termination positions of the signal, respectively.  

Figure 1 is our new model, which consists of cortex and basal ganglia. The cortex includes 
excitatory nuclei (CEX) and inhibitory nuclei (CIN), and the basal ganglia is composed of subthalamic 
nucleus (STN) and globus pallidus external (GPe) segment. C represents the constant excitatory input 
to CEX and STN, and Str represents the inhibitory input from the striatum. The arrow represents the 
excitatory projection regulated by glutamate, and the dot represents the inhibitory projection regulated 
by GABAergic. There is a self-feedback connection inside GPe. 𝑇  and 𝑤  represent the time delay 
of signal transmission and coupling strength on the pathway, respectively, and subscripts i and j 
indicate the origin and termination positions of the signal, respectively. CEX-CIN and STN-GPe loops 
are both “excitatory-inhibitory” coupling structures. In this model, there are two inhibitory feedback 
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projections from the GPe to cortex, which is different from many previous studies. For the convenience 
of the following description, CEX, CIN, STN and GPe are represented by marks E, I, S and G 
respectively. 

We use the following average discharge rate equation to describe the coupling relationship and 
dynamic behavior between neuron groups in Figure 1 [19,20,32,45,46]: 

                     𝜏 𝑆 𝑡   𝐹 𝑤 𝐺 𝑡 𝑇 𝑤 𝐶 𝑆 𝑡                 (1) 

 𝜏  𝐺 𝑡   𝐹 𝑤 𝑆 𝑡 𝑇 𝑤 𝐺 𝑡 𝑇 𝑤 𝑆𝑡𝑟 𝐺 𝑡    (2) 

𝜏 𝐸 𝑡   𝐹 𝑤 𝐺 𝑡 𝑇 𝑤 𝐼 𝑡 𝑇 𝑤 𝐶 𝐸 𝑡             (3) 

𝜏  𝐼 𝑡   𝐹 𝑤 𝐸 𝑡 𝑇 𝑤 𝐺 𝑡 𝑇 𝐼 𝑡               (4) 

where S(t), G (t), E(t) and I(t) represent the average discharge rates of STN, GPe, CEX and CIN, 
respectively; S(t-T), G(t-T), E(t-T) and I(t-T) represent the corresponding delay discharge rates. 𝜏 is 
the time constant corresponding to neuron group X. 𝐹 (Y = S, G, E, I) is the activation function of 
population Y, showing the effect of synaptic input on the average discharge rate [19,20,32].  

      𝐹 𝑠𝑦𝑡                             (5) 

   𝐹 𝑠𝑦𝑡                             (6) 

          𝐹 𝑠𝑦𝑡                             (7) 

     𝐹 𝑠𝑦𝑡                              (8) 

syt in Eqs (5)–(8) represents all possible inputs of the corresponding neuron group, 𝑀  is the 
maximum discharge rate of neuron group X, and 𝐵  is the basic discharge rate of neuron group X 
without external input. Similar to previous research [19,20,32], we show the curves of the activation 
function and its derivatives in Figure 2A,B, respectively. The activation functions of different neurons 
are heterogeneous, and all of them are S-shaped curves. The maximum derivative of the activation 
functions is 1.  

Table 1. Parameters and corresponding values in the model. 

Parameter Value Parameter Value 
𝜏  13 ms 𝜏  20.3 ms 
𝜏  12.1 ms 𝜏  14.7 ms 
𝑀  300 spk/s 𝑀  400 spk/s 
𝑀  75 spk/s 𝑀  310 spk/s 
𝐵  8.1 spk/s 𝐵  19 spk/s 
𝐵  5.5 spk/s 𝐵  16.58 spk/s 
𝑆𝑡𝑟 2.12 spk/s C 17.1 spk/s 
T 6.12 ms   
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Figure 2. A: The functional relationship between activation functions F syt ,  F syt ,
F syt ,  F syt  and synaptic input described in Eqs (5)–(8); they are all S-shaped curves. B: The 

corresponding relationship between the derivatives of activation functions 

F syt ,  F syt ,  F syt ,  F syt  and synaptic input, and the value range of derivatives is 0–1.  

Table 2. Default coupling weight in numerical simulation.  

Parameter Value 
𝑤  10.63 
𝑤  9.15 
𝑤  20.12 
𝑤  11.96 
𝑤  135.1 
𝑤  3.22 
𝑤  2.97 
𝑤  14.96 
𝑤  27.18 
𝑤  5.35 

All parameters and values used in this paper are listed in Tables 1 and 2, and they come from 
previous experiments and model studies [19,20,32,33,47–62]. Figure 3A,B show the simulated 
discharge rates in Parkinson’s state and healthy state, respectively. In Parkinson’s state, different neural 
nuclei show synchronous oscillation (OS). In the healthy state, the system is stable (SS), and the 
discharge rate of each neuron tends to be constant. Stability and oscillation are two basic states of 
the model.  
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Figure 3. A: Oscillation time series diagram in Parkinson’s state. B: Stable time series diagram in 

healthy state. In the oscillating state, the firing rate shows synchronous periodic resonance. In the 

steady state, the firing rate tends to the fixed point.  

3. Stability analysis of linearized system 

First, let 𝐹 syt syt j S, G, E, I  to obtain the linearized system (9)–(12) of Eqs (1)–(4). In 
this part, we use the Laplace transform and the theory of solutions of ordinary differential equations to 
obtain the oscillation critical conditions of system (9)–(12). For the feasibility of mathematical 
derivation, we assume that the time delay and time constant are the same for all projections and neurons, 
and they are recorded as T and τ respectively. Then, the following linear system is obtained:  

  𝜏 𝑆 𝑡 𝑤 𝐺 𝑡 𝑇 𝑆 𝑡                            (9) 

 𝜏 𝐺 𝑡 𝑤 𝑆 𝑡 𝑇 𝑤 𝐺 𝑡 𝑇 𝐺 𝑡               (10) 

  𝜏𝐸 𝑡 𝑤 𝐺 𝑡 𝑇 𝑤 𝐼 𝑡 𝑇 𝐸 𝑡               (11) 

𝜏 𝐼 𝑡 𝑤 𝐸 𝑡 𝑇 𝑤 𝐺 𝑡 𝑇 𝐼 𝑡                 (12) 

By writing Eqs (9)–(12) in matrix form and shifting the terms, we can get 

⎣
⎢
⎢
⎢
⎡𝑆’ 𝑡
𝐺’ 𝑡
𝐸’ 𝑡
𝐼’ 𝑡 ⎦

⎥
⎥
⎥
⎤

𝐴

𝑆 𝑡 𝑇
𝐺 𝑡 𝑇
𝐸 𝑡 𝑇
𝐼 𝑡 𝑇

𝐵

𝑆 𝑡
𝐺 𝑡
𝐸 𝑡
𝐼 𝑡

0                    (13) 

where  
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   A

⎣
⎢
⎢
⎢
⎢
⎡ 0 0 0

0 0

0
0

0

0⎦
⎥
⎥
⎥
⎥
⎤

                            (14) 

B

⎣
⎢
⎢
⎢
⎢
⎡ 0 0 0

0 0 0

0
0

0
0

0

0 ⎦
⎥
⎥
⎥
⎥
⎤

                                 (15) 

The following operations and properties of the Laplace transform will be used [63]: 

L f t T e F s ,                             (16) 

 L f t F s ,                                    (17) 

L f t sF s F 0 .                            (18) 

By performing the corresponding Laplace transform on the matrices other than A and B in Eq (13), we 
can get 

S 0
G 0
E 0
I 0

s

S s
G s
E s
I s

Ae

S s
G s
E s
I s

B

S s
G s
E s
I s

0            (19) 

Without losing generality, we set the initial conditions as 

S 0
G 0
E 0
I 0

0.                               (20) 

Then, 

sI Ae B 0,                              (21) 

where s is the eigenvalue of the characteristic equation, and I is the identity matrix. Take the 
determinant on both sides of Eq (21):  

     det sI Ae B 0,                           (22) 

i.e.,  
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⎣
⎢
⎢
⎢
⎢
⎡ s e 0             0

e s e 0             0

0
0

e

e

      s     e

e s ⎦
⎥
⎥
⎥
⎥
⎤

0.        (23) 

Then, 

𝑠 𝑠 e 𝑒 𝑠 𝑒 0 .   (24) 

Let  

∆ 𝑠 𝑒 ,                        (25) 

∆ 𝑠 𝑠 e 𝑒 .                (26) 

From the knowledge of ordinary differential equations, we know that the stability of system (9)–(12) 
is determined by the sign of the real part of eigenvalue s in Eq (24). When the real part of s is greater 
than 0, the system is unstable; when the real part of s is less than 0, the system is stable. Therefore, if 
we find the case that s is a pure imaginary number, we can get the stable and unstable transition 
boundary of the system, that is, the stability boundary. When ∆  or ∆  is equal to 0, Eq (24) holds. 
Next, we will discuss these two situations.  
(i) Assume the characteristic value s iλ (λ 0). Substitute the eigenvalue into Eq (25) and expand 
it by the Euler formula:  

    𝜆 𝑐𝑜𝑠2𝜆𝑇 𝑖𝑠𝑖𝑛2𝜆𝑇 0.               (27) 

Let τ 1，T ，and then Eq (27) becomes 

  𝜆 1 2𝜆𝑖 𝑤 𝑤 𝑐𝑜𝑠2𝜆T 𝑖𝑠𝑖𝑛2𝜆T 0.             (28) 

Separating the real part and imaginary part of Eq (28), we can obtain  

    λ 1 𝑤 𝑤 𝑐𝑜𝑠2𝜆T 0,                        (29) 

2λ 𝑤 𝑤 sin2λT 0.                           (30) 

Add the squares of Eqs (29) and (30), and we can get that  

λ 𝑤 𝑤 1.                                (31) 

The stability boundary condition can be obtained by substituting λ into Eq (29):  

T arccos 1 .                      (32) 
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Then, the conditions for oscillation of the linear system are as follows: 

arccos 1 .                       (33) 

(ii) Assume characteristic value s iλ (λ 0). We substitute the eigenvalue into Eq (26) and expand 
it by the Euler formula:  

𝑖𝜆 𝑖𝜆 cos 𝜆𝑇 𝑖 sin 𝜆𝑇 cos 2𝜆𝑇 𝑖 sin 2𝜆𝑇 0.     (34) 

Set τ 1，T ，and then Eq (34) can be written as 

 𝑖𝜆 1 𝑖𝜆 1 𝑤 cos 𝜆T 𝑖 sin 𝜆T 𝑤 𝑤 cos 2𝜆T 𝑖 sin 2𝜆T 0.  (35) 

Next, for the convenience and feasibility of derivation, we assume that the self-feedback 
connection of GPe is 0. That is, when 𝑤 0, Eq (35) is reduced to 

 𝜆 1 2𝜆𝑖 𝑤 𝑤 𝑐𝑜𝑠2𝜆𝑇 𝑖𝑠𝑖𝑛2𝜆𝑇 0.             (36) 

By separating the real part and imaginary part of Eq (36), Eqs (37) and (38) can be obtained:  

λ 1 𝑤 𝑤 𝑐𝑜𝑠2𝜆T 0,                        (37) 

2λ 𝑤 𝑤 sin2λT 0.                          (38) 

Add the squares of Eqs (37) and (38) and find the expression of λ,  

λ 𝑤 𝑤 1.                              (39) 

Replace λ in Eq (37) with (39), and the stability boundary condition can be obtained: 

T arccos 1 .                       (40) 

Then, the conditions for oscillation are as follows:  

 arccos 1 .                       (41) 

4. Mathematical analysis of stability conditions of nonlinear systems  

In this part, we use the results of oscillation boundary conditions of linear systems to analyze the 
stability boundary conditions of nonlinear systems. First, the equilibrium point of the nonlinear system 
can be obtained by minimizing Eq (42), which is recorded as S∗, G∗, E∗, I∗ .  

R 𝐹 𝑤 𝐺 𝑡 𝑇 𝑤 𝐶 𝑆 𝑡 𝐹 𝑤 𝑆 𝑡 𝑇 𝑤 𝐺 𝑡 𝑇 𝑤 𝑆𝑡𝑟 𝐺 𝑡

 𝐹 𝑤 𝐺 𝑡 𝑇 𝑤 𝐼 𝑡 𝑇 𝑤 𝐶 𝐸 𝑡  𝐹 𝑤 𝐸 𝑡 𝑇 𝑤 𝐺 𝑡 𝑇 𝐼 𝑡 . 
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(42) 

The characteristic equation of the new system can be obtained by linearizing the activation function at 
the equilibrium point S∗, G∗, E∗, I∗ :  

sI A e B 0,                               (43) 

where 

𝐴

⎝

⎜
⎜
⎛

0 F ∗
‘    0     0

F ∗
‘ F ∗

‘    0     0

0
0

F ∗
‘

F ∗
‘

      0   F ∗
‘

    F ∗
‘  0 ⎠

⎟
⎟
⎞

             (44) 

B

⎣
⎢
⎢
⎢
⎢
⎡ 0 0 0

0 0 0

0
0

0
0

0

0 ⎦
⎥
⎥
⎥
⎥
⎤

                              (45) 

The expressions of F ∗
‘ , F ∗

‘ , F ∗
‘ , F ∗

‘  are as follows:   

F ∗
‘ F 𝑤 𝐺∗ 𝑤 𝐶 ,                         (46) 

F ∗
‘ F 𝑤 𝑆∗ 𝑤 𝐺∗ 𝑤 𝑆𝑡𝑟 ,                   (47) 

F ∗
‘ F 𝑤 𝐺∗ 𝑤 𝐼∗ 𝑤 𝐶 ,                     (48) 

F ∗
‘ F 𝑤 𝐸∗ 𝑤 𝐺∗ .                         (49) 

Then, using the same steps as dealing with linear systems (Section 3), we can obtain two stability 
boundary conditions corresponding to nonlinear systems:  

∗
‘

∗
‘

arccos 1
∗

‘
∗

‘ ,              (50) 

∗
‘

∗
‘

arccos 1
∗

‘
∗

‘ .             (51) 

The corresponding two oscillation conditions are  
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∗
‘

∗
‘

arccos 1
∗

‘
∗

‘ ,                (52) 

∗
‘

∗
‘

arccos 1
∗

‘
∗

‘ .               (53) 

5.  Mechanism analysis of nonlinear oscillation boundary conditions  

In this part, we mainly analyze and study some possible generation mechanisms of the stability 
critical condition (50).  

5.1. The effect of the excitatory-inhibitory coupling loop E-I on oscillation 

The E and I form an excitatory-inhibitory coupling circuit in this model, and this structure is prone 
to oscillation. In this section, we study the mechanism of coupling weights in this loop on oscillations. 

 

Figure 4. Influence of coupling weight 𝑤  on oscillation. A：The theoretical oscillation critical 

condition obtained from Eq (50). The system is oscillating above the curve and stable below the 

curve. B: As 𝑤  increases, the change trend of average discharge rate of I. C: With the increase 

of 𝑤 , the state bifurcation diagram of I. D: With the increase of 𝑤 , the changing trend of the 

average discharge rate of E. E: With the increase of 𝑤 , the state bifurcation diagram of E. F, G: 

The oscillation time series diagrams of loop E-I with different values of 𝑤 . 

Figure 4 describes the influence of coupling weight 𝑤  on oscillation. Figure 4A shows the 
theoretical oscillation critical conditions obtained by simulating Eq (50). The system is oscillating 

above the curve and stable below the curve. Fix parameter  at an appropriate value (such as 4), and 
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with the increase of 𝑤 , the state of the system can transition from stable to oscillation (as shown by 
the arrow in Figure 4A). The influence mechanism of 𝑤  on nuclei E and I is different. From the 
connection structure in Figure 1, we know that the excitability coupling weight 𝑤  acts directly on 
I, and its increase directly promotes the improvement of discharge ability of I. Therefore, with the 
increase of 𝑤 , the ADR of I gradually increases, as shown in Figure 4B. When 𝑤  increases to a 
certain value, Hopf bifurcation (HP1) occurs in the state of I, and oscillation occurs in I, as shown in 
Figure 4C. For the convenience of the following description, we define HP1 to represent the Hopf 
bifurcation transition between the ordinary stable state (SS) and the oscillating state (OS). 𝑤  mainly 
affects the discharge state of E through pathway E → I → E , and we can infer that this effect is 
generally inhibitory from Figure 1. Therefore, with the increase of 𝑤  , the ADR of E gradually 
decreases, as shown in Figure 4D. When 𝑤  is relatively small, the ADR of E is relatively high, and 
the E is in a stable state of high discharge rate (HSS). Interestingly, when 𝑤  increases to a certain 
value, Hopf bifurcation phenomenon (HP2) will also appear in E, which represents the transition 
between the stable state of high discharge rate and oscillation state. Figure 4F is the stable state 
obtained by taking 𝑤  = 8; Figure 4G is the time series diagram of oscillation state obtained by 
taking 𝑤  = 42.  

 

Figure 5. Influence of coupling weight 𝑤  on oscillation. A: The theoretical oscillation critical 

condition obtained from formula (50). The system is oscillating above the curve and stable below 

the curve. B, C: With the increase of 𝑤 , the change trend of average discharge rate of nuclei E 

and I. D,E: With the increase of 𝑤 , the bifurcation diagram of the states of nuclei E and I. F–H: 

The oscillation time series diagrams of loop E-I with different values of 𝑤 .  

Figure 5 shows the influence of coupling weight 𝑤  on oscillation in the system. Figure 5A 
shows the theoretical oscillation critical condition obtained from Eq (50). The system is oscillating 
above the curve and stable below the curve. The oscillation critical curve presents a U-shape, and when 

 is fixed at a value (such as 2), with the increase of 𝑤 , the state of the system will be transferred 

from HSS to OS and finally to SS, as shown by the arrow in Figure 5A. 𝑤  is the inhibitory coupling 
weight directly acting on E, and the increase of 𝑤  will have a strong inhibitory effect on the activity 
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of E. 𝑤  mainly affects the discharge activity of I through indirect pathway “I → E → I”, and we can 
infer from Figure 1 that the increase of 𝑤  also exerts an inhibitory effect on I. Therefore, with the 
increase of 𝑤 , the ADRs of nuclei E and I are decreasing, as shown in Figures 5B and 5C. In 
Figure 5D,E, we simulate the state bifurcation diagrams of E and I, respectively. When 𝑤   is 
relatively small, the E-I circuit is in HSS; with the increase of 𝑤 , its inhibitory effect on E and I 
gradually increased. When 𝑤  increases to a certain value, HP2 bifurcation occurs in E-I loop, and 
HSS transitions to OS. If 𝑤  is too large, the oscillation state will disappear, and HP1 bifurcation 
will appear in E and I. The two-way bifurcation phenomenon shown in Figure 5D,E is consistent with 
the U-shaped curve in Figure 5A. Figure 5F–H describe three different states of loop E-I. Figure 5F 
shows the HSS state, with a relatively high average discharge rate. Figure 5G shows the OS state, and 
Figure 5H shows the SS state.  

 

Figure 6. The influence of time delay on loop E-I oscillation. A: Bifurcation diagram of the state 

of E with an increase in delay. B: Bifurcation diagram of the state of I with the change of delay. 

C,D: The stability and oscillation time series diagrams are obtained by taking different time delays. 

In addition to the coupling weight, time delay is another key parameter in the model. In Figures 4A 
and 5A, we can observe that the time delay must reach a certain value before oscillation can occur in 
the system. Figure 6 describes the effect of time delay on loop E-I oscillation. Figure 6A is a bifurcation 
diagram of the state of E with an increase in delay. Figure 6B is a state transition diagram of I with the 
change of delay. They show that when the time delay reaches a certain value, Hopf bifurcation will 
occur in E and I, and the oscillation amplitude will increase with the increase of time delay. Figure 6C 
is the stable time series obtained by taking T = 0.003 s. Figure 6D is the oscillation time series obtained 
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by taking T = 0.007 s. 

5.2. Influence of direct and indirect projections on loop E-I oscillation 

In this part, we study the influence of direct and indirect feedback inputs from STN and GPe on 
the oscillation in E and I.  

5.2.1. Influence of the direct inhibitory projections of GPe on oscillation 

 

Figure 7. The influence of direct inhibitory pathway “GPe→E” on oscillation. w  is the 

coupling weight on the pathway “GPe→E”. A: Oscillation critical curve simulated by Eq (50). The 

system is oscillating above the curve and stable below the curve. The data used in the simulation 

in figure A are w 3.12, w 28.97, w 12, w 37.18, w 37.35, C = 9. B,C: The 

change trend of ADR of E and I with an increase in w . D,E: With the increase of w , the 

bifurcation of E and I in different oscillation states. F–H: The time series diagrams obtained by 

taking w  as 5, 70 and 100, respectively.  

Figure 7 describes the effect of the direct inhibitory pathway “GPe→E” on oscillation. w  is 
the coupling weight on the pathway “GPe→E”. Figure 7A is the oscillation critical curve simulated by 
Eq (50). The system is oscillating above the curve and stable below the curve. As shown by the arrow 

in Figure 7A, when we fix abscissa  at an appropriate value (such as 7), with the increase of w , 

the system can realize bidirectional Hopf bifurcation transition between different stable states and 
oscillation states. w  is the inhibitory coupling weight directly acting on E; therefore, the increase 
of w  will lead to the decrease of ADR of E, as shown in Figure 7B. w  mainly affects the 
activities of I through the pathway “GPe→E→ I”. From Figure 1, we can infer that the increase of 
w  generally exerts an inhibitory effect on I; therefore, the ADR of I also decreases gradually, as 
shown in Figure 7C. Figure 7D,E show the bifurcation of different oscillation states of E and I, 
respectively. With the increase of w , loop E-I realizes the synchronous transfer of HSS, OS and SS. 
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When w  is small, its inhibitory effect is relatively small, and E and I are in the HSS state. When 
w  increases to a certain value, HP2 bifurcation appears in loop E-I, and oscillation begins to appear. 
When w  is too large, its inhibitory effect on loop E-I is too strong, and the oscillation of E and I 
disappears with the appearance of HP1. Figure 7F–H show time series diagrams obtained by taking 
w  as 5, 70 and 100, respectively, and they visually show the different discharge states of loop E-I.  

 

Figure 8. The influence of direct inhibitory pathway “GPe→I” on oscillation. w  is the coupling 

weight on the pathway “GPe→I”. A: Oscillation critical curve simulated by Eq (50). The system 

is oscillating above the curve and stable below the curve. The data used in the simulation in figure 

A are w 6.12, w 28.97, w 12, w 37.18, C = 9. B: The change trend of ADR of 

E with the increase of w . C: With the increase of w , the state bifurcation diagram of E. D: 

The change trend of ADR of I with the increase of w . E: State bifurcation transition diagram of 

I. F: A stable time series diagram of loop E-I. G: An oscillation time series diagram of loop E-I. 

“GPe→I” is a direct inhibitory pathway applied from globus pallidus to I. w  is the coupling 
weight on the pathway “GPe → I”. We simulate the effect of w  on oscillation in Figure 8A. As 
shown by the arrow in the figure, when the delay is fixed, the increase of w  can make the state of 
loop E-I transition from oscillation to stability, and the mechanism of oscillation in E and I is different. 
The GPe mainly acts on E through the pathway “GPe→ I → E” and the two coupling weights on this 
pathway are inhibitory. Therefore, the increase of w  exerts an excitatory effect on E, and the ADR 
of E increases with the increase of w  (as shown in Figure 8B). When w  increases to a certain 
value, HP2 bifurcation will occur in E, the oscillation of E disappears, and E enters into HSS state, as 
shown in Figure 8C. On the contrary, w  exerts a direct inhibitory effect on I; therefore, the ADR of 
I decreases with the increase of w  (as shown in Figure 8D). When w  increases to a certain value, 
HP1 bifurcation will occur in I, the oscillation of I disappears, and I enters into SS state, as shown in 
Figure 8E. Figure 8F is a stable time series diagram of loop E-I, and Figure 8G is an oscillation time 
series diagram of loop E-I. They are obtained by taking w  = 38.1 and w  = 10 respectively.  
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5.2.2. The effect of direct excitatory projection of cortex on oscillation 

In this model, we assume that there is a constant excitatory input from cortex to E, and w  
represents the coupling weight in the input. Figure 9 describes the influence of coupling weight w  
on oscillation. Figure 9A shows the theoretical boundary conditions obtained from Eq (50). The system 
is oscillating above the curve and stable below the curve. The left side of the curve is SS state, and the 

right side of the curve is HSS state. When  is fixed at a suitable value (such as 3), the increase of 

w  can realize the bidirectional Hopf bifurcation transition of loop E-I. w  acts directly on E, and 
its increase will certainly promote the improvement of discharge capacity of E. w  acts on I 
indirectly through the pathway “E→I” and“E→I” is an exciting pathway. Therefore, the increase of 
w  also promotes the improvement of the discharge capacity of I. Therefore, as shown in Figure 9B,C, 
the ADRs of E and I both increase with the increase of w . When w  is small, the discharge 
capacity of E-I is low, and the circuit is in a stable state. When w  increases to a certain value, HP1 
bifurcation occurs in E and I, and the loop begins to oscillate. When w  is too large, the oscillation 
will disappear, and the loop will enter into HSS state. Figure 9D,E intuitively show the bidirectional 
Hopf bifurcation phenomenon of E and I. 

 

Figure 9. Influence of coupling weight w  of direct excitability projection on oscillation. In this 

model, we assume that w  is the excitatory coupling weight from cortex to E. A: Oscillation 

critical curve simulated by Eq (50). The system is oscillating above the curve and stable below the 

curve. B: The change trend of ADR of E with an increase in w . C: The change trend of ADR of 

I with the increase of w . D,E: With the increase of w , the state bifurcation diagram of E and 

I, which intuitively show the phenomenon of bidirectional Hopf bifurcation. In figures D and E, 

we take C = 25 spk/s, τ = 0.0135 s, T = 0.0025 s, 𝑤  = 9.22. 
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5.2.3. Effects of subthalamic nucleus and globus pallidus circuit on oscillations in E and I 

The influence of subthalamic nucleus and globus pallidus circuit on E and I is indirect. In this 
part, we mainly study the influence mechanism of coupling weights related to STN-GPe loop on E-I 
loop oscillation. 

w  is an inhibitory coupling weight inside the loop STN-GPe. Figure 10 shows the effect of 
w  on oscillation. Figure 10A is the oscillation critical curve simulated by Eq (50). The system is 
oscillating above the curve and stable below the curve. As shown by the arrow in Figure 10A, when 

we fix   at a suitable value (such as 10), the increase of w   can make the state of the system 

transition from stability to oscillation. From the connection structure in Figure 1, we can analyze that 
w  affects nuclei E and I through the pathways “GPe→STN→GPe→E” and “GPe→STN→GPe→I”, 
respectively. From the competition of inhibition and excitation coupling weights in these two pathways, 
we can infer that the increase of w  can promote the discharge of E and I in general. Therefore, the 
ADR of E and I will increase with the increase of w  , as shown in Figure 10B,C. When w  
increases to a certain value, the discharge level of loop E-I exceeds a certain threshold, and HP1 
bifurcation occurs in E and I, thus starting oscillation. Figure 10D,E are bifurcation diagrams of E 
and I with the increase of w . In order to observe the stable and oscillating states more intuitively, 
we take w  = 6 and w  = 85, respectively, to simulate the time series diagram, as shown in 
Figure 10F,G. 

 

Figure 10. The influence of inhibitory coupling weight w  on oscillation. A: Oscillation critical 

curve simulated by Eq (50). The system is oscillating above the curve and stable below the curve. 

B,C: The change trend of ADR of E and I with an increase in w . D,E: With the increase of w , 

the state bifurcation diagram of E and I. F, G: The time series diagrams obtained by taking w  = 

6 and w  = 85, respectively.  

In this model, we assume that the striatum has an inhibitory constant input Str to GPe. Figure 11 
shows the effect of Str on oscillation. Figure 11A is the oscillation critical curve simulated by Eq (50). 
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The system is oscillating above the curve and stable below the curve. As shown by the arrow in Figure 

11A, when we fix  at a suitable value (such as 1), the increase of Str can make the state of the system 

transition from stability to oscillation. From the connection structure in Figure 1, we can analyze that 
Str affects nuclei E and I through the pathways “Str→GPe→E” and “Str→GPe→I”, respectively. The 
coupling weights in these two pathways are all inhibitory, and we can speculate that the increase of Str 
can promote the discharge of E and I in general. Therefore, the ADR of E and I will increase with the 
increase of Str, as shown in Figure 11B,C. When Str increases to a certain value, the discharge level 
of loop E-I exceeds a certain threshold, and HP1 bifurcation occurs in E and I, thus starting oscillation, 
as shown in Figure 11D,E. In order to observe the stable and oscillating states more intuitively, we 
take Str = 3 and Str = 20 to simulate the time series diagrams, as shown in Figure 11F,G. 

 

Figure 11. The effect of inhibitory striatum input Str on oscillation. A: The oscillation critical 

curve simulated by Eq (50). The system is oscillating above the curve and stable below the curve. 

B,C: The change trend of ADR of E and I with the increase of Str. D,E: With the increase of Str, 

the state bifurcation diagram of E and I. F,G: The stability and oscillation time series diagrams 

obtained by taking Str = 3 and Str = 20, respectively.  

W  is the excitability coupling weight inside the loop STN-Gpe. In Figure 12, we simulate the 
influence of w  on the oscillation in system E-I. The curve in Figure 12A is the critical condition of 
Hopf bifurcation, which is simulated by mathematical Eq (50). If the parameters fall above the curve, 
the system is oscillatory; if the parameters fall below the curve, the system is stable. As shown by the 

arrow in Figure 12A, when  is fixed at a certain value (such as 0.8), the increase of w  can make 

the state of the system transition from oscillation to stability, and the mechanism of oscillation in E 
and I is different. It can be seen from Figure 1 that w  mainly affects the active state of I through 
the inhibitory pathway “Gpe→I” and the increase of w  will strengthen the inhibitory effect of 
“GPe→I”. Therefore, the ADR of I decreases with the increase of w , as shown in Figure 12B. When 
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w  increases to a certain value, the oscillation of I is suppressed, and HP1 bifurcation occurs in I, as 
shown in Figure 12C. On the other hand, w  affects the active state of E through two pathways: 
“GPe→E” and “GPe→I→E”. Obviously, the increase of w  will strengthen the inhibitory effect of 
“GPe→E”. However, the two coupling weights on the pathway “GPe→I→E” are both inhibitory, and 
the increase of w  generally strengthens the excitatory effect of “GPe→I→E”. Because “I→E” is 
the internal pathway of loop E-I, we speculate that its impact on E is stronger than the external pathway. 
Therefore, through the competition between the pathways “GPe→E” and “GPe→I→E”, the increase 
of w  generally exerts an excitatory effect on E, and the ADR of E also increases, as shown in Figure 
12D. When w  reaches a certain value, the oscillation state of E shifts to HSS, and HP2 occurs, as 
shown in Figure 12E. Figure 12F,G show time series diagrams obtained by taking w  = 5 and w  
= 20, respectively. 

 

Figure 12. The influence of the excitability coupling weight w  in the loop STN-GPe on the 

oscillation. A：The oscillation critical curve simulated by formula (50). The system is oscillating 

above the curve and stable below the curve. B：The change trend of ADR of I with the increase of 

w . C：Bifurcation diagram of the state of I. D：The change trend of ADR of E with an increase 

in w . E：Bifurcation diagram of the state of E. F,G：The time series diagrams obtained by taking 

w =5 and w =20, respectively.  

In this model, we assume that there is an inhibitory self-feedback projection in the GPe, and w  
is the coupling weight in this projection. Obviously, w  affects the discharge activities of nuclei E 
and I through inhibitory pathways “Gpe→E” and “Gpe→I”, respectively. Because w  itself is 
inhibitory, the increase of w  exerts an excitatory effect on E and I. Figure 13A shows the oscillation 

critical conditions simulated on plane (w , ). As shown in the figure, with the increase of w , the 

state of the system will transition from oscillation to HSS. The ADR of E and I gradually increases 
with the increase of w , as shown in Figure 13B,C. When w  increases to a certain value, HP2 
bifurcation occurs in both E and I, as shown in Figure 13D,E. Figure 13F is the oscillation time series 
obtained by taking w  = 5. Figure 13G is the stable time series diagram of high discharge rate 
obtained by taking w  = 50.  
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Figure 13. The influence of the self-feedback coupling weight w  of the GPe on the oscillation. 

A：Oscillation critical curve simulated by Eq (50). The system is oscillating above the curve and 

stable below the curve. B,C: The change trend of ADR of E and I with an increase in w . D, E: 

The bifurcation diagrams of states of nuclei E and I. F,G: The time series diagrams obtained by 

taking w  = 5 and w  = 50, respectively. 

In this model, we assume that the cortex has a constant input C to both the STN and E. Next, we 
consider the influence of the change of C on the oscillations of E and I. From the connection structure 
in Figure 1, we know that the influence of C acting on E on circuit E-I is direct, and the influence of 
C acting on STN on circuit E-I is indirect. Therefore, we speculate that the direct effect on E is the 
main one, which is also consistent with the simulation results in Figure 14. C mainly affects I through 
the excitatory pathway “E→I”. Therefore, the increase of C exerts excitatory effects on both E and I. 
It can be seen from the critical curve in Figure 14A that the increase of C can make the system have 
bidirectional Hopf bifurcation. When C is small, the system is in a stable state; when C is large, the 
system is in HSS state. The ADRs of E and I both increase with the increase of C, as shown in Figure 
14B,C. Figure 14D,E show two specific state bifurcation diagrams, and the direction of bidirectional 
Hopf bifurcation is consistent with Figure 14A. Figure 14F–H show state time series diagrams obtained 
by taking C = 2, C = 9 and C = 14, respectively, which visually show the discharge state of loop E-I 
under different parameters. 

w  is the excitatory coupling weight directly acting on STN by the cortex. Obviously, w  
mainly acts on nuclei E and I through the pathways “STN→GPe→E” and “STN→GPe→I”, 
respectively, and these two pathways are generally inhibitory. When w  is relatively small, the 
discharge rate of loop E-I is relatively high, and E and I are in HSS state. When w  increases to a 
certain value, HSS will be suppressed, and the system will enter the oscillation state, as shown by the 
arrow in Figure 15A. To sum up, the ADR of E and I will decrease with the increase of w , as shown 
in Figure 15B,C. Figure 15D,E show two specific state bifurcation diagrams. As shown in the figures, 
when w  increases to a certain value, HP2 bifurcation occurs in E and I.  
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Figure 14. The influence of constant input C of cortex on system oscillation. A：Oscillation critical 

curve simulated by Eq (50).The system is oscillating above the curve and stable below the curve. 

In figure A, we take w =7,w =1.76, w 6.7. B,C: The change trend of ADR of E and I with 

an increase in C. D,E: The bidirectional Hopf bifurcation diagrams of nuclei E and I. F–H: The 

state time series diagrams obtained by taking C = 2, C = 9 and C = 14, respectively.  

 

Figure 15. Influence of coupling weight w  on oscillation. A: The oscillation critical curve 

simulated by Eq (50). The system is oscillating above the curve and stable below the curve. B,C: 

The ADR of E and I decreases with the increase of w . D,E: Hopf bifurcation diagrams of nuclei 

E and I with the increase of w . In Figures D and E, we take C = 25 spk/s, τ 0.01s, T
0.006s. 
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Figure 16. The effect of parameter w  on bifurcation transition. A, B: The state bifurcation 
transition and ADR simulation diagram of E. C, D: The state bifurcation transition and ADR 
simulation diagram of I. 

 

Figure 17. The effect of parameter w  on bifurcation transition. A, B: The simulation diagram 

of ADR and state bifurcation transition of E. C, D: The simulation diagram of ADR and state 

bifurcation transition of I. With the increase of w , HP bifurcation appears successively at both 

ends of the steady state.  



6539 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 6517-6550. 

Interestingly, when we simulate some parameters, we observe that HP bifurcation may occur at 
both ends of the steady state, which is a relatively rare phenomenon in previous model studies. As 
shown in Figure 16A, when w  increases, the oscillation state of E first enters stability after HP2 
bifurcation, and then the stable state enters oscillation state with the emergence of HP1. In Figure 16B, 
we simulate the ADR of E; we observe that the slope of ADR changes greatly at the bifurcation point, 
as shown by SLP1 and SLP2 in the figure. With the increase of w , HP1 and HP2 appear in the state 
of I, as shown in Figure 16C. The slope of ADR of I also changes greatly at the bifurcation point, as 
shown in Figure 16D. Therefore, we speculate that the sudden change of the slope of ADR is also an 
important reason for bifurcation transition. A similar phenomenon can also be observed in Figure 17. 

6. Influence of different coupling weights on oscillation amplitude and frequency 

6.1. Oscillation amplitude characteristics of E and I 

Oscillation amplitude is an important feature of periodic motion. The change of oscillation 
amplitude is closely related to the evolution of the disease and Parkinson’s symptoms. In this part, we 
mainly discuss the influence of coupling weight on oscillation amplitude. 

 

Figure 18. The influence of coupling weight (𝑤 ,𝑤 ) on the oscillation amplitude of nuclei. A,B: 

The influence of 𝑤 and 𝑤  on the amplitude of E in three-dimensional and two-dimensional 

cases. C, D: The amplitude variation trend of E obtained by taking 𝑤   = 18 and 𝑤   = 5, 

respectively. E, F: The change trend of the oscillation amplitude of nuclear group I described on 

the parameter plane (𝑤 ,𝑤 ). G, H: The amplitude change of I obtained by taking 𝑤  = 18 and 

𝑤  = 5, respectively. 

Figure 18 describes the influence of excitability-inhibition coupling weights (𝑤 ,𝑤 ) inside loop 
E-I on oscillation amplitude. Figure 18A,B show the effect of 𝑤  and 𝑤  on the amplitude of E in 
three-dimensional and two-dimensional cases, respectively. As shown in Figure 18B, when 𝑤  is 
fixed at a suitable value, the increase or decrease of 𝑤  will make the oscillation amplitude disappear, 
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as shown by the two-way arrow in the figure. Figure 18C shows the variation trend of the amplitude 
of E with the increase of 𝑤 , which is obtained by taking 𝑤  = 18. When 𝑤  is relatively small 
or too large, the oscillation amplitude will be 0. Within the range of oscillation parameters, the 
amplitude of E first increases and then decreases, which is consistent with the bidirectional bifurcation 
in Figure 5D. In the oscillation region, the influence of 𝑤  on the amplitude of E is relatively small. 
Figure 18D shows the change trend of the amplitude of E with the increase of 𝑤 , which is obtained 
by taking 𝑤  = 5. When 𝑤  increases to a certain value, the oscillation amplitude begins to appear 
and E begins to oscillate, which is consistent with the situation described in bifurcation diagram Figure 
4E. Figure 18E,F describe the change trend of the oscillation amplitude of I in the plane (𝑤 ,𝑤 ). 
The amplitude of I is much higher than that of E. Although the bifurcation mechanism of oscillation 
in E and I is different, their amplitude change trend under the influence of parameters 𝑤  and 𝑤  
is similar, as shown in Figure 18F. Figure 18G,H show the amplitude changes of I obtained by taking 
𝑤  = 18 and 𝑤  = 5, respectively, and they are consistent with the bifurcation trends shown in 
Figures 4C and 5E. 

 

Figure 19. The effects of striatal inhibitory input Str and cortical excitatory input C on oscillation 

amplitude. A: Three dimensional stereogram of the oscillation amplitude of E. B: The change trend 

of the amplitude of E in the parameter plane (C, Str). C, D: The variation curve of oscillation 

amplitude obtained by taking Str = 25 and C = 7 in figure B, respectively. E-H: The variation of 

oscillation amplitude of I corresponding to Figures A–D.  

In this model, we assume that there are two external constant inputs: striatal inhibitory input Str 
and cortical excitatory input C. Figure 19 depicts the effect of these two inputs on the oscillation 
amplitudes of nuclei E and I. Figure 19A is a three-dimensional stereogram of the amplitude of E, and 
Figure 19B is a corresponding plane graph. As shown by the two-way arrow in Figure 19B, the increase 
or decrease of C can make the oscillation amplitude disappear. Figure 19C is a specific amplitude 
change graph, where we fix Str to 25. With the increase of C, the E experiences SS, OS and HSS in 
turn, which is consistent with the bifurcation analysis in Figure 14D. As shown by the white arrow in 
Figure 19B, the increase or decrease of Str can also make the oscillation disappear, and this direction 
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depends on the size of C. For example, we take C = 7 and get a change trend of amplitude with Str in 
Figure 19D. When Str increases to a certain value, the oscillation begins to appear, and the oscillation 
amplitude basically remains unchanged, which is consistent with the bifurcation result in Figure 11D. 
Due to the synchronous resonance of E and I, the characteristics of oscillation amplitude in I are similar 
to those in E, as shown in Figure 19E–H. The amplitude of I is also greater than that of E, but their gap 
is smaller than that in Figure 18. 

𝑤  and 𝑤  are two direct inhibitory coupling weights feedback from GPe to cortex. Figure 
20 simulates the variation trend of the oscillation amplitude of loop E-I with the increase of 𝑤  and 
𝑤 . Figure 20A is a three-dimensional rendering. Figure 20B is a graph of the amplitude change of E 
obtained in the parameter plane (𝑤  ,𝑤  ). When both 𝑤   and 𝑤   are small, the oscillation 
amplitude of E is relatively large. When 𝑤  is fixed (such as 12), the increase of 𝑤  will increase 
the amplitude of E from 0. When 𝑤  increases to a certain value, the oscillation amplitude will drop 
to 0, as shown in Figure 20C; this is consistent with the bidirectional bifurcation case described in 
Figure 7D. When 𝑤  = 10 is fixed, the oscillation amplitude will disappear with the increase of 𝑤 , 
as shown in Figure 20D; this is consistent with the bifurcation trend in Figure 8C. Figure 20E,F 
describe the changing trend of the amplitude of I. Under the influence of parameters 𝑤  and 𝑤 , 
the amplitude difference between E and I is not very obvious, and even in some parameter ranges, the 
amplitude of I is lower than that of E. This is mainly because the increase of 𝑤  and 𝑤  both exert 
inhibitory effects on I. 

 

Figure 20. The influence of direct inhibitory feedbacks of the GPe on the oscillation amplitude. 

A,B: Three dimensional and two-dimensional diagrams of the oscillation amplitude of E described 

on the parameter plane (𝑤 ,𝑤 ). C,D: The oscillation amplitude curves obtained by taking 𝑤  

= 12 and 𝑤  = 10, respectively. E,F: The change of oscillation amplitude of nuclear group I. 

6.2. The frequency of system oscillation 

As mentioned in the introduction, excessive beta frequency oscillation activity is a typical feature 
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of Parkinson’s patients. Figure 21 describes the oscillation frequency of the system under the influence 
of four different parameters. In the steady state, the oscillation frequency is 0; in the oscillation state, 
the frequency of the system falls in the range of 13–30 Hz, which is a typical beta frequency band 
oscillation. Figure 21 shows that the model we establish is effective for studying Parkinson’s beta 
oscillation. 

 

Figure 21. Four trends of oscillation frequency with an increase in different parameters. A: The 

change of frequency is not obvious with an increase in 𝑤 . B: The frequency decreases with an 

increase in 𝑤 . C: The frequency changes irregularly with an increase in 𝑤 . D: The frequency 

decreases with the increase of Str. In all, the oscillation frequency of the system is mainly 

distributed between 13 and 30 Hz, which is a typical beta frequency band range. 

7. Conclusions 

In this paper, we propose a new improved cortex-basal ganglia model to study the origin and 
control mechanism of Parkinson beta oscillation. In this model, the cortex contains excitatory and 
inhibitory nuclei. The basal ganglia mainly contains the subthalamic nucleus and globus pallidus 
external segment, and the striatum is simplified as a constant input. Different from many previous 
models, in this new model, we assume that there are two direct inhibitory projections from GPe to the 
two nuclei of the cortex. This model includes two excitatory-inhibitory coupling loops: E-I and STN-
GPe. Theoretically, the circuit with this structure is prone to oscillation under certain conditions. 

First, we obtain two nonlinear oscillation critical conditions (50) and (51) of systems (1)–(4) by 
means of quasi linearization, Laplace transform and eigenvalue analysis. These two formulas show the 
relationship between the parameters in the model and the conditions to be met when the oscillation 
occurs. Equation (50) mainly describes the relationship between parameters and time delay in loop E-
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I, which rarely appears in previous model research, and is a new calculation formula. Moreover, we 
do not need to assume that the self-feedback connection of GPe is 0 to get Eq (50), which is also 
different from previous studies. Equation (51) is a calculation formula obtained by assuming that the 
self-feedback connection of GPe is 0, and it mainly describes the relationship between the coupling 
weight, time delay and time constant of the loop STN-GPe. We mainly use Eq (50) to simulate the 
critical conditions of oscillation, combined with bifurcation analysis and calculation of average 
discharge rate to discuss the generation of oscillation and transition dynamic mechanism. Since the 
oscillation characteristics of E and I nuclei have received little attention in previous studies, our 
simulation and analysis mainly focus on these two nuclei. 

We first discuss the influence of the two coupling weights 𝑤  and 𝑤  in the loop E-I and the 
time delay on the oscillation. The critical condition of oscillation is a monotonic or U-shaped curve. 
The system above the curve is oscillatory, and the system below the curve is stable. The same parameter 
has different effects on E and I, and the origin mechanism of oscillation in different nuclei may also 
be different. For example, the increase of 𝑤   promotes the discharge of I but suppresses the 
discharge of E. Average discharge rate (ADR) describes the discharge capacity of nuclei. Generally, 
when ADR exceeds a certain value, the nucleus will oscillate, and the state of the nucleus will change 
from the stability of lower ADR to oscillation. We denote this type of Hopf bifurcation as HP1, as 
shown in Figure 4C. In some cases, if the ADR of the nucleus is too large, the nucleus will be in the 
discharge saturation state or high discharge rate state; and in order to produce oscillation, it is necessary 
to reduce the ADR of the nucleus, as shown in Figure 4E. We call the bifurcation in this case HP2. 
HP1 and HP2 can explain all bifurcation behaviors in this model. The increase of 𝑤  exerts both 
inhibitory effects on E and I, and at this time, the origin mechanism of oscillation in E and I is similar, 
as shown by the U-shaped critical curve and bidirectional bifurcation diagram in Figure 5. Time delay 
is an indispensable parameter in this model, as we know from Eqs (52) and (53) that the system will 
oscillate only when the time delay exceeds a certain value. In Figure 6, we simulate the state transition 
diagram of E and I with respect to the increase of delay. As shown in the figure, when the time delay 
is large enough, HP1 bifurcation will occur in E and I, and the oscillation amplitude also increases 
with the increase of T.  

Then, we study the influence of several projections that directly affect the loop E-I on the 
oscillation. 𝑤  and 𝑤  are the two inhibitory feedback coupling weights from GPe to E-I loop.  
𝑤  exerts an inhibitory effect on E and I, and the increase of 𝑤  can make the loop state realize 
the transfer of HSS-OS-SS, as shown in Figure 7. The effect of 𝑤  on E and I is just the opposite. In 
general, the increase of 𝑤  has an exciting effect on E and an inhibitory effect on I. Therefore, the 
oscillation in E can disappear through HP2 bifurcation, and the oscillation in I can disappear through 
HP1 bifurcation, as shown in Figure 8C,E. In addition, 𝑤  is the excitatory projection from cortical 
tissue to E, which is also the only excitatory projection in this model that has a direct effect on circuit 
E-I. Obviously, the increase of 𝑤  exerts both excitatory effects on E and I, so the loop realizes the 
transition from SS to OS and then to HSS, as shown in Figure 9D,E. 

In addition to the E-I loop, this model also includes the STN-GPe loop, which is also an 
inhibitory-excitatory coupling structure. The oscillation in E-I may be spontaneous or induced by the 
oscillation in the loop STN-GPe, at least affected by the loop STN-GPe. We systematically discuss the 
influence of the coupling weight and input related to the loop STN-GPe on the oscillation. 𝑤  and 
𝑤  are a pair of coupling weights within the loop STN-GPe. After analysis, 𝑤  exerts excitatory 
influence on E and I, and the oscillation of loop E-I is transferred from HP1 bifurcation, as shown in 
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Figure 10. 𝑤  has different effects on E and I, as it exerts inhibitory effects on I and excitatory effects 
on E. Therefore, when 𝑤  increases to a certain value, the oscillation in I disappears due to HP1, 
and the oscillation in E disappears due to HP2, as shown in Figure 12C,E. Str is an inhibitory striatal 
constant input acting on GPe, and its mechanism is similar to that of 𝑤 . The increase of Str exerts 
an excitatory effect on E and I. Therefore, the oscillation mechanism shown in Figure 11 is similar to 
that of 𝑤 .  

𝑤  is the only self-feedback projection in this model. In many previous theoretical studies [20], 
in order to make the derivation feasible, it is always assumed that 𝑤  = 0, and the influence of 𝑤  
on oscillation is ignored. In this model, the Eq (50) we derived can include parameter 𝑤 , which is 
an improvement on the previous research. In Figure 13, we simulate the effect of 𝑤  on oscillation. 
In general, the increase of 𝑤   exerts an excitatory effect on E and I. When the E-I circuit is in 
oscillation, the increase of 𝑤  will enhance the discharge capacity of the system and enter the HSS 
state, as shown in Figure 13D,E. 

Theoretically, we also observe the phenomenon of secondary bifurcation at both ends of the 
steady state, as shown in Figures 16 and 17. This is not involved in the previous theoretical model 
research. Through analysis, we believe that the sudden change of the slope of ADR is also an important 
reason for Hopf bifurcation.  

Finally, we study the characteristics of beta oscillation amplitude. In general, the amplitude is the 
smallest near the bifurcation point; as the oscillation evolves, the amplitude will gradually increase. 
This is consistent with the observation in the experiment; the change of oscillation amplitude is closely 
related to the evolution of Parkinson’s disease. Different parameters have different effects on 
oscillation amplitude. In the parameter pair (𝑤 ,𝑤 ), 𝑤  is relatively sensitive to the influence of 
amplitude. When both 𝑤  and 𝑤  are relatively small, the amplitude of E is relatively large. When 
𝑤  is relatively large, the amplitude of I is also relatively large. In general, under the influence of 
parameters 𝑤  and 𝑤 , the amplitude of I is much larger than that of E. In the parameter pair (C, 
Str), Str has little effect on the amplitude within the range of oscillation parameters; the increase of C 
will increase the amplitude first and then decrease. Under the influence of parameters (C, Str), the 
amplitude of I is also relatively larger than that of E, but the amplitude difference between E and I is 
smaller than that in parameter pair (𝑤 ,𝑤 ). In the parameter pair (𝑤 ,𝑤 ), the amplitude difference 
between E and I is small; when both 𝑤  and 𝑤  are small, the amplitude is large, as shown in 
Figure 20. We simulate the influence of several key parameters on the oscillation frequency, and we 
observe that the frequency of the system basically falls between 13 and 30 Hz.  

In the study of oscillation mechanism, we also notice that some control methods can make 
oscillation disappear. As shown by the two-way arrow in Figure 18, the increase or decrease of 𝑤  
can make the oscillation activity disappear. Obviously, 𝑤   directly and indirectly regulates the 
discharge capacity of E and I, respectively. Similarly, as shown by the two-way black arrow in Figure 
19, the role of C is also to directly or indirectly regulate the discharge capacity of circuit E-I. When we 
adjust C to a proper value, the oscillation will disappear. 𝑤  and 𝑤  in Figure 20 are two coupling 
weights that directly adjust the discharge capacity of E and I, and their increase or decrease can also 
make the oscillation disappear. One of the main principles of deep brain stimulation technology 
commonly used in clinical medicine is to alleviate or eliminate the oscillatory activity by regulating 
the electrophysiological activity of neurons at the stimulation site. Therefore, we speculate that the 
cortex may be an effective stimulation area to control Parkinson’s disease [64–66], which can provide 
a basis for the study of Parkinson’s oscillation regulation strategy. 
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In this paper, we mainly study the influence of various key physiological parameters on the 
oscillation activity in the E-I circuit. In this model, in addition to the factors of the E-I circuit itself, 
the STN-GPe circuit has obvious input to the E and I. Figure 22 depicts some possible relationships of 
the oscillation modes between four populations. When the loop STN-GPe is in a stable state, the E 
may be stable or oscillating, as shown in Figure 22A,B. When the loop STN-GPe is in an oscillating 
state, the E may oscillate or stabilize, as shown in Figure 22C,D. Therefore, we speculate that some 
oscillations in loop E-I are spontaneous, and some are caused by the oscillation activity in STN-GPe 
loop. It is meaningful to accurately distinguish these different oscillation origin mechanisms, which 
will rely on more complex network models and the introduction of heterogeneity parameters.  

In conclusion, in the model proposed in this paper, we systematically study the effects of some 
main parameters on the oscillations of E and I by mathematical derivation, bifurcation analysis and 
numerical simulation. The advantage of a mathematical formula is that it can directly describe the 
relationship between various parameters, can quickly simulate the critical conditions of oscillation and 
is convenient for theoretical mechanism analysis. The theoretical boundary conditions obtained in this 
paper are consistent with the trend of bifurcation analysis, which can better explain the mechanism of 
oscillation origin. The symptoms of Parkinson’s patients vary from person to person, and the time 
delay and coupling strength are two key parameters to describe the interaction between neurons. The 
results obtained in this paper can help further uncover the pathogenesis of Parkinson’s disease and 
provide guidance for the development of experiments.  

 

Figure 22. Some possible relationships between the oscillation modes of loop STN-GPe and E. A: 

The system is stable. B: The STN-GPe loop is stable, and the E is oscillatory. C: The system is 

oscillatory. D: The E is stable, and the STN-GPe loop is oscillatory. On the one hand, the cortex 

and STN-GPe loop can oscillate independently. On the other hand, oscillations in the cortex may 

be induced by firing activities in the STN-GPe loop. 
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