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Abstract: This paper focuses on the adaptive reinforcement learning-based optimal control problem
for standard nonstrict-feedback nonlinear systems with the actuator fault and an unknown dead zone.
To simultaneously reduce the computational complexity and eliminate the local optimal problem, a
novel neural network weight updated algorithm is presented to replace the classic gradient descent
method. By utilizing the backstepping technique, the actor critic-based reinforcement learning control
strategy is developed for high-order nonlinear nonstrict-feedback systems. In addition, two auxiliary
parameters are presented to deal with the input dead zone and actuator fault respectively. All signals in
the system are proven to be semi-globally uniformly ultimately bounded by Lyapunov theory analysis.
At the end of the paper, some simulation results are shown to illustrate the remarkable effect of the
proposed approach.
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1. Introduction

Optimal control theory originated in the 1960s and has become an important part of automatic
control theory primarily owing to its spirit of seeking the optimal solution from all possible control
schemes [1,2]. Optimal control problems for linear systems can generally be settled by solving Ricatti
equations. However, when it comes to nonlinear systems, there are quite a few effective methods since
the Hamilton-Jacobi-Bellman (HJB) equation should be addressed. The HJB equation is generally
difficult to solve analytically. To overcome this bottleneck, a lot of remarkable approaches have been
developed, such as adaptive dynamic [3, 4], the use of actor-critic neural networks (ACNNs) [5, 6],
policy iteration, and so on. Reinforcement learning (RL), as a method that can solve optimal control
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problems in nonlinear systems to avoid solving the HJB equation, has received widespread attention
in the past decades. In 1974, Werbos first applied the idea of RL to optimal control theory [7]. Since
then, many outstanding outcomes have been subsequently discovered [8–10]. At present, RL theory
is usually implemented by using ACNNs, where the critic neural network (CNN) provides policy
evaluation and the actor neural network (ANN) updates the present policy. The RL algorithm can
reduce energy consumption beyond that of other algorithms under the premise of achieving system
stability; it became a significant method of modern control theory. In recent years, more and more
approaches to RL have been presented in various fields, including online RL [11, 12], integral RL
[13, 14], off-policy RL [15, 16], etc.

1.1. Motivation

General RL strategies utilize the gradient descent method to obtain the ideal weights of neural net-
works, which often fall into the local optimal problem [17], resulting in neural network estimation
errors that cannot easily meet the requirements. To overcome this bottleneck, Bai et al. proposed the
multigradient recursive (MGR) algorithm in [17] to obtain the global optimum solution. By updating
pseudo-gradients, this state-of-the-art technique can settle down the local optimal problem and accel-
erate the convergence rate of the neural network weight. However, the MGR algorithm suffers because
of a heavy computational burden. Thus, it is necessary to mention the minimal learning parameter
(MLP) scheme. It can reduce the number of updated laws without prominently reducing the estimation
accuracy. Many studies have been proposed to validate the effectiveness of the MLP. Nevertheless, the
aforementioned papers adopt only one of the two algorithms and fail to combine both the MLP and
MGR algorithms to combine their advantages.

The optimal control problem of strict-feedback nonlinear systems has been widely studied. How-
ever, none of these strategies can be extended into the field of nonstrict-feedback systems [18,19]. For
this sake, some scholars have proposed their studies to overcome the bottleneck. For example, Tong et
al. [20], presented a novel fuzzy tracking control design for a nonstrict-feedback SISO system. Bai et
al. [21] utilized MLP-based RL theory to overcome optimal control problems for a class of nonstrict-
feedback systems. However, all of the above results omitted the influence of actuator fault and dead
zone input. These are common factors that affect the stability of the system. This negligence can lead
to severe damage and must be taken seriously. Thus, many works are presented to offset their influence.
However, no one has considered the situation that the dead zones and the actuator fault occur simulta-
neously. Thus, how to obtain an optimal controller for a nonstrict-feedback system with actuator faults
and input dead zone with minimal computation and enough accuracy will be an important task, and it
is the motivation for the current investigation.

1.2. Related work

Combining with the back-stepping technique, the authors made a thorough investigation of the
tracking control problem of the strict-feedback nonlinear systems [14–16]. At present, the back-
stepping approach is introduced into the analysis for the high-order nonlinear systems. Li et al. [22],
investigated the optimal control problem of a class of SISO strict-feedback systems via the fuzzy con-
trol method. Modares et al. [23] have developed an integral RL approach for the strict-feedback system
with input constraints. Wang et al. [24] proposed an optimal fault-tolerant control strategy for a non-
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linear strict-feedback system via adaptive critic design.
Besides, many papers have been proposed to study novel neural network weight updated algorithms.

Li et al. [25] utilized the MLP technique to overcome the fault-tolerant problem of a class of multiagent
systems. Liu et al. [26] designed an RL controller by applying a MLP scheme for classic MIMO
systems with external disturbance. Bai et al. [27] developed an event trigger control scheme for the
multiagent system based on the MLP technique.

Furthermore, many scholars are committed to investigating a tolerance strategy for the input dead
zone and actuator fault. For instance, Wang and Yang [28] studied the fault detection problem for
linear systems with disturbance. Tan et al. [29] developed a compensation control scheme for a class
of discrete-time systems that has actuator failure. In addition, Na et al. [30] provided an adaptive
dynamic control approach for a system with an unknown dead zone.

1.3. Paper contribution and organization

Based on the above discussion, an RL optimal controller is built in this paper to deal with the fault
tolerant control problem for a class of nonstrict-feedback nonlinear systems in discrete time with an
unknown dead zone input and actuator fault. To deal with the dead zone and actuator fault issues, we
propose two auxiliary systems to offset the influence. The ANN and CNN are utilized to approximate
the unknown terms and long-time utility functions, respectively. We propose a novel approach to
update the neural networks’ weight. The stability of all signals in the closed-loop is rigorously proved
and tracking errors are converged to a small compact set. The novelties of this paper can be concluded
to be as follows

1) We propose a novel neural networks weigh-updated algorithm to eliminate the local optimal prob-
lem and reduce computational burden. Besides, compared with the ordinary gradient descent algo-
rithm [11, 26], the proposed approach can achieve a faster weight convergence rate.

2) We formulate a modified backstepping method with additional parameters to offset the influence
of input dead zone, the actuator fault, and the algebraic loop problem. Besides that, the unified
fault-tolerant control algorithms are developed based on the RL strategy.

The organization of this paper is given below. In Section 2, descriptions of the system and radial
basis function neural network (RBF NN) theory are given. In Subsection 3.1, the CNN and our novel
update law are presented. In Subsection 3.2, the design procedure of the adaptive RL controller is
provided. In Section 4, we propose some simulation results to show the contributions of the scheme
presented in this paper. The conclusion is provided in Section 5.

2. Problem formulation and preliminaries

2.1. Model description

The dynamics of a standard n-order strict-feedback nonlinear system [31–34] can be described as
follows: 

xi(k + 1) = φi(x̄i(k)) + ϕi(x̄i(k))xi+1(k)
xn(k + 1) = φn(x̄n(k)) + ϕn(x̄n(k))U(k) + d(k)
y(k) = x1(k)

(2.1)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6334–6357.



6337

where xi(k) ∈ R for i = 1, ..., n represents the state variable of the system. The notation x̄n(k) =
[x1(k), x2(k), ..., xn(k)]⊤ ∈ Rn denotes the vectors of the states. The notations U(k) ∈ R and y(k) ∈ R are
the input and output signals, respectively. Notation d(k) stands for the external disturbance. Notations
φi(·) and ϕi(·) represent unknown smooth nonlinear functions.

Motivated by the transformation proposed in [18, 19], the nonstrict-feedback system (2.1) can be
further expressed as

xi(k + n − i + 1) = φi(x̄n(k + n − i)) + ϕi(x̄n(k + n − i))xi+1(k + n − i)
xn(k + 1) = φn(x̄n(k)) + ϕn(x̄n(k))U(k) + d(k)
y(k) = x1(k).

(2.2)

To proceed smoothly, an assumption is introduced in the following sequel.
Assumption 1: According to the contributions in [34, 35], the functions φi(x̄(k)) and ϕi(x̄(k)) satisfy

0 < φ < φi(x̄(k)) < φ̄ and 0 < ϕ < ϕi(x̄(k)) < ϕ̄, where φ̄ and φ are the unknown upper bound and
the unknown lower bound of φi(x̄(k)) and ϕ̄ and ϕ are the unknown upper bound and unknown lower
bound of ϕi(x̄(k)), respectively. The external disturbance is bounded and satisfies |d(k)| ≤ d̄ with d̄
being an unknown positive constant.

The control signal with the actuator fault and input dead zone can be described as U(k) = ψ(k)u(k)+
δ(k), where ψ(k) and δ(k) denote the efficiency factor and the unknown drift fault of the actuator,
respectively. We assume that ψ(k) is a positive constant with ψ(k) < ψ̄ < 1, where ψ̄ is an unknown
constant. Further, δ(k) satisfies δ(k) < δ̄ with δ̄ being the upper bound. The dead zone can be defined
as u(k) = D(v(k)), where v(k) represents the input of the dead zone and D(·) is a function of v(k) which
represents the output of the dead zone. According to propositions in [31], the dead zone is expressed
as

D(v(k)) =


br(v(k) − fr), v(k) ≥ fr

0, − fl < v(k) < fr

bl(v(k) + fl), v(k) ≤ − fl

(2.3)

where br and bl denote the right slope of the dead zone and the left slope of the dead zone, respectively.
The notations fr and fl are breakpoints of the input. For the purpose of simplifying the following
calculation, the expression D(v(k)) can be converted into a new form, as follows

D(v(k)) = b(k)v(k) + f (k) (2.4)

where b(k) and f (k) can be described as

b(k) =
{

br, v(k) > 0
bl, v(k) ≤ 0

f (k) =


−br fr, v(k) ≥ br

−b(k)v(k), −br < v(k) < bl

bl fl, v(k) ≤ bl.

(2.5)

We suppose that b(k) and f (k) satisfy 0 < b < |b(k)| < b̄ and 0 < f < | f (k)| < f̄ , respectively. The
control signal U(k) can be reorganized as

U(k) = ψ(k)
(
b(k)v(k) + f (k)

)
+ δ(k). (2.6)

In this paper, the RL controller is developed for the nonstrict-feedback nonlinear system (2.2),
ensuring the semi-globally uniformly ultimately bounded (SGUUB) capability of all signals in the
closed-loop system. Based on the ACNNs, the tracking error ξ1(k) is required to converge to the
neighborhood of zero it will be specified subsequently.
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2.2. RBF NN

Note that, the RBF NN can approximate any smooth nonlinear functions over a compact set. That is
to say, considering an unknown nonlinear function F(N), there exists an RBF NN W∗TS (N) such that
F(N) = W∗TS (N)+σ(N), where W∗ = [w1, ...,wl]T ∈ Rl denotes the ideal weight vector, l represents the
node number in the hidden layer and σ(N) is the estimation error. Both W∗ and σ(N) satisfy ||W∗|| < W̄
and ||σ(N)|| < σ̄ with W̄ and σ̄ as unknown upper bounds. The notation S (N) = [s1(N), ..., sl(N)]T is

the vector of the basis function and si(N) is applied as Gaussian form si(N) = exp
[
−

(N−ci)T(N−ci)
η2

i

]
,

where ci represents the kernel of the receptive field, ηi(k) denotes the width of the function. Because
0 < si(N) < 1, we can further derive that 0 <

∑l
i=1 si(N)si(N) = S (N)TS (N) < l.

3. Design of adaptive RL controller

3.1. CNN

The utility function [35] can be chosen as

ρ(k) =
{

0, |ξ1(k)| ≥ ϖ
1, |ξ1(k)| < ϖ

(3.1)

where ϖ is a positive constant that denotes the threshold value of tracking performance. The tracking
error is written as ξ1(k) = y(k) − xd(k) xd(k) indicates the reference signal. The long term strategic
utility function [21, 27] is given by

M(k) = ρ(k + 1) + aρ(k + 2) + a2ρ(k + 3)+, ......, (3.2)

where a is a predefined positive parameter satisfying a < 1. According to RBF NN theory, the long
term utility function M(k) is defined below

M(K) = WT
MS M(k) + δM(k) (3.3)

where WM and δM(k) indicate the ideal weight vector and the error of the approximation, respectively.
Let S M(k) be the RBF NN basis function. We define M̂(k) = ŴT

M(k)S M(k); it denotes the estimation of
function M(k) with ŴM(k) being the estimation of the ideal weight WM.

On the basis of the MLP scheme, M̂(k) can be written in the form

M̂(k) = Ψ̂M(k)∥S M(k)∥ (3.4)

where ∥ · ∥ indicates the Euclidean norm, Ψ̂M(k) = ∥ŴM(k)∥ is true for Ψ̂ ≤ Ψ̄ and Ψ̄ is a positive
unknown constant.

According to the scheme in [36], the equation of the Bellman error is designed as

EM(k) = aM̂(k) −
[
M̂(k − 1) − ρ(k)

]
. (3.5)

Adopting the cost function in its quadratic form βM(k) = (1/2)(EM(k))2, the gradient of ŴM is
obtained

∆ŴM(k) = a∥S M(k)∥
[
aM̂(k) − M̂(k − 1) + ρ(k)

]
. (3.6)
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Defining ωM(k − j + 1) = Ψ̂M(k)∥S M(k − j + 1)∥, we can further get

g(ι, βM(k)) =
ι∑

j=1

a||S M(k − j + 1)||
[
aωM(k − j + 1) − ωM(k − j) + ρ(k − j + 1)

]
(3.7)

where ι ≥ 1 is a positive predefined constant that indicates the step length of the gradient.
Together with (3.7), the updated law of Ψ̂M can be obtained

Ψ̂M(k + 1) = Ψ̂M(k) − µM

ι∑
j=1

a∥S M(k − j + 1)∥
[
aωM(k − j + 1) − ωM(k − j) + ρ(k − j + 1)

]
(3.8)

where µM is the selected learning rate. The structure of the CNN is shown in Figure 1.

Figure 1. Structure of the CNN.

Remark 1: The neural networks in this paper are updated by our weight-updated algorithm. As
compare to the classic gradient descent method, our updated algorithm has the following advantages:
1) Reduces the computational complexity; 2) Eliminates the local optimal problem; 3) Accelerates
neural networks weight convergence speed;

3.2. Design of n-step adaptive neural network controller

In this section, an ANN will be utilized to implement the n-step backstepping RL control strategy.
Specifically, two auxiliary signals are introduced in the n step to eliminate the impact of the dead zone
and actuator fault.

Step 1 : The tracking error can be defined as ξ1(k + n) = x1(k + n) − xd(k + n) and ξ2(k + n − 1) =
x2(k + n− 1)− α1(k). According to System (2.2), the tracking error ξ1(k + n) can be further deduced as

ξ1(k + n) =ϕ1(x̂n(k + n − 1))
[(
φ1(x̄n(k + n − 1))
ϕ1(x̄n(k + n − 1))

−
xd(k + n)

ϕ1(x̄n(k + n − 1))
+ xd(k + n)

)
+ α1(k) − xd(k + n) + ξ2(k + n − 1)

]
Mathematical Biosciences and Engineering Volume 20, Issue 4, 6334–6357.
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where α1(k) denotes the virtual controller. Let

γ1(k) = −
(
φ1(x̄n(k + n − 1))
ϕ1(x̄n(k + n − 1))

+ xd(k + n) −
xd(k + n)

ϕ1(x̄n(k + n − 1))

)
. (3.9)

With the universal approximation capability of the RBF NN, γ1(k) = WT
1 S 1(N1(k)) + σ1(k) can be

approximated, where W1 represents the ideal weight vector. We define N1(k) = [x̄n(k + n − 1), xd(k +
n)] and σ1(k) indicates the approximation error. Suppose that W1 and σ1(k) satisfy ∥W1∥ < W̄1 and
∥σ1(k)∥ < σ̄1, respectively. Both W̄1 and σ̄1 are corresponding upper bounds.

Combining (3.9) and γ1(k), ξ1(k + n) can be further expressed as

ξ1(k + n) = ϕ1(x̂n(k + n − 1))
[
−WT

1 S 1(N1(k)) − σ1(k) + α1(k) + ξ2(k + n − 1) − xd(k + n)
]
. (3.10)

For the purpose of solving the algebraic loop problem which will be mentioned later, the term o1 is
proposed

o1(k) = Ψ1∥S 1(ϵ1(k))∥ (3.11)

where ϵ1(k) = [x̄1(k + n − 1), xd(k + n)] and Ψ1 = ∥W1(k)∥.
Adding and subtracting (3.11) into (3.10), one can easily derive

ξ1(k + n) =ϕ1(x̄n(k + n − 1))
[
−WT

1 S 1(N1(k)) − σ1(k) + α1(k)

+ ξ2(k + n − 1) − xd(k + n) + Ψ1∥S 1(ϵ1(k))∥ − Ψ1∥S 1(ϵ1(k))∥
]
.

(3.12)

In order to further simplify (3.12), the virtual controller is designed as

α1(k) = −Ψ̂1(k)||S 1(ϵ1(k))|| + xd(k + n) (3.13)

where Ψ̂1(k) = ||Ŵ1(k)|| and Ŵ1 is the estimation of W1.
Substituting (3.13) into (3.12), we gets

ξ1(k + n) =ϕ1(x̄n(k + n − 1))
[
−WT

1 S 1(N1(k)) − σ1(k) + ξ2(k + n − 1)

− Ψ̃1(k)∥S 1(ϵ1(k))∥ − Ψ1∥S 1(ϵ1(k))∥
] (3.14)

where Ψ̃1(k) = Ψ̂1(k) − Ψ1.
Transforming (3.14) with the k + 1 time instant, one has

ξ1(k + 1) = ϕ1(x̄n(k))
[
−WT

1 S 1(N1(k1)) − σ1(k1) + ξ2(k) − Ψ̃1(k1)∥S 1(ϵ1(k1))∥ − Ψ1∥S 1(ϵ1(k1))∥
]

(3.15)

where k1 = k + n − 1 represents the time instant.
On the basis of the RL control scheme, the strategic utility function can be defined as

E1(k) = Ψ̂1(k1)||S 1(ϵ1(k1))|| +
(
M̂(k) − Md(k)

)
(3.16)
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where Md(k) represents the ideal strategic utility function and it is usually defined as ”0” [37].
The cost function is derived as β1(k) = (1/2)(E1(k))2 and the gradient of Ψ̂1(k) is deduced as

∆Ψ̂1(k) =
∂β1(k)
∂Ψ̂1(k1)

= ||S 1(ϵ1(k1))||
[
Ψ̂1(k)||S 1(ϵ1(k1))|| + M̂(k)

]
. (3.17)

The multigradient can be further obtained as

g(ι, β1(k)) =
ι∑

j=1

||S 1(ϵ1(k1 − j + 1))||
[
ω1(k1 − j + 1) + ωM(k − j + 1)

]
. (3.18)

Define ω1(k1 − j + 1) = Ψ̂1(k1)||S 1(ϵ1(k1 − j + 1))||. Similar to step (3.8), the MGR updated law of
Ψ̂1(k) is derived

Ψ̂1(k + 1) = Ψ̂1(k1) − µ1g(ι, β1(k))

= Ψ̂1(k1) − µ1

ι∑
j=1

||S 1(ϵ1(k1 − j + 1))||
[
ω1(k1 − j + 1) + ωM(k − j + 1)

] (3.19)

where µ1 stands for the chosen learning rate. The structure of the ANN is proposed in Figure 2.

Figure 2. Structure of the ANN.

Remark 2: It is necessary to emphasize that previous works usually designed the ANN basis function
to have the form S 1(N1(k)), which is not the function of x1(k). According to this design, α1(k) and
Ψ̂1(k+ 1) are all built up as functions of N1(k) = [x̄n(k+ n− 1), xd(k+ n)]T. This results in the algebraic
loop problem proposed in [38]. To settle this conundrum, the term o1(k) is presented in this paper and
we adapt α1(k) and Ψ̂1(k + 1) as functions of ϵ1(k) = [x̄1(k + n − 1), xd(k + n))]T.

Step i: Define the tracking error ξi(k + n − i + 1) = xi(k + n − i + 1) − αi−1(k) and ξi+1(k + n − i) =
xi+1(k + n − i) − αi(k). Notation αi−1(k) and αi(k) indicate the virtual controller at Step i − 1 and Step i,
respectively. Similar to the process in (3.9), one has

ξi(k + n − i + 1) =ϕi(x̄n(k + n − i))
[(
φi(x̄n(k + n − i))
ϕi(x̄n(k + n − i))

−
αi−1(k)

ϕi(x̄n(k + n − i))
+ αi−1(k)

)
+ αi(k) + ξi+1(k + n − i) − αi−1(k)

]
.

(3.20)
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According to the definition of γ1(k), one has γi(k) = −
(
φi(x̄n(k+n−i)
ϕi(x̄n(k+n−i)) + αi−1(k) − αi−1(k)

ϕi(x̄n(k+n−i))

)
. The

unknown function can be approximated by the RBF NN which is given as γi(k) = WT
i S i(Ni(k))+σi(k),

where Wi and σi(k) are defined as the ideal weight vector and the approximation error, respectively.
Futhermore, we let Ni(k) = [x1(k + n − i), ..., xn(k + n − i), xd(k + n)]T.

Substituting γi(k) into (3.20), one has

ξi(k + n − i + 1) = ϕi(x̄n(k + n − i))
[
−WT

i S i(Ni(k)) − σi(k) + αi(k) + ξi+1(k + n − i) − αi−1(k)
]
. (3.21)

The term oi(k) is given in the form below

oi(k) = Ψi||S i(ϵi(k))|| (3.22)

where ϵi(k) = [x̄i(x + n − i), xd(k + n)]T and Ψi denotes the Euclidean norm of the weight vector Wi.
Substituting (3.22) into (3.21) yields

ξi(k + n − i + 1) =ϕi(x̄n(k + n − i))
[
−WT

i S i(Ni(k)) − σi(k) + αi(k)

+ ξi+1(k + n − 1) − ai−1(k) + Ψi||S i(ϵi(k))|| − Ψi||S i(ϵi(k))||
]
.

(3.23)

The same as the previous process, the virtual controller is designed as

αi(k) = −Ψ̂i(k)||S i(ϵi(k))|| + αi−1(k) (3.24)

where Ŵi(k) is the estimation of Wi and Ψ̂(k) = ||Ŵi(k)||.
Substituting (3.24) into (3.23), ξi(k + n − i + 1) expresses

ξi(k + n − i + 1) =ϕi(x̄n(k + n − i))
[
−WT

i S i(Ni(k)) − σi(k)

+ ξi+1(k + n − 1) − Ψ̃i(k)||S i(ϵi(k))|| − Ψi||S i(ϵi(k))||
]
.

(3.25)

Resembling Step (3.15), (3.25) can be further described as

ξi(k + 1) = ϕi(x̄n(k))
[
−WT

i S i(Ni(ki)) − σi(ki) + ξi+1(k) − Ψ̃i(ki)||S i(ϵi(ki))|| − Ψi||S i(ϵi(ki))||
]

(3.26)

where ki = k − n + i.
Let the prediction error Ei(k) = Ψ̂i(k)||S i(ϵi(ki))|| + M̂(k). According to Ei(k), the cost function is

described in its quadratic form βi(k) = (1/2)(Ei(k))2. The gradient of Ψ̂i is obtained according to the
derivation:

∆Ψ̂i(k) =
∂βi(k)
∂Ψ̂i(ki)

= ||S i(ϵi(ki))||
[
Ψ̂i(k)||S i(ϵi(ki)|| + M̂(k)

]
. (3.27)

On the basis of the MGR algorithm definition, the multigradient is expressed as

g(ι, βi(k)) =
ι∑

j=1

||S i(ϵi(ki − j + 1))||
[
ωi(ki − j + 1) + ωM(k − j + 1)

]
. (3.28)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6334–6357.



6343

The updated law of Ψ̂i(k) is deduced according to (3.28):

Ψ̂i(k + 1) = Ψ̂i(ki) − µig(ι, βi(k))

= Ψ̂i(ki) − µi

ι∑
j=1

||S i(ϵi(ki − j + 1))||
[
ωi(k1 − j + 1) + ωM(k − j + 1)

] (3.29)

where µi is the i step learning rate.
Step n : The tracking error in the n-th subsystem can be described as ξn(k+ 1) = xn(k+ 1)−αn−1(k).

Substitute (2.2) and (2.6) into the n-th tracking error equation:

ξn(k + 1) = φn(x̄n(k)) + ϕn(x̄n(k))
(
ψ(k)
(
b(k)v(k) + f (k)

)
+ δ(k)

)
+ d(k) − αn−1(k). (3.30)

For the purpose of simplifying 3.30, π(k) is defined

π(k) = −
1

ϕn(x̄n(k))ψ(k)b(k)

(
φn(x̄n(k)) − αn−1(k)

)
. (3.31)

Using the theory of the RBF NN to approximate (3.31), one gets

π(k) = WT
n S n(Nn(k)) + σn(k) (3.32)

where the definitions of Wn and σn(k) are the same as those for the steps from 1 to n − 1 and Nn(k) =
[x̄n(k), xd(k + n)]T.

Combining (3.32) and (3.29) we derive

ξn(k + 1) = ϕn(x̄n(k))ψ(k)b(k) ×
(
v(k) +

f (k)
b(k)
+

δ(k)
ψ(k)b(k)

− π(k)
)
+ d(k). (3.33)

From (3.33) we can acquire the dynamics of the actuator fault and dead-zone shown in (2.3) and
(2.6), separately. It is easy to deduce that they have the following properties

f (k)
b(k)

≤
f̄
b
= τ

δ(k)
ψ(k)b(k)

≤
δ̄

ψb
= ϑ (3.34)

where ϑ and τ are both unknown parameters. Define the estimation of both parameters as ϑ̂ and τ̂; so
the estimation error ϑ̃ and τ̃ are given by

ϑ̃(k) = ϑ̂(k) − ϑ τ̃(k) = τ̂(k) − τ. (3.35)

Based on estimation errors of (3.35), the actual controller is designed as

v(k) = Ψ̂n(kn)||S n(Nn(kn))|| + τ̂(k) + ϑ̂(k) (3.36)

where Ψ̂n(k) = ||Ŵn(k)|| and Ŵn(k) stands for the estimation of Wn. The time index kn = k.
With (3.35) and (3.36), the estimation fault (3.33) can be further written as

ξn(k + 1) =ϕn(x̄n(k))ψ(k)b(kn)Ψ̃n(k)||S n(Nn(kn))||ϕn(x̄n(k))ψ(k)b(k)

×

(
ϑ̃(k) + ϑ + τ̃(k) + τ +

f (k)
b(k)
+

δ(k)
ψ(k)b(k)

)
+ ϕn(x̄n(k))ψ(k)b(k)q(kn) + d(k)

(3.37)
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where Ψ̃n(k) = Ψ̂n(k) − Ψn and q(k) = Ψn||S n(Nn(kn))|| − WT
n S n(Nn(k)) − σn(k). Similar to Step i, the

strategic utility function is defined

En(k) = Ψ̂n(kn)||S n(Nn(kn))|| + M̂(k). (3.38)

Further define the cost function as βn(k) = (1/2)(En(k))2; the gradient of Ψ̂n(k) yields

∆Ψ̂n(k) =
∂βn(k)
∂Ψ̂n(kn)

= ||S n(Nn(kn))||
[
Ψ̂n(k)||S n(Nn(kn))|| + M̂(k)

]
. (3.39)

The multigradient yields

g(ι, βn(k)) =
ι∑

j=1

||S n(Nn(kn − j + 1))||
[
ωn(kn − j + 1) + ωM(k − j + 1)

]
(3.40)

where ωn(kn − j + 1) = Ψ̂n(kn)||S n(Nn(kn − j + 1))||.
The weight updated law for Ψ̂n(k) can be further obtained as

Ψ̂n(k + 1) =Ψ̂n(kn) − g(ι, βn(k))

=Ψ̂n(kn) − µn

ι∑
j=1

||S n(Nn(kn − j + 1))||
[
ωn(kn − j + 1) + ωM(k − j + 1)

] (3.41)

where µn is a chosen positive learning rate. Let

Eϑ(k) = ϑ̂(k) + M̂(k) Eτ(k) = τ̂(k) + M̂(k). (3.42)

The cost functions of two auxiliary signals are chosen to have a form that is the same as βi(k) form

βϑ(k) = (1/2)(Eϑ(k))2 βτ(k) = (1/2)(Eτ(k))2. (3.43)

The gradients are deduced

∆ϑ̂(k) =
∂βϑ(k)

∂ϑ̂(k)
= ϑ̂(k) + M̂(k)

∆τ̂(k) =
∂βτ(k)
∂τ̂(k)

= τ̂(k) + M̂(k).
(3.44)

Two MGR updated laws are obtained

ϑ̂(k + 1) = ϑ̂(k) − µϑ
ι∑

j=1

(
ϑ̂(k − j + 1) + M̂(k − j + 1)

)
τ̂(k + 1) = τ̂(k) − µτ

ι∑
j=1

(
τ̂(k − j + 1) + M̂(k − j + 1)

) (3.45)

where µϑ and µτ are positive learning factors.
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Figure 3 shows the structure of the proposed control strategy. The analysis of the stability and
tracking performance are mentioned in the following theorem.

Theorem 1: Consider the nonstrict feedback nonlinear system (2.2). The adaptive RL strategy
includes the updated laws (3.8), (3.19), (3.29) and (3.41), the virtual controllers (3.13) and (3.24) and
the actual controller (3.36). If the selected parameters that

0 < µM < 1/(lιa2), 0 < µi < 1/lι, 0 < µϑ < 1/ι, 0 < µτ < 1/ι (3.46)

and Assumption 1 holds, our control strategy can ensure that all signals are SGUUB and the tracking
error is tolerated. The proof of Theorem 1 is shown in the appendix.

Figure 3. Control system structure for the proposed strategy.

4. Simulation

In this section, some simulation results are presented to illustrate the effectiveness of the proposed
approach.

The nonstrict-feedback nonlinear discrete time system is chosen as
x1(k + 1) = φ1(x̄2(k)) + ϕ1(x̄2(k))x2(k)
x2(k + 1) = φ2(x̄2(k)) + ϕ2(x̄2(k))U(k) + d(k)
y(k) = x1(k)

(4.1)

where x1(k) and x2(k) are the states, U(k) is the input and y(k) is the output. The functions φ1(x̄n(k)) and
φ2(x̄n(k)) are chosen as x1(k) and x2(k), respectively. We choose ϕ1(x̄n(k)) and ϕ1(x̄n(k)) as [−x1(k) +
0.019(1.5−x1(k))exp(4x2(k)/(3.4+x2(k)))]/20 and [−x2(k)+3.1(0.4−x1(k))exp(1.5x2(k)/(3.4+x2(k)))−
4(x2(k) −U(k))], respectively. The external disturbance d(k) is chosen as 0.1cos(0.05k)cos(x1(k)). The
desired signal xd(k) can be described as xd(k) = 0.013sin(π/8 + 0.6kπ/38).

The parameters can be selected as follows: Ψ2(0) = 0.001, µM = 0.005, µ1 = 0.008, µ2 = 0.006,
µτ = 0.05, µϑ = 0.05, a = 0.00001, τ̂(0) = 0.2 and ϑ̂(0) = 0.3. The hidden layer node numbers of the
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ACNNs have been set as lW1 = 10, lW2 = 10 and lWM = 10. The pace of the multigradient is chosen as
ι = 10.

Figure 4. Tracking trajectory for the proposed scheme when br = 0.5, bl = −0.5, fr = 0.3,
and fl = −0.3.

Figure 5. Tracking error for the proposed scheme when br = 0.5, bl = −0.5, fr = 0.3, and
fl = −0.3.

Figures 4 and 5 illustrate the trajectories of signals and the tracking error when br = 0.5, bl = −0.5,
fr = 0.3, and fl = −0.3, respectively. The control output achieved precise tracking of the reference
signal and the tracking error was close to zero (almost 0.001). Figures 6 and 7 illustrate the trajectories
of signals and the tracking error when br = 0.4, bl = −0.4, fr = 0.25 and fl = −0.25, respectively. The
tracking performance in this scenario was also great (the tracking error was almost 0.002). According
to our results, it is true that our fault-tolerant approach can offset the influence of dead zones with
different parameters.

Figure 8 describes the trajectories of the ANN weight, the CNN weight, and the control input.
We make a comparison between the proposed scheme and the MLP-based strategy. According to
the results, it is clear that the proposed scheme achieved a faster convergence rate with the weight
parameters than the ordinary MLP scheme. Figures 9 and 10 show the tracking trajectory and the
tracking error without utilizing two auxiliary systems. Affected by the input dead zone and the actuator
fault, tracking became extremely inaccurate and the tracking error was up to 0.01. Comparing Figures
4 and 9, it is obvious that our the approach can successfully offset the influence of the input dead zone
and the actuator fault.

To verify our novel updated algorithm can reduce the computational burden, an experiment was
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Figure 6. Tracking trajectory for the proposed scheme when br = 0.4, bl = −0.4, fr = 0.25,
and fl = −0.25.

Figure 7. Tracking error utilizing proposed scheme when br = 0.4, bl = −0.4, fr = 0.25, and
fl = −0.25.

Figure 8. Comparison of the MLP-based control strategy and the proposed scheme.
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Figure 9. Tracking performance for the scheme proposed in [21].

Figure 10. Tracking error for the scheme proposed in [21].

conducted as follows. We consider that the longer the computation the greater the computational
burden. The total sample number was 1000. All of results were derived in the same environment by a
computer with a 3.6 GHz CPU and 16 GB RAM.

Table 1. Simulation results.

approach computational time/s
Gradient descent algorithm in [17] 0.5445
The proposed approach 0.2862

From Table 1, we can derive that the computational time of the ordinary gradient descent algorithm
is 0.5445 s but the proposed updated algorithm only needs 0.2862 s. The computational time is reduced
by 47.44%. Combined with the previous analysis, our approach not only alleviates the computational
burden of the MGR algorithm but it also achieves a faster convergence rate for the weight parameters.

5. Conclusions

The aim of this paper was to build up a fault-tolerant controller for a class of nonstrict feedback
systems with input dead zone. We proposed a novel neural network-updated algorithm to achieve a
faster computational speed and eliminate the local optimal problem. Two auxiliary parameters were
presented to offset the influence of the dead zone and actuator fault. To eliminate the occurrence of the
algebraic loop problem, an auxiliary term was introduced to overcome this difficulty. According to the
Lyapunov theory, all signals in the closed-loop system were proven to be SGUUB and the tracking error
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converged to the neighborhood of zero. Finally, some simulation results were presented to illustrate
the effectiveness of our approach.

There are still some other difficulties in the control area; for instance, the tracking control for
stochastic systems via RL will be our future topic based on our current investigation.
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Appendix

Step 1: Defining θξ1, θΨ̃1 and θM as positive constants. The Lyapunov function is chosen as

V1(k) = V11(k) + V12(k) + V13(k) + V14(k) (A.1)

where V11(k) = (θξ1/4)ξ2
1(k), V12(k) = (θΨ̃1/µ1)

∑n−1
s=0 Ψ̃1(k1 + i)2, V13(k) = (θM/µM)Ψ̃M(k)2 and V14(k) =

2θM
∑ι

j=1

[
Ψ̃M(k)||S M(k − j)||

]2
.

The Cauchy-Schwarz inequality is expressed as

(a1 + a2+, ...,+an)2 ≤ n(a2
1 + a2

2+, ...,+a2
n). (A.2)

Young’s inequality is also given below

ãTb̃ ≤ (1/2)ãTã + (1/2)b̃Tb̃ (A.3)

where ã and b̃ are arbitrary vectors.
By utilizing the inequality (A.3) and property that 0 < S (N)T S (N) < l, the two terms shown in

(3.12) have the following quality

−WT
i S i(Ni(ki)) − Ψi||S i(ϵi(ki))||

≤|WT
i S i(Ni(ki))| + Ψi||S i(ϵi(ki))||

≤
1
2

WT
i Wi +

1
2

S i(Ni(ki))TS i(Ni(ki)) +
1
2
Ψ2

i +
1
2
||S i(ϵi(ki))||2

≤Ψ̄2
i + l

(A.4)

where i = 1, ..., n − 1.
According to (A.2) and (3.15), the first order difference of V11(k) is described as

∆V11(k) ≤θξ1ϕ̄2
1(Ψ̃1(k1)||S 1(ϵ1(k1))||)2 + θξ1ϕ̄

2
1(Ψ̄2

1 + l)2 + θξ1ϕ̄
2
1ξ2(k)2 + θξ1ϕ̄

2
1σ̄

2
1 −

1
4
θξ1ξ

2
1(k). (A.5)

Based on (A.2) and (3.19), the first order difference of ∆V12(k) can be derived

∆V12(k) ≤ − θΨ1(1 − ιlµ1)
ι∑

j=1

[
ω1(k1 − j + 1) + ωM(k − j + 1)

]2
+ 2θΨ1ι(Ψ̄1 + Ψ̄M)2

+ 2θΨ1

ι∑
j=1

[
Ψ̃M(k1)||S M(k − j + 1)||

]2
− θΨ1

ι∑
j=1

[
Ψ̃1(k1)||S 1(ϵ1(k1 − j + 1)||

]2
.

(A.6)
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Similar to the processes in (A.6), the first order difference of ∆V13(k) is calculated as

∆V13(k) ≤ − θM(1 − ιlµMa2)
ι∑

j=1

[
aωM(k − j + 1) + ρ(k − j + 1) − ωM(k − 1)

]2
− θMa2

ι∑
j=1

[
Ψ̃M(k1)||S M(k − j + 1)||

]2
+ 2θM

ι∑
j=1

[
Ψ̃M(k1)||S M(k − j)||

]2
+ 2θMι

[
Ψ̄M(1 + a) + 1

]2
.

(A.7)

Then, consider ∆V14(k); we can obtain

∆V14(k) = 2θM

ι∑
j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
− 2θM

ι∑
j=1

[
Ψ̃M(k)||S M(k − j)||

]2
. (A.8)

Combining (A.5)–(A.8), the first-order difference of ∆V1(k) is derived

∆V1(k) ≤ − θΨ1(1 − ιlµ1)
ι∑

j=1

[
ω1(k1 − j + 1) + ωM(k − j + 1)

]2
− θM(1 − ιlµMa2)

ι∑
j=1

[
aωM(k − j + 1) + ρ(k − j + 1) − ωM(k − 1)

]2
− (θΨ1 − θξ1ϕ̄

2
1)
[
Ψ̃1(k1)||S 1(ϵ1(k1))||

]2
+ θΨ1ϕ̄

2
1ξ

2
2(k)

−

(
θMa2 − 2θΨ1 − 2θM

) ι∑
j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
− θΨ1

ι∑
j=2

[
Ψ̃1(k1)||S 1(ϵ1(k1 − j + 1))||

]2
−
θξ1

4
ξ2

1(k) + B1

(A.9)

where B1 = 2θΨ1ι(W̄1 + W̄M)2 + θξ1Ψ̄
2
1σ̄

2
1 + θξ1ϕ̄

2
1(Ψ̄2

1 + l)2 + 2θMι(Ψ̄M(1 + a) + 1)2.
Step i: The Lyapunov function in Steps 2 to n − 1 is designed as

Vi(k) = Vi1(k) + Vi2(k) (A.10)

where Vi1(k) = (θξi/4)ξ2
i (k), Vi2(k) = (θΨi/µi)

∑n−i
s=0 Ψ̃i(ki+ s)2 and θξi and θΨi are both positive constants.

According to (3.26), the first order difference of Vi1 can be deduced

∆Vi1(k) ≤ θξiϕ̄2
i

[
Ψ̃i(ki)||S i(ϵi(ki))||

]2
+ θξiϕ̄

2
i ξ

2
i+1 + θξiϕ̄

2
i σ̄

2
i + θξiϕ̄

2
i (Ψ̄2

i + l)2 −
1
4
θξiξi(k)2. (A.11)

Similar to (A.6), one deduces ∆Vi2(k) as

∆Vi2(k) ≤ − θΨi(1 − ιlµi)
ι∑

j=1

[
ωi(ki − j + 1) + ωM(k − j + 1)

]2
+ 2θΨiι(Ψ̄i + Ψ̄M)2

+ 2θΨi

ι∑
j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
− θΨi

ι∑
j=1

[
Ψ̃i(ki)||S i(ϵi(ki − j + 1)||

]2
.

(A.12)
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Combining (A.11) and (A.12), ∆Vi(k) is derived, which shows that

∆Vi(k) ≤ − θΨi(1 − ιlµi)
ι∑

j=1

[
ωi(ki − j + 1) + ωM(k − j + 1)

]2
−

1
4
θξi(k)ξi(k)2 + θξiϕ̄

2
i ξ

2
i+1

+ 2θΨi

ι∑
j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
−

(
θΨi − θξiϕ̄

2
i

)[
Ψ̃i(ki)||S i(ϵi(ki)||

]2
− θΨi

ι∑
j=2

[
Ψ̃i(ki)||S i(ϵi(ki − j + 1)||

]2
+ Bi

(A.13)

where Bi = θξiϕ̄
2
i (Ψ̄2

i + l)2 + 2θΨiι(Ψ̄i + Ψ̄M)2 + θξiϕ̄
2
i σ̄

2
i .

Step n: The Lyapunov function in the n-th step is

Vn(k) = Vn1(k) + Vn2(k) + Vn3(k) + Vn4(k) (A.14)

where Vn1(k) = (θξn/2)ξ2
n(k), Vn2(k) = (θΨn/µn)Ψ̃2

n(k), Vn3(k) = (θϑ/µϑ)ϑ̃2(k) and Vn4(k) = (θτ/µτ)τ̃2(k).
Using the above inequality, (3.37) follows

∆Vn1(k) ≤
16
3
θξnϕ̄

2
nψ̄

2b̄2
[
2τ2 + τ̃(k)2 + 2ϑ2 + ϑ̃(k)2

+

(
Ψ̃n(k)||S n(Nn(kn))||

)2
+ q̄
]
+

2
3
θξnd̄2 − (θξn/3)ξn(k)2

(A.15)

where q(kn)2 < (σ̄n + 2l1/2Ψ̄n) = q̄.
Based on (3.41) and (A.2), ∆Vn2(k) is given as

∆Vn2(k) ≤ − θΨn(1 − ιlµn)
ι∑

j=1

[
ωn(kn − j + 1) + ωM(k − j + 1)

]2
+ 2θΨnι(Ψ̄n + Ψ̄M)2

+ 2θΨn

ι∑
j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
− θΨn

ι∑
j=1

[
Ψ̃n(kn)||S n(ϵn(kn − j + 1)||

]2
.

(A.16)

Obviously, similar to (A.6), the first order difference of Vn3(k) and Vn4(k) is:

∆Vn3(k) ≤ − θϑ(1 − µϑι)
ι∑

j=1

[
ϑ̂(k − j + 1) + ωM(k − j + 1)

]2
− θϑ

ι∑
j=1

ϑ̃(k − j + 1)2

+ 2θϑ
ι∑

j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
+ 2θϑι(ϑ + Ψ̄M)2

∆Vn4(k) ≤ − θτ(1 − µτι)
ι∑

j=1

[
τ̂(k − j + 1) + ωM(k − j + 1)

]2
− θτ

ι∑
j=1

τ̃(k − j + 1)2

+ 2θτ
ι∑

j=1

[
Ψ̃M(k)||S M(k − j + 1)||

]2
+ 2θτι(τ + Ψ̄M)2.

(A.17)
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Combining (A.15)–(A.17), one has

∆Vn(k) =Vn1(k) + Vn2(k) + Vn3(k) + Vn4(k)

≤ − θΨn(1 − ιlµn)
ι∑

j=1

[
ωn(kn − j + 1) + ωM(k − j + 1)

]2
− θϑ(1 − µϑι)

ι∑
j=1

[
ϑ̂(k − j + 1) + ωM(k − j + 1)

]2
− θτ(1 − µτι)

ι∑
j=1

[
τ̂(k − j + 1) + ωM(k − j + 1)

]2
−

(
θΨn −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)[
Ψ̃n(k)||S n(ϵn(kn))||

]2
− θξn

ι∑
j=2

[
Ψ̃n(k)||S n(ϵn(kn − j + 1))||

]2
− (θξn/3)ξn(k)2

+

(
2θΨn + 2θϑ + 2θτ

)[
Ψ̃M(k)||S M(k − j + 1)||

]2
−

(
θϑ −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)
ϑ̃(k)2 −

(
θτ −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)
τ̃(k)2

− θϑ

ι∑
j=2

ϑ̃(k − j + 1)2 − θτ

ι∑
j=2

τ̃(k − j + 1)2 + Bn

(A.18)

where Bn =
16
3 θξnϕ̄

2
nψ̄

2b̄2(2τ2 + 2ϑ2 + q̄) + 2
3θξnd̄2 + 2θτι(τ + Ψ̄M)2 + 2θΨnι(Ψ̄n + Ψ̄M)2 + 2θϑι(ϑ + Ψ̄M)2.

Combining the Lyapunov function from Step 1 to Step n, we can obtain

V(k) =
n∑

i=1

Vi(k)

=

n∑
i=1

θΨi

µi

n−i∑
s=0

Ψ̃i(ki + s)2 +

n−1∑
i=1

1
4
θξiξ

2
i (k) +

1
3
θξnξ

2
n(k) +

θM

µM
Ψ̃M(k)2

+ 2θM

ι∑
j=1

ΨM(k − j)2 + (θϑ/µϑ)ϑ̃(k)2 + (θτ/µτ)τ̃(k)2.

(A.19)

Combining (A.9), (A.13) and (A.18), we finially get
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∆V(k) ≤ − (
θξi

3
− θξ(n−1)ϕ̄

2
n−1)ξn(k)2

−

n∑
i=1

θΨi(1 − ιlµi)
ι∑

j=1

[
ωi(ki − j + 1) + ωM(k − j + 1)

]2
− θϑ(1 − µϑι)

ι∑
j=1

(ϑ̂(k − j + 1) − ωM(k − j + 1)
]

− θτ(1 − µτι)
ι∑

j=1

[
τ̂(k − j + 1) + ωM(k − j + 1)

]
− θM(1 − ιlµMa2)

ι∑
j=1

[
aωM(k − j + 1) + ρ(k − j + 1) − ωM(k − 1)

]2
−

(
θϑ −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)
ϑ̃(k)2 −

(
θτ −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)
τ̃(k)2

−

(
θMa2 − 2θM − 2

n∑
i=1

θΨi − 2θϑ − 2θτ
) ι∑

j=1

[
Ψ̃M ||S M(k − j + 1)||

]2
−

n−1∑
i=2

(θξi
4
− θξ(i−1)ϕ̄

2
i−1

)
ξi(k)2 −

1
4
θξ1ξ1(k)2 −

n∑
i=1

θΨi

ι∑
j=2

[
Ψ̃i(ki))||S i(ϵi(ki − j + 1))||

]2
−

n−1∑
i=1

(θΨi − θΨiϕ̄
2
i )
[
Ψ̃i(ki)||S i(ϵi(ki))||

]2
−

(
θΨn −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)[
Ψ̃n(kn)||S n(ϵn(kn))||

]2
+ B

(A.20)

where B =
∑n

i=1 Bi.
Selecting the parameters as 0 < µM < 1/(lιa2), 0 < µi < 1/lι, 0 < µϑ < 1/ι and 0 < µτ < 1/ι. Thus,

the first order difference of V(k) can be simplified as

∆V(k) ≤ −
(
θϑ −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)
ϑ̃(k)2 −

(
θτ −

16
3
θξnϕ̄

2
nψ̄

2b̄2
)
τ̃(k)2

−

(
θMa2 − 2θM − 2

n∑
i=1

θΨi − 2θϑ − 2θτ
) ι∑

j=1

[
Ψ̃M ||S M(k − j + 1)||

]2
−

1
4
θξ1ξ1(k)2 + B −

n−1∑
i=2

(θξi
4
− θξ(i−1)ϕ̄

2
i−1

)
ξi(k)2

−

(θξi
3
− θξ(n−1)ϕ̄

2
n−1

)
ξn(k)2 −

n∑
i=1

θΨi

ι∑
j=2

[
Ψ̃i(ki))||S i(ϵi(ki − j + 1))||

]2
−

n−1∑
i=1

(θΨi − θΨiϕ̄
2
i )
[
Ψ̃i(ki)||S i(ϵi(ki))||

]2
− (θΨn −

16
3
θξnϕ̄

2
nψ̄

2b̄2)
[
Ψ̃n(kn)||S n(ϵn(kn))||

]2
.

(A.21)

In this paper, the parameters θΨi, θΦn, θξi, θξn, θM, θϑ and θτ are respectively designed as θϑ >
16
3 θξnϕ̄

2
nψ̄

2b̄2, θτ > 16
3 θξnϕ̄

2
nψ̄

2b̄2, θM > 1
a2 (2θM + 2

∑n
i=1 θΨi + 2θϑ + 2θτ), θΨi > θΨiϕ̄

2
i , θΨn >

16
3 θξnϕ̄

2
nψ̄

2b̄2,
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θξi > 4θξ(i−1)ϕ̄
2
i−1 and θξn > 3θξ(n−1)ϕ̄

2
n−1. On the basis of the method, we have that ∆V(k) < 0 if the

following inequalities hold

|ϑ̃(k)| >

√
B√

θϑ −
16
3 θξnϕ̄

2
nψ̄

2b̄2
, |τ̃(k)| >

√
B√

θτ −
16
3 θξnϕ̄

2
nψ̄

2b̄2
,

∣∣∣∣∣ ι∑
j=1

(Ψ̃M ||S M(k − j + 1)||)
∣∣∣∣∣ >

√
B√

θMa2 − 2θM − 2
∑n

i=1 θΨi − 2θϑ − 2θτ
,

|ξ1(k)| >

√
B√

1
4θξ1

, |ξi(k)| >

√
B√

θξi
4 − θξ(i−1)ϕ̄

2
i−1

,

|ξn(k)| >

√
B√

θξi
3 − θξ(n−1)ϕ̄

2
n−1

,

∣∣∣∣∣ ι∑
j=2

(Ψ̃i(ki))||S i(ϵi(ki − j + 1))||
∣∣∣∣∣ >
√

B
√
θΨi

,

∣∣∣∣∣Ψ̃i(ki)||S i(ϵi(ki))||
∣∣∣∣∣ >

√
B√

θΨi − θΨiϕ̄
2
i

,

∣∣∣∣∣Ψ̃n(kn)||S n(ϵn(kn))||
∣∣∣∣∣ >

√
B√

θΨn −
16
3 θξnϕ̄

2
nψ̄

2b̄2
.

(A.22)

In this way, all signals in the closed-loop system are proven to be SGUUB.
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