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Abstract: The currently ongoing COVID-19 outbreak remains a global health concern. Understand-
ing the transmission modes of COVID-19 can help develop more effective prevention and control
strategies. In this study, we devise a two-strain nonlinear dynamical model with the purpose to shed
light on the effect of multiple factors on the outbreak of the epidemic. Our targeted model incorpo-
rates the simultaneous transmission of the mutant strain and wild strain, environmental transmission
and the implementation of vaccination, in the context of shortage of essential medical resources. By
using the nonlinear least-square method, the model is validated based on the daily case data of the
second COVID-19 wave in India, which has triggered a heavy load of confirmed cases. We present the
formula for the effective reproduction number and give an estimate of it over the time. By conduct-
ing Latin Hyperbolic Sampling (LHS), evaluating the partial rank correlation coefficients (PRCCs) and
other sensitivity analysis, we have found that increasing the transmission probability in contact with the
mutant strain, the proportion of infecteds with mutant strain, the ratio of probability of the vaccinated
individuals being infected, or the indirect transmission rate, all could aggravate the outbreak by raising
the total number of deaths. We also found that increasing the recovery rate of those infecteds with mu-
tant strain while decreasing their disease-induced death rate, or raising the vaccination rate, both could
alleviate the outbreak by reducing the deaths. Our results demonstrate that reducing the prevalence of
the mutant strain, improving the clearance of the virus in the environment, and strengthening the ability
to treat infected individuals are critical to mitigate and control the spread of COVID-19, especially in
the resource-constrained regions.
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2), which is responsible for
COVID-19, is a type of highly contagious virus and has posed an unprecedent threat to public health
worldwide. Since the first emerging in 2019, the virus has been spreading throughout the world and
had a devastating impact not only on the high-income countries in Europe and North America but also
in low and middle-income countries. As of 1 August 2022, there were 567,312,625 confirmed cases
and 6,378,748 deaths of COVID-19 worldwide, making it the most far-reaching global health crisis
since the 1918 influenza pandemic [1]. It has caused a ripple effect on the global economy including
prolonged shutdowns and increased unemployment. Many a country or region has experienced multi-
ple epidemic waves or outbreaks even with stringent interventions. So it is critical to explore the key
reason for so many epidemic waves. In fact, there still exist quite a lot of urgent problems for those
countries having experienced or experiencing multiple waves to solve including how to effectively
prevent and control the spread of COVID-19 and how the impact of COVID-19 on public health and
production can be reduced. So in this work, we will assess the efficiency of containments and provide
insights with possible factors that aggravate the outbreak.

Since the outbreak of COVID-19, many dynamic models have been proposed to estimate the trans-
mission risks, predict the final scale and evaluate the efficacy of non-pharmaceutical interventions on
the control of the epidemic, which has important theoretical and practical significance [2–8]. Tang et
al. [2] proposed a deterministic model and showed that intensive contact tracing can effectively reduce
the potential and severity of the outbreak, especially in the early stage of the outbreak. Wu et al. [3, 4]
assessed the effectiveness of major prevention and control strategies, including the quarantine and iso-
lation, by building mathematical models and applying statistical methods. Özköse Fatma et al. [5]
established a fractional epidemic model to test the relationship between the spread of COVID-19 and
its correlation with diabetes. Huang et al. [6] constructed a mathematical model and used real-time
data to determine peak time, peak size and final infection scale of the outbreak. Kumar et al. [7, 8] es-
tablished mathematical models to explore the dynamics of COVID-19 epidemic in multiple susceptible
populations and the transmission trend of COVID-19 in India. However, to the authors’ best knowl-
edge, few modelling studies have examined the role of multiple factors, such as shortage of medical
resources, mutant strain, et al., on the spread of COVID-19.

India, as one of the countries facing shortage of medical resources, has experienced its second wave
of COVID-19 pandemic from early March, 2021 and the daily number of confirmed cases was still
more than 20,000 at the end of September, 2021, which has caused more than four million reported
confirmed cases and four thousand reported deaths during the peak infection [9]. So in this work,
we will take India as an example to reveal the key factors affecting the outbreak and development of
the epidemic. In fact, the driving factors of virus transmission in India are various, including eco-
nomics, seasonality, geo-environmental and climatic factor [10–12]. And the commercial trade is also
an important factor which can accelerate the diffusion of COVID-19 [13]. In addition, India’s high
population density, sever shortage of medical resources, simultaneous spread of the wild and mutant
strains have caused the epidemic to be so serious. In this work, we consider the medical resource-
constraints, mutant strain, environmental transmission and assess the efficiency of these factors on the
containment of the outbreak. Given that about 70% of the population was already vaccinated during
this outbreak of COVID-19 in India, the effect of vaccine in controlling the outbreak was also taken
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into account in the modelling, despite of low vaccine coverage.

India, as a populated dense country, has been struck by the second wave of COVID-19 severely
with a overburdened healthcare system and significant case fatality rate, which has raised public health
pressing concerns in the fight against the COVID-19 pandemic [14–16]. The high patient-to-doctor
proportion 1456:1 besides the major imbalance in the size of healthcare workers and the size of people
has added the difficulty in dealing with the second COVID-19 wave in India [17]. There are only about
8 physicians and 8.5 hospital beds for every 10,000 individuals. That, together with the overwhelming
number of cases, are the maim burden borne by the healthcare workers. This phenomenon is even
worse in rural India, where only 3.2 hospital beds are available for 10,000 individuals [18]. And for the
states Uttar Pradesh, Rajasthan and Jharhand, there are only 2.5, 2.4 and 2.3 hospital beds every 10,000
individuals, respectively [19]. Medical-resource constraints is true in some of the developed countries
[20]. Brendon et al. [21] has investigated the capacities of hospital beds, intensive care units (ICU) and
acute care beds in more than 180 countries including the high-income countries, such as the United
States and United Kingdom, and the middle countries, such as India. They found that the high-income
countries have 12.79 ICU beds and 402.32 hospital beds every 10,000 individuals, but the rapid surge
of cases has overwhelmed the available resources some time. The present studies highlight the viral
role of medical resources in the outbreak of COVID-19. And there are research work that assessed the
effect of medical resource in the spread of COVID-19 by developing mathematical models [20,22–24].
Zhu et al. [22,23] designed compartment models with three or two phases to explore the vital role of the
hospital bed capacity in containing the outbreak of COVID-19 in Wuhan. They found that increasing
hospital-bed capacity to isolate those infecteds with mild symptoms could help curb the outbreaks in
regions with medical-resource constrained. Tang et al. [20, 24] proposed piecewise-defined models to
reveal the effect of hospital bed shortages in the transmission of COVID-19 in certain regions. They
highlighted the critical role of timely improvement of abilities to supplement medical resources in
effective controlling the COVID-19 epidemic. However, how the shortage of hospital bed, together
with other containments, affected the spread of COVID-19 in India has not yet been well evaluated.

Lin et al. [25] emphasizes the effect of various feature factors on the spread of COVID-19 epi-
demic. In fact, many a factor is involved in driving the second COVID-19 wave in India, such as the
complex interplay of mutant strains with higher pathogenicity and environmental transmission caused
by infected individuals’ respiratory droplets, in the context of the medical-resource constraints. Dur-
ing the second COVID-19 wave in India, Delta strain, a type of new strain of COVID-19 characterized
by rapid transmission and strong infectivity, is circulating in India [26, 27]. Because of the abundant
genetic diversity and high evolution capability, SAR-CoV-2 has already exhibits dynamically evolv-
ing mutation [28–31]. Many a mutant strain of COVID-19 with high transmission rate was identified
around the world, including the Beta strain in South Africa, Alpha strain in the UK and the Omicron
strain in Gauteng province, South Africa [32]. Delta strain compromises the effectiveness of exist-
ing COVID-19 vaccines and leads to the insurgence of anti-microbial drug resistance, in addition to
inducing a surge of cases and deaths in India [33, 34]. In fact, as the supply of COVID-19 vaccines
increases, a mass vaccination campaign was implemented in India on January 16, 2021 with the first
dose for 30 million front-line workers, including health care workers and security forces, and the sec-
ond dose for those aged over 50 or under 50 but with multiple diseases. However, the efficiency of
vaccines is reduced since Delta strain, as a mutant strain, can help the virus replicate more efficiently
or escape the immune system [33]. More than one work has studied the effect of mutant strain and vac-
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cination strategy on the transmission of the COVID-19 epidemic by formulating mathematical mod-
els [27, 30, 31, 34, 35]. Sonabend et al. [27, 30] proposed novel COVID-19 models to investigate how
the vaccination and delta variant affect the outbreak of COVID-19 in England and Jiangsu China. They
found that the increasing population immunity and lifting non-pharmaceutical interventions resulted
in a decreasing of the transmission; while delta variant lead to an increasing of the peak size. Betti et
al. [31] devised a two-strain mathematical model and used the data of COVID-19 epidemic in Ontario
to parameterize the model. They found that a variant strain was unlikely to dominate in short period.
Khyar et al. [34] investigated the global dynamics of a two-strain epidemic model, which can fit the
COVID-19 clinical data well. Britto et al. [35] expanded and SEIR model to assess age-specific vaccine
allocation strategies in India. The results supported global recommendations to prioritize COVID-19
vaccine allocation for older age groups. However, how much the vaccines help contain the outbreak by
protecting the exposed individuals with Delta strain being infected, in the context of medical resource
shortage, such as in countries like India, is not fully understood.

According to the updated scientific brief on COVID-19 transmission by WHO, the transmission
modes of SARS-CoV-2 include contaminated environment besides close contact [36]. During the
outbreak of second wave of COVID-19 in India, the virus, which was spread by respiratory droplets
produced when infected individuals cough, sneeze, talk, et al., persists in the environment and on
hard surfaces. There is study suggests that the virus can stay on plastic and stainless metal surfaces,
such as door handles, desktops and tables, from two to three days [37]. Moreover, the transmission
from improperly or not timely handled deceased cases to susceptibles is also a considerable way of
transmission [38]. With the sudden rise in the number of deceased cases as well as shortage of medical
resources in India, the deceased cases cannot be handled properly or in time [39], which releases virus
into the environments. More than one research has revealed the indispensable role of contaminated
environments in the outbreak of COVID-19 [40–43], which provides more information on the infected
risk and infectivity of contaminated surfaces. Zu et al. [40] proposed a nonlinear mathematical model
to analyze the effects of the environmental virus on the transmission patters. By fitting the targeted
model to the data in India, they highlighted the necessity of reducing the virus in the environment.
He et al. [41] proposed a novel dynamic model to assess the effect of environmental contribution
in the transmission dynamics of COVID-19. By validating the model using the COVID-19 reported
data in Saudi Arabia, they revealed the crucial role of environmental transmission in the outbreak.
Wang et al. [42] formulated a mathematical model incorporating multiple transmission pathways and
fitted the model to the publicly reported data in China. The result emphasized the important role
of environmental reservoirs in the transmission of COVID-19. Babington-Ashaye et al. [43] did a
scoping review to understand the risks of infection with COVID-19 via contaminated surfaces. They
have selected 565 relevant articles and found that the risk of SARS-CoV-2 infection via contaminated
surfaces assessed as low in the majority of the reviewed articles. As a result, the knowledge regarding
the environmental transmission and transmission mechanism of COVID-19, especially in the case of
the spread of mutant strain and shortage of medical resources, remains limited.

As a result, the second wave of COVID-19 pandemic in India has resulted in mass destruction due
to the shortage of medical resource, heavy load of patients, spread of delta strain and environmental
transmission although a vaccination strategy has been implemented. This outbreak have raised the
pressing concerns of much of the world in the fight against the current pandemic. So it is necessary to
provide insights into the lessons learnt from the second wave as well as the possible strategies could be
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implemented to contain the viral spread. Up to this point, many mathematical models have focused on
the spread and control strategies of COVID-19 from different perspectives [5, 20, 22–24, 27, 30, 31, 34,
35, 40–45]. These models were established based on the monitoring data of COVID-19 to capture the
characteristics of the SAR-CoV-2, assess the risk of reinfection, evaluate the epidemic scale, explore
the reasonable allocation of medical emergency resources, et al. However, the previous models only
studied the impact of one or two factors on the tackling of the COVID-19 outbreak although. As known
to all, many factors including the medical resource shortages, spread of mutant strain, environmental
transmission and vaccination are reported to affect the second wave of COVID-19 outbreak in India.
To the best of our knowledge, little work was done to mimic the the combined effect of multiple factors
in the transmission and control of this outbreak. And it falls within the scope of this work.

To give a detailed understanding on how the simultaneous spread of the more pathogenic mutant
strain and the wild strain, implementation of vaccination and indirect transmission caused by contami-
nated environments, in the context of shortage of medical resources, affect the outbreak of COVID-19
in the regions or countries with heavy population, it is urgent to quantitatively analyze the relationship
between various factors and the outbreak of COVID-19. And the above introduction demonstrates that
these problems are very prominent in India, especially the shortage of medical resources, so we chose
India as an example to study. In this work, we propose a nonsmooth dynamic model for the COVID-19
pandemic incorporating the combined effects of these factors on the overall dynamics of the disease.

2. Materials and methods

• Sample and data

We obtained the data of COVID-19 cases in India from 1 March to 1 October 2021 from Baidu’s
Real Time Big Data Report on COVID-19 [9]. The data included the daily number of confirmed cases,
recovered cases and deaths, as shown in Figure 1. Since the beginning of March, the daily number of
confirmed cases has continuously climbed, which was the second major outbreak in India caused by
the emergence of mutant strain and local large-scale gatherings. As of 1 October 2021, the cumulative
number of confirmed cases, recovered cases and deaths climbed up to 33,789,398, 33,060,980 and
448,605, respectively. On 15 April when the huge religious gatherings held, the daily number of
confirmed cases exceeded 200,000 for the first time and it took just a week to reach 315,800. On April
30, the number rose to more than 400,000, as shown in Figure 1(a).

As the outbreak in India got worse, many countries sent medical supplies to India, and then the
daily number of recovered cases reached 422,394 on 17 May, which was the highest number of daily
recovered cases, as shown in Figure 1(b). With the number of confirmed cases continuously rising and
medical resources becoming inadequate severely, the daily number of reported deaths exceeded 1000
on 13 April and soon the daily number of reported deaths rose to 6,148 that was the highest number of
new deaths in a single day in India, as shown in Figure 1(c). One of the reasons for such a big number of
daily reported deaths was one of India’s poorest state Bihar fixed the method of counting new deaths,
following which 3951 deaths were added. However, those who died of post-COVID complications
after testing negative were not included in the death toll. In this work, we assumed that only the deaths
died in hospitals were included in the death toll.

In India, a mass vaccination campaign began on 16 January. The first phase was for 30 million
front-line workers, such as health care workers and security forces. The second phase was for people
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Figure 1. The data on COVID-19 in India from 1 March to 1 October 2021. (a) Daily
reported confirmed cases; (b) Daily reported recovered cases; (c) Daily reported deaths.
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aged over 50 and those under 50 with multiple diseases. Vaccination was available in more than 8,600
public and private hospitals since 1 March and vaccines are free for the public [7]. About 1 billion
doses of vaccines has been completed in India. About 75 percent of the adults in India received at least
one dose of the coronavirus vaccine, and about 30 percent of them have been fully vaccinated. So we
consider the impact of vaccination on the spread of COVID-19 in India in this paper.

Shortage of hospital beds, oxygen, vaccines and medicines occurred in many parts of India as the
outbreak aggravated dramatically. In some hospitals, there were 50 patients fighting for a bed. In
Maharashtra, one of the states with severe outbreak, patients had to take shelter in ambulances, private
cars and even electric three-wheelers with long queues at hospitals and patients lying in car parks taking
oxygen [46, 47]. Thus we considered the impact of the shortage of essential medical resources on the
spread in India. We used the capacity of hospital beds to evaluate the amount of medical resources
in this work. Because of a lack of data on the number of hospital beds, and India government has
been gradually strengthening their medical resources and other control measures, in particular, more
and more beds were provided in response to the outbreak, we adopted a logistic model to estimate the
number of hospital beds used to treat patients infected with COVID-19 in India. In fact, the logistic
model has been successfully adopted to mimic the number of hospital beds in combating the outbreak
of COVID-19 in China, South Korea, Japan, Italy, Spain and Iran [20].

• Measures of variables

In this work, we assumed that the number of hospital beds Hc(t) was a constant Hc0 before 1 March,
and it was an increasing function submitted to the following logistic model

dHc(t)
dt

= rHc(t)
(
1 −

Hc(t)
M

)
(2.1)

from then on. It is worth emphasizing that during the second wave of the COVID-19 outbreak in India,
many a people shared a bed, so here Hc(t) represented the number of people having hospital beds,
not the number of hospital beds, and for simplicity, we will call Hc(t) the number of hospital beds in
the rest of this paper. In model (2.1), r denoted the net increasing rate of hospital beds and M stood
for the maximum number of hospital beds in India during the COVID-19 outbreak. We embed model
(2.1) into our targeted model and fitted the final model to the data on the daily number of confirmed
cases, recovered cases and deaths to estimate the parameters, including r and M. Taking into account
of the pivotal role of the indirect transmission caused by the contaminated environments in COVID-
19 infection as introduced in Section 1, we also mimic the effects of contaminated environments on
transmission dynamics in India in this work.

Denote T0 as the date 9 April, 2021 when the lockdown strategy began to implement, T1 as the
date 31 May, 2021 when the containment measures were gradually lifted, T2 as the date 27 April, 2021
when the first batch of medical aid from the UK arrived at the airport in Indian capital New Delhi, T3 as
the date 10 May, 2021 when the last batch of medical aid from China arrived in India, and T4 as the date
10 July, 2021, since then the daily number of confirmed cases has been basically below 40,000 and the
epidemic has been in effective control. Thus we assume the public awareness as well as the prevention
and control measures were improved and strengthened gradually after 9 April, so we assumed that the
contact rate c(t), the diagnosis rates δ(t), the recovery rate γH(t) and the disease-induced death rate
αH(t) of hospitalized individuals are time-dependent.
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The contact rate c(t) is assumed to be a constant before 9 April and a decreasing function with
respect to time t after 9 April due to the implementation of lockdown strategies and the raising of
public awareness. After 31 May, containment measures were gradually enhanced, and the contact rate
became anther constant. So, c(t) took the following form:

c(t) =


c0, t ≤ T0,

(c0 − c1)e−rc(t−T0) + c1, T0 < t ≤ T1,

c1, t > T1,

(2.2)

where c0 was the contact rate without control measures or awareness of the disease, c1(c1 < c0) was
the minimum contact rate with the unprecedented intervention measures and self-isolation, rc was the
corresponding decreasing rate of the contact rate. Here T0 = 39,T1 = 92, since the data we used for
model fitting started at 1 March 2021.

The period from onset of symptoms to being diagnosed ( 1
δ
) was gradually shortened due to the

increasing of public awareness and medical assistance from multiple countries. The first batch of
medical supplies from Britain arrived in India on 27 April, so the diagnosis rate δ(t) was an increasing
function with respect to time t from 27 April to 10 May when the last batch of medical supplies from
China arrived in India. From May 10 to July 10, the diagnosis rate δ(t) was assumed to be a decreasing
function with respect to time t as the medical resources running out. After 10 July, the daily number
of confirmed individuals has changed relatively little, so the diagnosis rate δ(t) was assumed to be a
constant. Thus, the diagnosis period was described by the following piecewise-defined function:

δ(t) =


δ0, t ≤ T2,

(δ0 − δ1)e−rδ(t−T2) + δ1, T2 < t ≤ T3,

(δ1 − δ2)e−rδ(t−T3) + δ2, T3 < t ≤ T4,

δ2, t > T4,

(2.3)

where T2 = 57,T3 = 71,T4 = 132, δ0 was the initial diagnosis rate of infected individuals, δ1(δ0 < δ1)
was the maximum diagnosis rate of individuals, δ2(δ0 < δ2 < δ1) was the final diagnosis rate of infected
individuals and rδ was the corresponding decreasing rate.

With the aid of medical resources from various countries, the recovery rate γH(t) increased and the
disease-induced death rate αH(t) decreased before the end of medical assistance on 19 May. As the
medical resources running out, the recovery rate γH(t) was decreasing with respect to time t from 19
May to 10 July and it remained a constant after 10 July. As for the disease-induced death rate αH(t),
as the daily number of confirmed cases decreasing gradually and Indian government increasing the
capacity of hospital beds, a large number of cases entered the hospital for treatment, so αH(t) remained
decreasing, but at a smaller decreasing rate from 19 May to 10 July; while it took a constant after 10
July. Thus γH(t) and αH(t) took the following form:

γH(t) =


γH0, t ≤ T2,

(γH0 − γH1)e−rH(t−T2) + γH1, T2 < t ≤ T3,

(γH1 − γH2)e−rH(t−T3) + γH2, T3 < t ≤ T4,

γH2, t > T4,

(2.4)
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αH(t) =


αH0, t ≤ T2,

(αH0 − αH1)e−rα(t−T2) + αH1, T2 < t ≤ T3,

(αH1 − αH2)e−rα(t−T3) + αH2, T3 < t ≤ T4,

αH2, t > T4,

(2.5)

where γH0 (resp. αH0) was the recovery rate (resp. disease-induced death rate) of hospitalized individ-
uals before 27 April, γH1(γH0 < γH1) (resp. αH1(αH1 < αH0) was the maximum recovery rate (resp.
small disease-induced death rate), γH2(γH2 < γH0 < γH1) was the final recovery rate after two months
of consuming of the medical resources from the foreign countries, αH2(αH2 < αH1 < αH0) was the
minimum disease-induced death rate, rH (resp. rα) was the corresponding exponential changing rate of
the recovery rate (resp. disease-induced death rate).

• Models and data analysis procedure

Based on the disease progression and the intervention measures, we extended the basic SEIR model
by considering the wild and mutant strains of SARS-CoV-2 in India, contamination of the environment,
vaccination, and constraints of medical resources on the spread of the epidemic. The population is
divided into ten compartments: susceptible (S ), vaccinated (V), exposed (E), undiagnosed infecteds
with the wild strain (Iw), undiagnosed infecteds with the mutant strain (Im), confirmed with the wild
strain but not hospitalized (Pw), confirmed with the mutant strain but not hospitalized (Pm), confirmed
and hospitalized (H), recovered (R) and deceased (D). The density of pathogen in the contaminated
environments is denoted by W, as shown in Figure 2.

Figure 2. A schematic flow diagram of the transmission of COVID-19 with the simultaneous
spread of the mutant strain and the wild strain.

The modelling framework SEIPR is used to describe the transmission dynamics, where the undiag-
nosed infecteds are divided into two classes according to the strain of infection: undiagnosed infecteds
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with the wild strain (i.e., Iw) and with the mutant strain (i.e., Im). For simplicity, we call Im (resp.
Iw) the infecteds with wild strain (resp. the infecteds with mutant strain) in the rest of this work.
Due to the limitation of medical resources, some of the confirmed individuals enter the hospitalized
class H with a certain admission rate, and the other confirmed individuals progress into the class R
without receiving treatment. The virus in the environment can accelerate the infection of susceptibles
and vaccinated individuals, as shown in Figure 2. The total population size is denoted by N, where
N = S +V +E+ Iw+ Im+Pw+Pm+H+R. The model is described by the following system of ordinary
differential equations 

dS
dt
= λS S − ΨS ,

dE
dt
= λS S + λvV − σE,

dIw

dt
= (1 − q)σE − δ(t)Iw − α1Iw,

dIm

dt
= qσE − δ(t)Im − α2Im,

dPw

dt
= δ(t)Iw − h(t)Pw − γ1Pw − α1Pw,

dPm

dt
= δ(t)Im − h(t)Pm − γ2Pm − α2Pm,

dH
dt
= h(t)(Pw + Pm) − γH(t)H − αHH,

dR
dt
= γH(t)H + γ1Pw + γ2Pm,

dV
dt
= ΨS − λVV,

dD
dt
= α1(Iw + Pw) + α2(Im + Pm) + αHH,

dW
dt
= η1(Iw + Pw) + η2(Im + Pm) − KwW.

(2.6)

where

λS =
βwW

1 + αwW
+
β1c(t)(Iw + Pw)

N
+
β2c(t)(Im + Pm)

N
,

λV =
θβwW

1 + αwW
+
θβ1c(t)(Iw + Pw)

N
+
θβ2c(t)(Im + Pm)

N
,

h(t) =
(Hc − H)
Pw + Pm

.

Here the contact rate is denoted by c(t) and the per-act transmission probability in contact with Iw

(resp. Im) and Pw (resp. Pm) is β1 (resp. β2). And the term βw describes the indirect transmission rate
at which the susceptible individuals (S ) or vaccinated individuals (V) gets infected with the virus in
the environments (W). Note that health experts and government have been advising the public to min-
imize contacts with infectious individuals as much as possible during the outbreak. It follows that the
increasing rate of the number of infected individuals caused by indirect transmission decreases as the
viral load in the environments increases. Therefore in our model we propose new infections through
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indirect transmission occur in the form βwS W
1+αwW ,

θβwVW
1+αwW , where 1

1+αwW reflects an inhibition effect resulting
from the reducing contact rate as the density of virus in the environment increases, αw is called the satu-
ration coefficient, θ denotes the ratio of the probability at which the vaccinated individuals V is infected
compared with the susceptible individuals S . A susceptible (S ) or vaccinated individual (V) may be in-
fected by a SARS-CoV-2 strain (either the wild or the mutant) through direct transmission and entered
a latent infection stage (E), where infections occur in the form β1c(t)S (Im+Pm)

N , β2c(t)S (Iw+Pw)
N , θβ1c(t)V(Iw+Pw)

N ,
θβ2c(t)V(Im+Pm)

N . Undergoing a mean incubation of 1
σ

days, q proportion of infected individuals progressed
into the infecteds with mutant strains (Im), 1 − q proportion of infected individuals progressed into the
infecteds with wild strains (Iw). In model (2.6), δ(t) denotes the diagnosis rate for infected individuals,
α1, α2 and αH(t) denote the disease-induced death rates for Iw, Pw, Im, Pm and H, respectively, Hc−H

Pw+Pm

denotes the hospitalization rate, γ1, γ2 and γH(t) are the recovery rates for Iw, Pw, Im, Pm and H, re-
spectively. Note that those individuals confirmed with COVID-19 may not be hospitalized due to the
shortage of hospital beds, so whether the confirmed individuals could be hospitalized or not depends
on the daily number of empty hospital beds. If the hospital beds are insufficient, only a part of the con-
firmed individuals (Hc(t) − H) could be hospitalized, where Hc(t) denotes the number of hospital beds
at time t in India, taking the form derived from the logistic model (1). See more detailed definitions
and values of variables and parameters listed in Table 1.

To fit our targeted model to the data, we initially analyzed the data to set the initial values for the
state variables. According to the news reports, 1,500,000 Indian health workers and frontline workers
had received at least one dose of COVID-19 vaccine as of March 1, 2021, so we set V(0) = 15, 000, 000.
During the initial stage of the second wave of COVID-19 outbreak in India, all the Indians, with a total
population of 1,354,051,854, except the vaccinated and infected individuals (the cumulative number of
infecteds was 11,123,619 as of 1 March 2021) were susceptible to the virus, so direct calculation yields
S (0) = 1, 327, 100, 000. We assumed that all the previously infected individuals were either recovered
(the cumulative number of recovereds was 10,796,558), dead (the cumulative number of deaths was
157,275) or received treatment in the hospital till 1 March, 2021, so we derived the initial value of
hospitalized individuals H(0) = 14, 786. On March 1, 2021, the daily number of recovered individuals
was 11,990, so we set R(0) = 11, 990. All other parameters and variables were estimated or from the
reference.

We next conducted data fitting using our targeted model to estimate the values of the parameters.
There are generally three parameter estimation methods, i.e., least square method, maximum likelihood
estimation method, and Bayesian estimation method. It is necessary to define the maximum likelihood
function in advance when we adopt the maximum likelihood estimation method to estimate parameters.
The prior probability density of the estimated parameters should be determined in advance if we will
estimate the parameters using the Bayes estimation method. When the least square method is chosen
to estimate parameters, we do not need prior statistical characteristics, so it is easier to solve and
is widely used. Compared with other parameter estimation methods, the unknown parameters can
be easily obtained by using the least square method, and the sum of squares of errors between the
obtained data and the actual data is minimized [48]. The nonlinear least-square method is carried out
in MATLAB, using the command fmincon, which is a part of the optimization toolbox in MATLAB
and finds a constrained minimum of a function of several variables. So in the following, we used the
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Table 1. Estimated initial values of variables and parameters for model (2.6).
Variables Description Initial value Resource
S Susceptible population 1,327,100,000 Data
E Exposed population 500,000 LS
Iw Infected population with the wild strain 120,000 LS
Im Infected population with the mutant strain 180,000 LS
Pw Confirmed with the wild strain but not hospitalized population 60,000 LS
Pm Confirmed with the mutant strain but not hospitalized population 95,000 LS
H Confirmed and hospitalized population 14,786 Data
R Recovered population 11,990 Data
W Density of virus in the contaminated environments 200,000 LS
V Vaccinated population 15,000,000 Data
Parameters Description Value Resource
β1 The per-act transmission probability in contact with Iw and Pw 0.0288 LS
β2 The per-act transmission probability in contact with Im and Pm 0.06 LS
βw Indirect transmission rate 5.5576×10−4 LS
αw Saturation coefficient 0.0983 LS

c(t)
c0 Contact rate before 9 April 10.2678 LS
c1 Minimum contact rate with control strategies 4.0027 LS
rc Exponential decreasing rate of the contact rate 0.6352 LS

Ψ Vaccination rate for susceptible individuals 0.0941 LS
θ Ratio of the probability of V being infected compared with S 0.1878 LS
q Proportion of infected individuals with the mutant strain 0.5957 LS
σ Progression rate of exposed individuals to infectives 1/4.003 LS

δ(t)
δ0 Initial diagnose rate of infected individuals 0.1214 LS
δ1 Maximum diagnose rate of infected individuals 0.6458 LS
δ2 Final diagnose rate of infected individuals 0.1997 LS
rδ Exponential decreasing rate of diagnose rate 8.0101 LS

Hc(t)
Hc0 Initial number of hospital beds for COVID-19 in India 35000 LS
r Net increasing rate of hospital beds 0.09 LS
M Maximum capacity of hospital beds 1700000 LS

γH(t)
γH0 Initial Recovery rate of confirmed individuals 0.3306 LS
γH1 Maximum Recovery rate of confirmed individuals 0.3402 LS
γH2 Final Recovery rate of confirmed individuals 0.021 LS
rH Exponential increasing rate of recovery rate 0.0745 LS

γ1 Recovery rate of the infecteds and confirmed individuals with the wild
strain before hospitalization

0.09871 [49]

γ2 Recovery rate of the infecteds and confirmed individuals with the mu-
tant strain before hospitalization

0.096 LS

α1 Disease-induced death rate of the infecteds and confirmed individuals
with the wild strain before hospitalization

2.92×10−5 LS

α2 Disease-induced death rate of the infecteds and confirmed individuals
with the mutant strain before hospitalization

3.6786×10−5 LS

αH(t)
αH0 Minimum disease-induced death rate of hospitalized individuals 0.004 LS
αH1 Reduced disease-induced death rate of hospitalized individuals 0.0039 LS
αH2 Final disease-induced death rate of hospitalized individuals 3.2485×10−4 LS
rα Exponential decreasing rate of disease-induced death rate 0.0815 LS

η1 The virus shedding rate from the infecteds and the confirmed individu-
als with wild strain

3.98×10−4 [49]

η2 The virus shedding rate from the infecteds and the confirmed individu-
als with mutant strain

4×10−4 LS

Kw The clearance rate of the virus 0.01 [49]
Mathematical Biosciences and Engineering Volume 20, Issue 4, 6237–6272.
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nonlinear least-square method to validate our targeted model. The objective function is

f (Θ) =
k=n∑
k=1

(C̃(Tk) −C(Tk))2 +

k=n∑
k=1

(R̃(Tk) − R(Tk))2 +

k=n∑
k=1

(D̃(Tk) − D(Tk))2 (2.7)

where Θ is the vector of parameters to be estimated, n is the length of the epidemic data period. Here
n = 215 since we used data from 1 March to 1 October, lasting for 215 days. Tk is the corresponding
date of the k − th day since 1 March 2021. C̃(Tk), R̃(Tk), D̃(Tk) are the actual reported daily number of
confirmed cases, recovered cases and deaths on the date Tk, respectively. C(Tk),R(Tk),D(Tk) are the
estimated daily number of confirmed cases, recovered cases and deaths on the date Tk, respectively.
The dynamics of C(t),R(t),D(t) are governed by

C(t)
dt
= h(t)(Pw(t) + Pm(t)),

R(t)
dt
= γH(t)H,

D(t)
dt
= αH(t)H.

(2.8)

where Pw(t), Pm(t) and H(t) are determined by model (2), h(t), γH(t) and αH(t) are as defined above.

3. Results

• Parameter estimation and model fitting

By fitting our targeted model to the data of the daily number of confirmed cases, recovered cases
and deaths from 1 March to 1 October, 2021, we have obtained the estimated values of the unknown
parameters. The fitting result of the targeted model (2) to the epidemic data was shown in Figure 3(a)–
(c). The estimated values of unknown parameters and initial conditions of variables and parameters are
reported in Table 1. In Figure 3, the red circles represent the data from 1 March to 1 October, 2021,
the best-fitting results of the daily number of confirmed cases, recovered cases and deaths are plotted
in black solid lines, showing that our targeted model captures the data well.

Note that the data we used to fit the model, including the daily number of confirmed cases, recovered
cases and deaths, are not highly linearly correlated, and there are very few outliers in the data, so
the least square method used in this paper is stable. In addition, in order to improve the stability of
parameter estimation adopted in this work, we selected a relatively large amount of data, i.e., 215 days
of data, for fitting. In fact, the parameter estimation in this work was difficult. On the one hand, there
were many parameters needed to be estimated; on the other hand, some of the parameters were piece-
wise defined or time-dependent, which increased the difficulty in parameter estimation. In addition,
the magnitude of the data on the second wave of COVID-19 epidemic in India was relatively large,
and the error between the reported data and the actual situation was also relatively large, which also
increased the difficulty of parameter estimation. Nevertheless, we have provided a good estimate, as
shown in Figure 3.

To further validate the targeted model, we compared the actual data and estimates on the cumulative
number of confirmed cases, recovered cases and deaths from 1 March to 1 October, 2021, as shown
in Table 2. Table 2 shows that the estimated value of the cumulative number of confirmed cases is
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Figure 3. Fitting result for the data from 1 March to 1 October, 2021 in India. (a) Fitting
of daily number of confirmed cases; (b) fitting of daily number of recovered cases; and (c)
fitting of daily number of deaths. The red circles represent the reported data, the black curves
are the best fitting curves of model (2) to the data.

Table 2. Data on cumulative number of confirmed cases, recovered cases and deaths versus
the estimates from 1 March to 1 October.

Data Estimated
value

Proportion in the
whole or infected
population (data)

Proportion in the whole
or infected population
(estimated)

Cumulative number of confirmed cases 22,677,342 24,123,250 1.674% 1.782%
Cumulative number of recovered cases 22,276,412 22,194,430 98.232% 92.004%
Cumulative number of deaths 291,410 272,607 1.285% 1.130%

6% higher than the actual data, i.e., 1,445,908 more cases. The estimated values on the cumulative
number of recovered cases (resp. deaths) are 0.4% (resp. 6%) lower than the actual data, i.e., 81,982
less recovered cases (resp. 18,803 less deaths). Note that in order to fit the data on the death used
in this paper, the number of deaths here is only those died in the hospital. The proportion in the
first row of Table 2 refers to the proportion of the cumulative number of confirmed cases in the total
population; while that in the second (resp. third) row refers to the proportion of the cumulative number
of recovered cases (resp. deaths) in the confirmed population. We observe that the errors between
the estimated value and the actual data of these three ratios are small, i.e., 0.108, 6.228 and 0.155%,
respectively. In Table 3, we compared the peak size of the data on the daily number of confirmed
cases, recovered cases and deaths with the estimated ones. We found that the peak size of the data on
the daily number of confirmed cases was 10,593 larger than that of the estimated value, with a relative
error 2.556%. The peak size of the data on the daily number of deaths was 34 smaller than that of the
estimated value, with a relative error 0.760%. In Table 4, we compared the time of the data when the
daily number of confirmed cases less than 50,000 and that when the daily number of deaths less than
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Table 3. Comparison of actual and estimated daily numbers of confirmed cases,
recovered cases and deaths at peak from 1 March to 1 October 1.

Peak size
(data)

Peak size
(estimated)

Absolute error Relative error

Daily number of confirmed cases 414,433 403,840 10,593 2.556%
Daily number of recovered cases 422,394 390,570 31,824 7.534%
Daily number of deaths 4525 4559 34 0.760%

Table 4. Comparison of actual and estimated time when the daily number of con-
firmed cases or deaths less than 50,000 or 600.

Date (data) Date (estimated)

Time when the daily number of confirmed cases less than 50000 25 June 29 June
Time when the daily number of deaths less than 600 12 July 5 July

600. We found that the estimated time when the daily number of confirmed cases less than 50,000 is 4
days later than the that in the data; the estimated time when the daily number of deaths less than 600
is 7 days earlier than that in the data. As a result, our targeted model fitted the data well and it was
reliable.

We calculated the basic reproduction number by using the next generation matrix method [50].
Denoting Z ≡ (E, Iw, Im, Pw, Pm,W), we had Ż = G(Z). Let G(Z) = F + V, where F represent the
vector of new infections andV represent the vector of all other transitions, respectively. And we get

F =



βwS W
1 + αwW

+
β1c(t)S (Iw + Pw)

N
+
β2c(t)S (Im + Pm)

N
+
θβwVW

1 + αwW
+
θβ1c(t)V(Iw + Pw)

N
+
θβ2c(t)V(Im + Pm)

N

0

0

0

0

0


,

V =



σE

(δ(t) + α1)Iw − (1 − q)σE

(δ(t) + α2)Im − qσE

(h(t) + γ1 + α1)Pw − δ(t)Iw

(h(t) + γ2 + α2)Pm − δ(t)Im

KwW − (η1(Iw + Pw) + η2(Im + Pm))


.
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Differentiating F andV with respect to Z and computing them at the initial state give

F =



0
β1c(t)S t + θβ1c(t)Vt

Nt

β2c(t)S t + θβ2c(t)Vt

Nt

β1c(t)S t + θβ1c(t)Vt

Nt

β2c(t)S t + θβ2c(t)Vt

Nt

βwS t + θβwVt

(1 + αwWt)2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

V =



σ 0 0 0 0 0
−(1 − q)σ δ(t) + α1 0 0 0 0
−qσ 0 δ(t) + α2 0 0 0

0 −δ(t) 0 h(t) + γ1 + α1 0 0
0 0 −δ(t) 0 h(t) + γ2 + α2 0
0 −η1 −η2 −η1 −η2 Kw


.

Then the effective reproduction number can be approximately defined as

Re(t) = ρ(FV−1) = Rs
e(t) + Rw

e (t), (3.1)

where Rs
e(t) and Rw

e (t) denote the effective reproduction numbers of direct transmission and indirect
transmission, respectively, and

Rs
e(t) =

(1 − q)β1c(t)(S t + θVt)
Nt(δ(t) + α1)

+
(1 − q)δ(t)β1c(t)(S t + θVt)

Nt(δ(t) + α1)(h(t) + γ1 + α1)
+

qβ2c(t)(S t + θVt)
Nt(δ(t) + α2)

+

qδ(t)β2c(t)(S t + θVt)
Nt(δ(t) + α2)(h(t) + γ2 + α2)

,

Rw
e (t) =

[
(1 − q)η1(δ(t) + h(t) + γ1 + α1)

(δ(t) + α1)(h(t) + γ1 + α1)
+

qη2(δ(t) + h(t) + γ2 + α2)
(δ(t) + α2)(h(t) + γ2 + α2)

]
βw(S t + θVt)

(1 + αwWt)2kw
.

According to the reported values of the parameters and initial conditions, we get the estimated effective
reproduction number, as shown in Figure 4, where the grey region indicates the lockdown period, i.e.,
from 9 April to 31 May, 2021. It follows from Figure 4 that the effective reproduction number Re(t)
falls below the threshold of 1 since 9 April when the lockdown strategy was implemented. And the
effective reproduction number is relatively small during the lockdown, i.e., from 9 April to 31 May,
2021 when the public was not allowed to go out except for essential activities such as buying daily
necessities and seeking medical treatment. Note that a slight rebound occurred on 31 May, 2021 when
the lockdown strategy was suspended. It follows that the outbreak becomes controllable since the
implementation of lockdown.

• Uncertainty and sensitivity analysis

Considering the uncertainty of the model parameters, we conducted sensitivity analysis of the effec-
tive reproduction number Re(t) with respect to various parameters over time by computing the partial
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Figure 4. Estimated effective reproduction number from 1 March to 1 October, 2021 in
India.

rank correlation coefficients (PRCCs) based on Latin Hyperbolic Sampling [51]. We chose the param-
eters closely related to the epidemic transmission and containments including the parameters related to
the evolution of contact rate (c0), proportion of infected individuals with the mutant strain (q), vacci-
nation rate for susceptible individuals (Ψ), ratio of the probability of the vaccinated population being
infected compared with the susceptible population (θ), initial diagnose rate of infected individuals (δ0),
the per-act transmission probability in contact with Im and Pm (β2), net increasing rate of hospital
beds (r), maximum capacity of hospital beds(M), with other parameters fixed, as shown in Figure 5.
The monotonic relationship between the outcomes of effective reproduction number Re(t) and each

Figure 5. Partial rank correlation coefficients (PRCCs) of the effective reproduction number
(Re(t)) for β2,Ψ, δ0, r,M, c0, q, θ from 1 March to 1 October, 2021 in India. The shadow
region indicates the period of lockdown.

parameter was assessed over the entire time interval. The values of the partial rank correlation coeffi-
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cients (PRCCs) of each parameter over the time interval was calculated, which allowed us to determine
whether the significance of one parameter occurred during the progression of the dynamics of our tar-
geted model. The absolute values of PRCCs greater than 0.5 were considered as indicating significant
correlations between the parameters and the effective reproduction number. Figure 5 showed that the
proportion of Im (i.e., q), ratio of the probability of V being infected compared with S (i.e., θ), and
initial contact rate (i.e., c0) were positively correlated with Re(t) almost over the entire time interval,
which indicated that declining q, θ and c0 led to a significant decreasing of the effective reproduction
number Re(t) over the whole time interval. The initial diagnose rate of infected individuals δ0 was neg-
atively correlated with Re(t) before 29 April; while the vaccination rate of S (i.e., Ψ) was negatively
correlated with Re(t) before the end of lockdown. It followed that increasing the diagnose rate and vac-
cination rate could lead to a significant decreasing of the effective reproduction number Re(t). It was
worth emphasizing that the correlation between the effective reproduction number Re(t) and the contact
rate c0 became very weak during the implementation of lockdown, which was because very little social
activities occurred during the lockdown and the effective reproduction number was mainly determined
by other factors. According to Figure 5, increasing the intensity of social distancing (i.e., decreasing
c0), strengthening awareness of self-protection (i.e., reducing q), vaccinating on time to improve the
efficiency of vaccine protection (i.e., decreasing θ and increasing Ψ before the end of lockdown), and
increasing the diagnosis rate (i.e., increasing δ0), all could assist in containing the epidemic.

It was reported that India has crossed 300,000 COVID-19 deaths till 24 May, 2021, making it the
third country after the United States and Brazil [52]. In fact, this outbreak in India crippled the health
system and many people died from a shortage of medical resources. According to the report from
the Global News on 20 July, 2021, most experts believed India’s official toll of more than 414,000
deaths was a vast undercount although the government has dismissed these concerns [53]. The count
could have missed those deaths occurring in overwhelmed hospitals or while health care was delayed
or disrupted. And it was estimated that the death toll from COVID-19 in India could be nearly 10
times the deaths reported by India government, which indicates the number of COVID-19 deaths in
India was far higher than that was reported. In the following, we choose the number of deaths as an
index and identify the key factors affected the COVID-19 outbreak in India by exploring the impact of
the factors on the number of deaths. To this end, we initially use the targeted model to estimate the
total deaths in reality, including deaths with the wild strain or mutant strain before hospitalization and
deaths in the hospitals. For convenience, we denote the deaths with the wild (resp. mutant) strain before
hospitalization and the deaths in the hospitals as Dw (resp. Dm) and Dh in the following, respectively.
The sum of the deaths with wild (Dw) or mutant strain (Dm) before hospitalization or in hospitals (Dh)
is referred as total deaths in the rest of this work. We calculate the average number of deaths with
the mutant (resp. wild) strain before hospitalization for each day of the weeks from 1 March to 27
September, 2021. For instance, we calculate the average number of daily deaths from 1 March to 7
March, 2021, and recorded it as the average daily number of deaths of the first week. And the average
daily number of deaths of the second week is calculated in terms of the daily deaths from 8 March
to 14 March, 2021. Repeating the above process, we obtain the average daily number of deaths for
any week between 1 March and 1 October, 2021. We similarly calculate the average daily number of
deaths in the hospitals for each week from 1 March to 1 October, 2021, as shown in Figure 6. Note
that the data we used to fit our model is from 1 March to 1 October, 2021, but there is little change in
the last days, so here we ignored the data of the last four days such that the remained days are exactly
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Figure 6. Average daily number of deaths for each week from 1 March to 27 September,
2021 in India. Dark grey, moderate grey and light grey bars show the average daily number
of deaths with the wild strain before hospitalization (Dw), average daily number of deaths
with the mutant strain before hospitalization (Dm), and average daily deaths in the hospital
(Dh) for each week.

30 weeks. Figure 6 suggests that more people die from the mutant strain than from the wild strain, and
more people die before hospitalization than in the hospital. It is also found that the peak time of the
actual deaths is at weeks 6–7, in which days the average daily number of deaths rises up to about 12,
000, about six times the reported death toll. This is consistent with a recent study of actual deaths in
COVID-19, India [54].

In the next, we quantify how the mutant strain, contaminated environments and vaccination with
the shortage of medical resources affect the spread of COVID-19 in India. To this end, we choose the
per-act transmission probability in contact with the infecteds with symptoms caused by mutant strain
(β2), proportion of infected individuals with the mutant strain (q), indirect transmission rate (βw), satu-
ration coefficient (αw), vaccination rate (Ψ), ratio of the probability of the vaccinated population being
infected compared with the susceptible population (θ), recovery rate of the infecteds and confirmed
individuals with the mutant strain before hospitalization (γ2), and disease-induced death rate of the
infecteds and confirmed individuals with the mutant strain before hospitalization (α2) to explore what
would happen if these factors vary.

We first used contour plots to examine the dependence of the peak time and peak size of the daily
number of total deaths in reality on β2 and q, as shown in Figure 7. It follows from Figure 7 that
reducing the proportion of infected individuals with the mutant strain q, and the per-act transmission
probability in contact with the infecteds with symptoms caused by mutant strain β2, would delay the
peak time of the number of total deaths in reality (Figure 7(a)), and the peak size of the number of total
deaths in reality would be lowered substantially (Figure 7(b)). We also conducted contour plotting
to investigate the dependence of the peak time and peak size of the daily number of total deaths in
reality on other key parameters including γ2 and α2 (Figure 10), βw and αw (Figure 11), and Ψ and
θ (Figure 12). Figure 10 shows that the peak time mainly depends on the recovery rate of infected
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Figure 7. Contour plots of the peak time and peak size of the daily number of total deaths in
reality to β2 and q from 1 March to 1 October, 2021 in India. The yellow star demonstrates
the position of (β2, q) that we have reported in Table 1.

and confirmed individuals with the mutant strain before hospitalization γ2; while the peak size mainly
depends on the disease-induced death rate of infected and confirmed individuals with the mutant strain
before hospitalization α2. Increasing γ2 could lead to an earlier peak time and decreasing α2 would
result in a smaller peak size. Figure 11 demonstrates that reducing the indirect transmission rate βw

while increasing the saturation coefficient αw would lead to a delay in the peak time (Figure 11(a)) and
a significant decreasing in the peak size (Figure 11(b)). A small increasing in the indirect transmission
rate βw will trigger into a significant advancing of the peak time as well as a great increasing of the
peak size, which indicates a more impact of the indirect transmission rate than the saturation coefficient
αw on the peak time and peak size of the total deaths. Figure 12 demonstrates that the ratio of the
probability of the vaccinated population being infected θ has a more significant impact on the peak
time compared with the vaccination rate Ψ; while the vaccinate rate Ψ has a greater effect on the peak
size compared with θ. As a result, Figures 7–12 demonstrate that reducing the proportion of infected
individuals with the mutant strain q, the transmission probability of mutant strain β2, the disease-
induced death rate caused the mutant strain α2, or the vaccination rate, all could alleviate the outbreak
by diminishing the peak size of the daily number of total deaths in reality.

To further explore the exact impact of the mutant strain on the COVID-19 outbreak in India, we
investigated how the daily deaths with the wild strain (Dw), the mutant strain (Dm) and the sum of
daily deaths before hospitalization (i.e., the sum of Dw and Dm, which we denote as Dw + Dm in the
rest) vary with different values of the per-act transmission probability in contact with the infecteds
with symptoms caused by mutant strain (β2) and the proportion of infected individuals with the mutant
strain (q). We conducted a sensitivity analysis to show what would happen if β2 was increased by
20, 50, 80%, q was increased to 0.7, 0.8, 0.9, as shown in Figure 8(a)–(d). It follows that increasing
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Figure 8. Variation of the daily deaths before hospitalization with different values of β2 and
q from 1 March to 1 October, 2021 in India, where Dw and Dm represent daily deaths with
the wild strain and the mutant strain, Dw +Dm represents the sum of the daily deaths with the
wild and mutant strains.

the per-act transmission probability in contact with the infecteds with symptoms caused by mutant
strain (β2), or the proportion of infected individuals with the mutant strain (q), both could lead to
an increasing of the average daily deaths with the wild or mutant strain before hospitalization (Dw

or Dm). We also explored the variation of the daily deaths with the wild strain (Dw), the mutant
strain (Dm) and the sum of them (Dw + Dm) as the recovery rate and disease-induced death rate of the
infecteds and confirmed individuals with the mutant strain before hospitalization (γ2 and α2) varied. We
analyzed what would happen when the recovery rate of the infecteds and the confirmed individuals with
the mutant strain before hospitalization (γ2) was increased by 20, 50, 80% while the disease-induced
death rate of the infecteds and the confirmed individuals with the mutant strain before hospitalization
(α2) was declined by 20, 40, 60%, respectively, as shown in Figure 13(a)–(b). They demonstrated
that increasing γ2 while decreasing α2 would lead to the decline of the daily deaths with the wild
strain and mutant strain before hospitalization (Dw and Dm). It’s worth emphasizing that increasing
γ2 while decreasing α2 had a more significant decline on the daily deaths with mutant strain than that
on the daily deaths with the wild strain. We found that the mutant strain played a vital role in the
outbreak of the epidemic. A significant increasing of the daily deaths would occur if the transmission
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probability (β2) or the proportion (q) was raised; while a great decreasing would happen on the daily
deaths if the the recovery rate (γ2) was increased with a decline of the disease-induced death rate
(α2). We further investigated the impact of vaccination rate (Ψ), vaccine effectiveness (1 − θ) and the
indirect transmission rate of the contaminated environments (βw) on the daily deaths with the wild
strain or mutant strain (Dw or Dm) or the sum of daily deaths before hospitalization (Dw + Dm). We
conducted a sensitivity analysis to examine the variation of Dw,Dm and Dh if Ψ, θ or βw were raised
by 20 50, 80%, respectively, as shown in Figure 13. It follows from Figure 13 that increasing the
vaccination rate or the rate of the probability of infection in a vaccinated individual would trigger a
significantly decreasing or increasing of the daily deaths before hospitalization, as shown in Figure
13(c)–(f). If the indirect transmission rate was raised to 1.2βw, 1.5βw and 1.8βw, the daily deaths with
the wild strain, mutant strain or the total deaths before hospitalization increases although it is not very
obvious. We found that the vaccination strategy had a more significant effect than the environmental
transmission on the spread of the epidemic. A noteworthy decreasing of the daily deaths occurred
if the vaccination rate (Ψ) or vaccine effectiveness (1 − θ) was raised. In order to better understand
the effect of the mutant strain on the epidemic, we further examined the variation of the total deaths
in reality as the key parameters (β2, q) vary. We calculated the average daily number of total deaths,
including deaths with the wild strain (Dw), mutant strain (Dm) before hospitalization and the deaths in
the hospital (Dh), for very two weeks between 1 March to 27 September, 2021, as shown in Figure 9.
It follows from Figure 9(a) and (b) that increasing the per-act transmission probability in contact with
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Figure 9. Impact of the mutant strain (β2, q) on the total deaths in reality from 1 March to 27
September, 2021 in India. Dark grey, cyan, green and blue represent the average daily deaths
with the wild strain before hospitalization (Dw); moderate grey, cyan, green and blue stand
for the average daily deaths with the mutant strain before hospitalization (Dm); light grey,
cyan, green and blue represent the average daily deaths in the hospital (Dh) every two weeks.

the infecteds with symptoms caused by mutant strain (β2) and the proportion of infected individuals
with the mutant strain (q), both could result in a great increasing of the total number of deaths in
reality. To highlight the effect of the environmental transmission and vaccination on the epidemic, we
calculated the average daily number of total deaths in reality as the key parameters (γ2, α2,Ψ, θ, βw)
varied, as shown in Figure 14. We can easily obtained from Figure 14 (c) that increasing the ratio
of the probability of the vaccinated individuals being infected (θ) could result in a great increasing
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of the total number of deaths in reality. Figure 14(a) and (b) showed that increasing the recovery
rate of the infecteds and the confirmed individuals with the mutant strain before hospitalization (γ2)
while decreasing the disease-induced death rate of the infecteds and the confirmed individuals with
the mutant strain before hospitalization (α2), or raising the vaccination rate (Ψ), both could lead to
a decreasing of the total number of deaths. It can be seen from Figure 14(d) that an increase in the
indirect transmission rate (βw) could lead to a slight increase in the total number of deaths. It is worth
noting that all of these factors have a strong influence on the total number of deaths in the early stage of
the outbreak, such as during the early eight weeks; while only a very weak effect on the total number of
deaths in the late stage of the outbreak, such as during the period through week 11 to week 30. This was
because during the later stage of the epidemic, Indian government implemented a lot of containments
including lockdown and other control measures to stop the further spread, and the assistance of medical
resource from other countries reduced the death toll. The mutant strain and vaccination, besides the
contaminated environments, had a more significant effect on the deaths with the mutant strain before
hospitalization than they on the deaths with the wild strain before hospitalization. The number of
deaths in the hospitals was very little affected by these factors compared to the number of deaths
before hospitalization. The findings demonstrate that the vaccination strategy and the environmental
transmission have an obvious impact on the transmission of the epidemic, especially during the early
stage. The vaccination strategy (resp. environmental transmission) could alleviate (resp. aggravate)
the outbreak by decreasing (resp. increasing) the total deaths.

4. Discussion and conclusions

• Discussion

Since the starting of the COVID-19 pandemic in early 2020, countries worldwide are devoted to
finding effective containments to halt the number of cases and deaths. India, as one of the countries
with very high population density, has experienced multiple waves of COVID-19 although they have
always been struggling to curb the outbreak. The second wave of COVID-19 in India has had a heavy
blow to the country, although vaccine distribution had already commenced in India. There are many a
factor, including the more pathogenic mutant strain than the wild one, the contaminated environments
and the serious shortage of medical resources, that triggered this outbreak. Quantification of the effect
of these factors and the public health mitigation programs, including vaccination and implementation
of lockdown, on the containment of the outbreak, are, thus, needed. We have done a retrospective
study to quantify how these factors, together with the gradually strengthening of the nonpharmaceuti-
cal interventions (NPIs) affect the spread of COVID-19. In this work, we have proposed a nonsmooth
compartment epidemic model that incorporated direct and indirect transmission as the potential trans-
mission pathways of COVID-19. The model also mimicked the shortage of medical resources, the
prevalence of mutant strains and the implementation of vaccination.

We assumed the key control parameters are time dependent and piecewise defined due to the
strengthening of prevention and control measures including the implementation of lockdown strat-
egy on 9 April, 2021, the arriving of the first batch of medical aid from UK on 27 April, the arriving
of the last batch of medical aid from China on 10 May, and the gradually lifting of the containment
measures on 31 May. By using the nonlinear least-square method to fit our targeted model, these time-
dependent parameters and other model parameters are estimated, as reported in Table 1. The fitting
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results shown in Figure 3 illustrated that the targeted model captured the data, including the daily num-
ber of confirmed cases, recovered cases and deaths well. The estimated effective reproduction number
is much smaller during the implementation of lockdown than that in other time, as shown in Figure 4,
which highly support the policy of lockdown. The PRCCs of the effective reproduction number Re(t)
with respect to the key parameters over time indicated that reducing the proportion of infecteds with
mutant strain (q), probability of vaccinated individuals being infected (θ), and initial contact rate (c0),
all could significantly decline Re(t), as shown in Figure 5. It follows that decreasing the proportion of
mutant strain, infection probability of the vaccinateds, or the contact rate, all could aid in controlling
the outbreak.

To reveal the vital role of the multiple factors including the mutant strain, contaminated environ-
ments and vaccination with the medical-resource constraints in the transmission of the COVID-19 in
India, we chose the number of deaths as an index and explored what would happen as these factors
varied. We gave an estimate of the deaths with wild strain or mutant strain before hospitalization as
well as the deaths in the hospital. It revealed that there were more deaths before hospitalization than in
the hospital and more people were dying from the mutant strain than from the wild strain among the
deaths before hospitalization. Our sensitivity analysis showed that increasing the transmission proba-
bility of the mutant strain (β2) and the proportion of the infecteds with mutant strain (q) could bring
forward the peak time of the number of total deaths and raise the peak size, as shown in Figure 7. A
slight increasing of the indirect transmission rate (βw) could result in a significant advancing of the
peak time as well as a great increasing of the peak size, shown in Figure 11. The probability of the
vaccinated individuals being infected (θ) has a more significant effect on the peak time compared with
the vaccination rate Ψ; while the vaccination rate (Ψ) has a greater impact on the peak size than the
probability of the vaccinated individuals being infected (θ), as shown in Figure 12. The main findings
demonstrate that the mutant strain and the contaminated environment trigger a significant increasing
of the peak size; while the vaccination strategy leads to an obvious decreasing of the peak size.

To better understand how the multiple factors affect the second wave of the COVID-19 in India,
we further explored the variation of the number of deaths with wild strain or mutant strain before
hospitalization or deaths in the hospital as these factors varied, shown in Figures 8, 9, 13 and 14.
We observed from these Figures that the number of deaths with mutant strain (Dm) or wild strain
before hospitalization (Dw) or the deaths in the hospital (Dh) increased significantly if the transmission
probability of the mutant strain (β2), the proportion of infecteds with the mutant strain (q), or the
infection probability of the vaccinated individuals (θ) was increased. We also obtained that Dm,Dw

and Dh declined obviously if the recovery rate of infecteds with the mutant strain (γ2) was increased
while their disease-induced death rate (α2) was declined, or the vaccination rate (Ψ) was raised. An
increase in the indirect transmission rate (βw) would trigger a small increase in the number of deaths
with mutant strain or wild strain before hospitalization or the deaths in the hospital. The prevalence
of the mutant strain and implementation of vaccination besides the contaminated environments have
a strong effect on the total number of deaths in the early stage of the outbreak while they have only a
very weak effect in the late stage of the outbreak. All these factors have a more significant influence on
the deaths with the mutant strain than the influence they have on the deaths with the wild strain. And
they have a very small influence on the deaths in the hospital. The main results show that reducing
the prevalence of the mutant strain, strengthening vaccination, and increasing the virus clearance rate
in the contaminated environment can effectively inhibit the spread of the epidemic, especially in the
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initial stage of the outbreak.
To present a complete demonstration of the impact of the key factors mentioned in this work on

the COVID-19 epidemic in India in 2021, we used the number of deaths in reality as an indicator and
examined the impact of different factors on the number of deaths in the following, as shown in Table
5, where the death referred to the cumulative number of deaths in India from March 1 to October 1,

Table 5. Impact of key factors on the death toll of COVID-19 from 1 March to 1 October,
2021 in India.

Factors Deaths with the wild
strain before hospital-
ization (103)

Deaths with the mutant
strain before hospitaliza-
tion (103)

Total deaths in
reality (103)

Death
rate

Baseline values 182.089 343.316 797.473 3.306%

Mutant strain

1.2β2 201.643 380.167 853.877 3.540%
1.5β2 226.329 426.653 925.054 3.835%
1.8β2 245.108 461.997 979.165 4.059%
q = 0.7 141.972 423.804 837.840 3.473%
q = 0.8 98.822 505.544 876.434 3.633%
q = 0.9 51.409 591.242 914.729 3.792%

Vaccination

1.2Ψ 171.164 322.753 765.982 3.175%
1.5Ψ 160.070 301.871 734.007 3.043%
1.8Ψ 153.138 288.824 714.028 2.960%
1.2θ 204.244 385.107 861.420 3.571%
1.5θ 229.941 433.537 935.540 3.878%
1.8θ 248.320 468.132 988.523 4.098%

Environmental
transmission

1.2βw 192.473 362.878 827.413 3.430%
1.5βw 204.906 386.299 863.279 3.579%
1.8βw 214.705 404.756 891.530 3.696%

Contact tracing
30% 154.203 290.751 717.558 2.975%
50% 137.135 258.568 668.311 2.770%
70% 121.624 229.318 623.548 2.585%

2021, 103 denoted every number should be multiplied by 103. Table 5 shows that if the transmission
probability of mutant strains (β2) increased to 1.8β2, or the proportion of infecteds with the mutant
strain (q) increased to 0.9 (its baseline value is about 0.6), the total death would increase by 181,692 and
117,256 cases, respectively, with an increasing of 0.753 and 0.486% on the mortality rate, respectively.
If the vaccination rate Ψ (resp. the infection probability of the vaccinated individuals θ) increased by
80%, the total deaths would decrease by 83,445 (resp. increase by 191,050) and the mortality rate
would decrease by 0.346% (resp. increase by 0.792%). If the indirect transmission rate βw increased
by 80%, there would be an increasing of 94,057 on the the total death with an increasing of 0.39% on
the mortality rate. Furthermore, we investigated the effect of contact tracing on the containment of the
epidemic. If 30, 50 and 70% of infected individuals were contact traced and required to implement
social distancing, i.e., the infectious cases (Iw, Im) decreased by 30, 50, 70%, the total number of deaths
would decrease by 79,915, 129,162 and 173,925 and the mortality rate would decrease by 0.331, 0.536
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and 0.721%, respectively. The results indicated that the mutant strain and environmental transmission
have aggravated the outbreak significantly while the vaccination have alleviated the outbreak greatly.
The contact tracing measure also has a significant effect on curbing the epidemic. Countries with
large population density and medical resource-constraints like India should strengthen controlling the
spread of the mutated strain, accelerate the introduction of booster shots for COVID-19 vaccines, and
enhance the clearance of virus from the environment to combat the possible COVID-19 outbreak in
future. In the event of a future outbreak of COVID-19 in a similar country, contact tracing should also
be implemented due to its imperative role in controlling the epidemic, especially during the early stage
of the outbreak.

Among the mathematical modeling studies on the spread of COVID-19 [5, 7, 8, 20, 22–24, 27, 30,
31, 34, 35, 40–45], only a few research focused on the epidemic in India [7, 8, 35, 40]. Khajanchi et
al. [7] focused on the effect of contact tracing. They revealed that combining the restrictive social dis-
tancing and contact tracing could eliminate the COVID-19 pandemic. Kumar et al. [8] focused on the
dynamics of omicron variant virus. They investigated the transmission dynamics of the COVID-19 in
India during the omicron variant virus transmission and vaccination drive. Britto et al. [35] concerned
the vaccine allocation strategies and demonstrated a relative reduction in deaths if the older population
got the priority for the COVID-19 vaccine. Zu et al. [40] concerned the influence of contaminated
environments on the transmission of COVID-19 in India. These studies have only analyzed the trans-
mission dynamics of the novel coronavirus when one or two factors are in effect. In fact, in many
outbreaks of COVID-19 since 2021, such as the one in India investigated in this work, many a factor
played an important role in the spread of the outbreak. That drove us to mimic the combined effects
of these factors, including simultaneous transmission of mutant strain and wild strain, environmental
transmission, vaccination, shortage of medical resource and contact tracing measures, on controlling
the epidemic in India. In this work, we quantitatively assessed the efficiency of each factor in epidemic
control in India if the other factors were also effective. We found that both mutant strain and con-
taminated environments had significant effect on worsening the outbreak even after vaccination was
implemented. The vaccine mitigated the outbreak to some extent, although there was mutated strain
and environmental transmission. And in cases where multiple factors were in effect at the same time,
contact tracing and quarantine still played an imperative role in curbing the epidemic, especially when
vaccine effectiveness and vaccine coverage were not high enough.

• Conclusions

This paper is the first to mimic the impact of the multiple factors, including mutated strain, envi-
ronmental pollution, vaccination and resource constraints, on the COVID-19 outbreak in India from 1
March to 1 October, 2021. Our results demonstrated that, in the context of shortage of essential med-
ical resource, the parameters related to the mutant strain (β2, q, γ2, α2) and vaccines (θ,Ψ) are the key
parameters and should be prioritized to control the epidemics. The main findings suggest a significant
effect of the mutant strain, contaminated environments and vaccination on the spread of the epidemic.
Although this study are based on India, the main findings are applicable to other countries with limited
medical resources. We found that, to curb the possible future outbreak of COVID-19, inhibiting the
prevalence of mutant strain, clearing the virus in the environments as soon as possible, enhancing the
vaccination of booster shots and strengthening the contact tracing, especially in the early stage of the
outbreak, are required for those countries facing shortage of medical resources.
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There are some limitations of our work. The key issue is assessing the impact of mutant strain,
environmental transmission and shortage of medical resources. During the outbreak of this wave in
India, about 70% of individuals completed the first dose of vaccine, although the percentage completed
the full dose was lower, so we modeled the vaccine’s protective effect. In fact, it is not ideal to evaluate
the efficacy of the vaccine using the epidemic data from India due to the relatively low vaccine coverage
in India, especially the low percentage of booster shots completed. It is more reasonable to choose other
countries with higher vaccine coverage, such as the United States and Italy, to evaluate the protective
effect of the vaccine. In the future work, we will take these countries as examples to study the effect
of vaccines in detail. Moreover, it is not very good to use a single model to mimic the transmission
dynamics of COVID-19 in the whole country of India since India is a very vast country with many
geographical difference. And we have not looked deeply into how the good governance, like improving
the effectiveness of administering COVID-19 vaccinations and social distancing, can help mitigate the
outbreak [55, 56].

In summary, this study quantitatively assessed the impact of the key factors on the outbreak of the
epidemic. The main findings in this work can help those similar countries and policy-making sectors
to effectively mitigate against the future possible outbreak.
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Appendix A

In this appendix, we provided some figures on the sensitivity analysis. We note that during the
outbreak of COVID-19 in India from 1 March to 1 October, 2021, many a factor, including the mutant
strain, environmental transmission and vaccination, in the context of medical resource-constraints,
played a vital role. We have examined the effect of each factor on the spread of the epidemic, and
plotted a series of figures at the same time. We inserted some of the figures in the main text and put the
others in this appendix. To highlight the effect of these factors on the outbreak of the epidemic, we put
the according descriptions and explanations of these figures in the text.
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Figure 10. Contour plots of the peak time and peak size of the daily number of total deaths in
reality from 1 March to 1 October, 2021 in India to γ2 and α2 . The yellow star demonstrates
the position of (γ2, α2 ) that we have reported in Table 1.

Figure 11. Contour plots of the peak time and peak size of the daily number of total deaths in
reality from 1 March to 1 October, 2021 in India to βw and αw. The yellow star demonstrates
the position of (βw,αw) that we have reported in Table 1.
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Figure 12. Contour plots of the peak time and peak size of the daily number of total deaths
in reality from 1 March to 1 October, 2021 in India to Ψ and θ. The yellow star demonstrates
the position of (Ψ, θ) that we have reported in Table 1.
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Figure 13. Variation of the daily deaths before hospitalization with different values of
γ2, α2,Ψ, θ and βw from 1 March to 1 October, 2021 in India, where Dw and Dm represent
daily deaths with the wild strain and the mutant strain, Dw + Dm represents the sum of the
daily deaths with the wild and mutant strains.
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Figure 14. Impact of the mutant strain (γ2, α2), vaccination (Ψ, θ) and contaminated envi-
ronments (βw) on the total deaths in reality from 1 March to 27 September, 2021 in India.
Dark grey, cyan, green and blue represent the average daily deaths with the wild strain before
hospitalization (Dw); moderate grey, cyan, green and blue stand for the average daily deaths
with the mutant strain before hospitalization (Dm); light grey, cyan, green and blue represent
the average daily deaths in the hospital (Dh) every two weeks.
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