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Abstract: In this paper, a stochastic turbidostat model with controllable output is established by using
piecewise constant delayed measurements of the substrate concentration. We commence by proving
the existence and uniqueness of the global positive solution of the stochastic delayed model. Then,
sufficient conditions of extinction and stochastic strong permanence of the biomass are acquired. In
quick succession, we investigate the stochastic asymptotical stability of the washout equilibrium as well
as the asymptotic behavior of the random paths approaching the interior equilibrium of its corresponding
deterministic model by employing the method of Lyapunov functionals. Numerical and theoretical
findings show that the influence of environmental random fluctuations on the dynamics of the model
may be more pronounced than that of time delay.
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1. Introduction

A turbidostat, similar to a chemostat or an auxostat, is a basic piece of laboratory apparatus used
to cultivate microorganisms, and it has feedback between the concentration of the fluid in the culture
dish and the dilution rate [1–5]. Compared with the chemostat [6, 7], the turbidostat can feed back the
state values to the controller through the photoelectric system to control the flow rate of the limiting
nutrient in the fresh inflowing medium according to the concentration of the fluid in the culture dish,
so as to achieve the purpose of high-efficiency culture. The device used to measure the concentration
of the liquid is called the optical sensor, which can measure both the microbial species concentration
and the substrate concentration [8, 9]. At present, there are a variety of microorganisms that can be
continuously fermented by large-size turbidostats according to this principle in the fermentation industry.
Microbial metabolites in balance with the bacteria can also be produced by continuous fermentation
with a turbidostat. In consideration of the important value of the turbidostat in theory and practical
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application, the research on the kinetic model of the turbidostat has attracted the attention of many
biologists, experimental technicians and mathematicians [10–16]. Leenheer and Smith [10] investigated
the coexistence of two species in a turbidostat model with monotonic uptake functions by dint of
feedback control of the dilution rate. In [11], a turbidostat model of exploitative competition for an
inhibitory growth-limiting nutrient between two species of microorganisms was considered. Further, the
author of [12] analyzed the dynamics of a turbidostat model with a non-monotonic response function
and found that the coexistence can be dependent on the original condition if the washout equilibrium
and the interior equilibrium are asymptotically stable synchronously.

However, in reality, no matter how sensitive a piece of online equipment used to measure nutrient
or microorganism concentrations is, there invariably exists a time delay in the measurement of the
concentration of the fluid and when this signal can be available to regulate the input flow rate. That
is, online equipment typically only provides delayed discrete measurements. In [17], Mikheev et al.
considered a digital controlled continuous-time system as a continuous-time system with time-varying
delayed control input, and then Fridman [18] further researched the control system which can be
described in the form of differential equations with after-effects. Subsequently, turbidostat systems with
delayed feedback control have been investigated by multitudinous researchers [19–25]. Yuan et al. [22]
revealed that the time delay may lead to the loss of stability and generate various oscillations and
periodic solutions under the condition that the dilution rate depends on the turbidity of two competing
species. In [19], by taking the dilution rate related to the substrate concentration as a feedback control
variable, the author studied the asymptotic stabilization for a turbidostat by considering a delay on its
output. A feedback analysis for turbidostats whose growth functions can be nonmonotonic was carried
out in [23], where the dilution rate rests with the substrate concentration with piecewise constant
delayed measurements.

Inevitably, population dynamics are susceptible to environmental noise in almost all ecological
systems, which primarily involves continuous white noise. Under well-controlled laboratory conditions,
even if the observed experimental results are very consistent with the theoretical behaviors of ordinary
differential equations in the turbidostat system, the possible differences under operational conditions
cannot be neglected. By introducing white noise, the dynamics of turbidostat models can be better
understood [26–31]. The persistence in mean and stochastic persistence of a stochastic turbidostat
model were obtained [32], as white noise is introduced by the maximal growth rate. Mu et al. [33]
obtained sufficient conditions for competitive exclusion among microorganisms. In [34], Li et al.
derived conditions of mean persistence and extinction for the population and showed that the species
may survive when the disturbance is small enough.

Some researchers have taken into account both delay and stochastic phenomena in turbidostat for
microbial culture [35, 36]. However, for all we know, there are few works of literature considering the
stochastic turbidostat model with piecewise constant delayed feedback control. In our work, we delve
into the dynamical behaviors of the species in the turbidostat with both piecewise constant delayed
feedback control and environmental random fluctuation. The rest of this paper is furnished as follows:
In Section 2, we put forward the stochastic turbidostat model with a controllable dilution rate, where
feedback depends on piecewise constant delayed measurements of the substrate level. The existence
and uniqueness of the global positive solution of the model are presented in Section 3. We probe into
the extinction and persistence of the species separately in Section 4. Section 5 deals with the stochastic
asymptotical stability of the washout equilibrium and the asymptotic behavior of the stochastic delayed
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model around the interior equilibrium of the corresponding deterministic delayed model. Section 6
offers some numerical examples. The meanings of our results are briefly discussed in the final section.

2. The model

Gonzalo [19] considered a turbidostat model with discrete delay τ > 0 on the output:
Ṡ (t) = D(S (t − τ))(sin − S (t)) − µ(S (t))x(t),
ẋ(t) = x(t)(µ(S (t)) − D(S (t − τ))),
S (0) = s0 ∈ (0, sin], x(0) = x0 > 0 and S (ϑ) = φ(ϑ), ϑ ∈ [−τ, 0],

(2.1)

where S (t) and x(t) depict the substance and the microbial species levels at time t, respectively. sin > 0
represents the input concentration of the substrate. τ is the delay of the optical sensor in the measurement
of the concentration of the fluid. In the turbidostat, the concentration of the limiting nutrient in the
container possesses a feedback control effect on the input rate of the fresh nutrient. Therefore, the input
flow rate D(S (t − τ)) > 0 can be manipulated and depends on the substrate level at time t − τ. The
function µ : R+ 7→ R+ stands for the uptake rate at which nutrient is absorbed by the species and is
assumed to be a continuously differentiable function.

The measurements of the concentration of the fluid in [19] are assumed to be continuous. However,
given that the sample data provided by online devices are discrete, we consider the following piecewise-
linear delay. Fix any two positive numbers ε1, ε2 > ε1 such that a sequence of real numbers {ti} satisfies
0 < ε1 ≤ ti+1 − ti ≤ ε2 for every i ∈ N∪ {0}, where t0 = 0 and N = {1, 2, . . .}. Given an arbitrary constant
τ f ≥ 0, we give the following function τ(t):

τ(t) =

τ f , if t ∈ [0, τ f ),
τ f + t − t j, if t ∈ [t j + τ f , t j+1 + τ f ).

Employing the above definition, it follows that t − τ(t) = t − (τ f + t − t j) = t j − τ f for every j ≥ 0
and t ∈ [t j + τ f , t j+1 + τ f ), which means t − τ(t) is piecewise constant. In the particular case of τ f = 0,
t − τ(t) = t j for any t ∈ [t j, t j+1), j ≥ 0. In addition, for every t ≥ 0, one obtains 0 ≤ τ(t) ≤ τM, where
τM = 2τ f + ε2. In this case, the measurement available S (t − τ) in model (2.1) can be rewritten as
S (t − τ(t)).

Microorganisms consume nutrients for growth, which leads to a decrease in nutrients in the turbidostat.
We adopt the function of the form

µ(S (t))x(t) = m f (S (t))x(t) = m f1(S (t))S (t)x(t)

to describe the consumption, where m is the maximal uptake rate. The derivative of f (S (t)) satisfies
f ′(S (t)) > 0, and f1(S (t)) is a bounded continuous function on any finite interval. The presence of
ambient noise makes the arguments contained in model (2.1) always swing near some average values
rather than reaching fixed values over the time evolution. As one of the pivotal arguments in the
turbidostat model, the maximum uptake rate of the organism is more susceptible to environmental noise
[26, 27, 31, 32]. Under the circumstances, randomness can be introduced into the maximal uptake rate
m such that m → m + σB(t), where the B(t) ∈ (Ω,F ,Ft≥0,P) applied to imitate the stochastic effect
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is standard Brownian motion, and σ reflects the intensity of the white noise. In consequence, we use
m + σB(t) instead of m in the deterministic model (2.1) to obtain the following stochastic differential
equation model with piecewise constant delayed measurements of the substrate level:dS (t) =

[
D(S (t − τ(t)))(sin − S (t)) − m f (S (t))x(t)

]
dt − σ f (S (t))x(t)dB(t),

dx(t) = x(t)
[
m f (S (t)) − D(S (t − τ(t)))

]
dt + σ f (S (t))x(t)dB(t),

(2.2)

with initial value conditionsS (ϑ) = φ1(ϑ) > 0, x(ϑ) = φ2(ϑ) > 0, for ϑ ∈ [−τM, 0],
(φ1(ϑ), φ2(ϑ)) ∈ C([−τM, 0],R+ × R+).

(2.3)

The only control variable, the dilution rate D(S (t − τ(t))), can be defined by D(S (t − τ(t))) = h(S ∗ −
S (t − τ(t))) so that the nutrient concentration can approach S ∗ with an appropriate feedback control law,
where S ∗ is the desired substrate level. Suppose that the function h fulfills the following conditions:

(A1) The continuous differentiable function h : R 7→ R+ is positive, bounded, increasing and satisfies
m f (S ∗) = h(0).

(A2) There is a unique root S ∗ ∈ (0, sin) such that the equation m f (S ) − h(S ∗ − S ) = 0 holds.

Quite evidently, this type of feedback control is set up so that the corresponding deterministic delayed
model of model (2.2) possesses a washout equilibrium E0 = (sin, 0) and a unique positive equilibrium
E∗ = (S ∗, x∗), where x∗ = sin − S ∗. The positive equilibrium point can be set in advance, which means
that we can control and achieve our expectations by imposing some conditions. Hence, the control
problem we consider is to find sufficient conditions for the persistence of the species, even to make the
concentration of the species close to sin − S ∗ under the influence of delayed measurements and random
perturbation. These questions are to be answered next.

3. Existence and uniqueness of the positive solution

In consideration of ecological and mathematical significance, whether there exists a global unique
positive solution is our primary concern. For this purpose, it is generally required that the arguments
of (2.2) fulfill the local Lipschitz condition and the linear growth condition [37]. Whereas the
parameters of model (2.2) do not satisfy the linear growth condition, the solutions may explode in
a limited time. In this section, we analyze the existence of the unique global positive solution of
model (2.2).

Theorem 3.1. For any initial value (2.3), model (2.2) admits a unique global solution (S (t), x(t)) on
t ≥ −τM, and the solution will remain in R2

+ with probability one; that is, (S (t), x(t)) ∈ R2
+ for all

t ≥ −τM almost surely (a.s.).

Proof. In the light of approaches in [37], model (2.2) possesses a unique local positive solution
(S (t), x(t)) on t ∈ [−τM, ςe), where ςe is the blow up time, which means the trajectories may diverge to
infinity as t goes to the finite time ςe. In order to get globality of the solution, we only need to
demonstrate ςe = ∞ a.s.
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Let z(t) = sin − S (t) − x(t). Then,

dz(t) = −(dS (t) + dx(t)) = −h(S ∗ − S (t − τ(t)))z(t)dt, (3.1)

whose solution is expressed as

|z(t)| = |z(0)|e−
∫ t

0 h(S ∗−S (ξ−τ(ξ)))dξ ≤ |z(0)| = |sin − S (0) − x(0)|, (3.2)

which results in S (t) + x(t) ≤ max{φ1(0) + φ2(0), 2sin − φ1(0) − φ2(0)} = M for all t < ς0, where

ς0 := inf{t ≥ 0 : S (t) ≤ 0 or x(t) ≤ 0}.

It is clear that ς0 ≤ ςe a.s. In order to get ςe = ∞, we only need to show that ς0 = ∞ a.s. Now, we
select ϵ0 > 0 such that φ1(ϑ) > ϵ0, φ2(ϑ) > ϵ0. For 0 < ϵ ≤ ϵ0, define the following stopping time:

ςϵ = inf{t ∈ [0, ςe) : S (t) ≤ ϵ or x(t) ≤ ϵ}.

The empty set is generally denoted as ∅. Let inf ∅ = ∞ all through this paper. There is no doubt that
ςϵ is increasing as ϵ approaches 0. Therefore, ς0 = limϵ→0 ςϵ a.s. Next, the proof can be accomplished if
we get ς0 = ∞ a.s.

For proof by contradiction, assume that there exists a pair of positive numbers δ ∈ (0, 1) and
T ∈ [ti, ti+1) such that P{ς0 ≤ T } > δ, where i ∈ N ∪ {0}. Thus, there is a constant ϵ1 ∈ (0, ϵ0) such that
P{ςϵ ≤ T } > δ for any 0 < ϵ ≤ ϵ1.

Additionally, define a C2-function V : R2
+ → R+ by

V(S , x) = − ln
S
M
− ln

x
M
.

Obviously, V(S , x) is positive definite for all S , x > 0. Using Itô’s formula to model (2.2), one derives

dV(S , x) = LV(S , x)dt + σ f1(S )(x − S )dB(t),

where

LV(S , x) = −
1
S

[
h(S ∗ − S (t − τ(t)))(sin − S ) − m f (S )x

]
+
σ2 f 2

1 (S )x2

2
+
σ2 f 2(S )

2
−

[
m f (S ) − h(S ∗ − S (t − τ(t)))

]
= −

h(S ∗ − S (t − τ(t)))sin

S
+ m f1(S )x − m f (S ) +

σ2 f 2
1 (S )(S 2 + x2)

2
+ 2h(S ∗ − S (t − τ(t)))
≤mM̃M + σ2M̃2M2 + 2h(S ∗) := K,

where M̃ is the upper bound of the function f1(S ) on [0,M]. Accordingly, we obtain

dV(S , x) ≤ Kdt + σ f1(S )(x − S )dB(t). (3.3)

Integrating and taking the expectation of both sides of (3.3) yield

EV (S (ςϵ ∧ t1) , x (ςϵ ∧ t1)) ≤ V (S (0) , x (0)) + KE (ςϵ ∧ t1) ≤ V (S (0) , x (0)) + Kt1,
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· · ·

EV (S (ςϵ ∧ ti) , x (ςϵ ∧ ti)) ≤ V (S (ti−1) , x (ti−1)) + KE (ςϵ ∧ ti) ≤ V (S (ti−1) , x (ti−1)) + K(ti − ti−1),

and

EV (S (ςϵ ∧ T ) , x (ςϵ ∧ T )) ≤ V (S (ti) , x (ti)) + KE (ςϵ ∧ T ) ≤ V (S (ti) , x (ti)) + K(T − ti).

Superimposing the above inequations, we can get

EV (S (ςϵ ∧ T ) , x (ςϵ ∧ T )) ≤ V (S (0) , x (0)) + KE (ςϵ ∧ T ) ≤ V (S (0) , x (0)) + KT. (3.4)

For any 0 < ϵ ≤ ϵ1, we set Ωϵ = {ςϵ ≤ T }, and then P(Ωϵ) > δ. On the grounds of the definition of
the blow up time, there exists S (ςϵ , ω), or x (ςϵ , ω) equals ϵ for every ω ∈ Ωϵ , and then

V (S (ςϵ) , x (ςϵ)) ≥ − ln
ϵ

M
.

Via (3.4), one infers

V (S (0) , x (0)) + KT ≥ E
(
IΩϵV (S (ςϵ ∧ T ) , x (ςϵ ∧ T ))

)
= P(Ωϵ)V(S (ςϵ) , x(ςϵ)) ≥ −δ ln

ϵ

M
.

This leads to a contradiction as we let ϵ → 0,

∞ > V (S (0) , x (0)) + KT = ∞.

So, we get ς0 = ∞ a.s. The proof is completed.

Define
Λ = {(S , x) ∈ R2

+ : S + x = sin}.

It suffices from (3.2) to display that Λ is the positive invariant set of model (2.2). Throughout this
paper, we always assume that the starting value (φ1, φ2) is constrained in Λ.

4. Extinction and permanence

This section provides sufficient conditions for strong stochastic persistence and extinction of the
microorganism in the turbidostat. For the sake of convenience, denote

F(S , x) = −
1
2
σ2 f 2(S ) + m f (S ) − h(S ∗ − S (t − τ(t))).

Then, we define

λ1 = F(sin, 0) = −
1
2
σ2 f 2(sin) + m f (sin) − h(S ∗ − sin),

and

λ2 = −
1
2
σ2 f 2(sin) + m f (sin) − h(S ∗).
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4.1. Extinction

The following theorem is about the extinction of the microorganism.

Theorem 4.1. The biomass x(t) will die out exponentially, namely, limt→∞ x(t) = 0 a.s., provided

(i) h(S ∗ − sin) < m f (sin) ≤ 2h(S ∗ − sin) and λ1 < 0 (i.e. σ >

√
2(m f (sin)−h(S ∗−sin))

f (sin) ); or

(ii) m f (sin) > 2h(S ∗ − sin) and σ > m
√

2h(S ∗−sin)
.

Proof. In order to discuss the extinction of the biomass, applying Itô’s formula to W1(x) = ln x yields

dW1 =

{
m f (S ) − h(S ∗ − S (t − τ(t))) −

1
2
σ2 f 2(S )

}
dt + σ f (S (t))dB(t)

≤

{
f (S )

(
m −

1
2
σ2 f (S )

)
− h(S ∗ − sin)

}
dt + σ f (S (t))dB(t).

By integrating on the both sides of the above inequality from 0 to t, we can obtain

W1(t) −W1(0)
t

≤ W1 +
1
t

∫ t

0
σ f (S (r))dB(r),

which further results in
ln x(t)

t
≤ W1 + ψ(t),

where W1 is an upper bound of the function LW1 = f (S )
(
m − 1

2σ
2 f (S )

)
− h(S ∗ − sin), and ψ(t) =

1
t

[
ln x(0) +

∫ t

0
σ f (S (r))dB(r)

]
. According to the strong law of large numbers for local martingale, we

get limt→∞ ψ(t) = 0 a.s., which means lim supt→∞
ln x(t)

t ≤ W1 a.s. To get the extinction of x(t), we need
to show W1 < 0.

Next, we consider two cases by treating the function f (S )
(
m − 1

2σ
2 f (S )

)
as a quadratic function

about f (S ). Case (i): On the premise of h(S ∗ − sin) < m f (sin) ≤ 2h(S ∗ − sin), when σ2 ≤ m
f (sin) , the

function f (S )
(
m − 1

2σ
2 f (S )

)
is increasing for S ∈ [0, sin]. Then, we have LW1 ≤ m f (sin) − h(S ∗ −

sin) − 1
2σ

2 f 2(sin) = λ1 < 0, which means W1 < 0 if m f (sin) − h(S ∗ − sin) < σ2 ≤ m
f (sin) . For σ2 > m

f (sin) ,

the function f (S )
(
m − 1

2σ
2 f (S )

)
reaches the maximum value when f (S ) = m

σ2 , and then we have

LW1 ≤
m2

2σ2 − h(S ∗ − sin) < m f (sin)
2 − h(S ∗ − sin) < 0. To sum up, if h(S ∗ − sin) < m f (sin) ≤ 2h(S ∗ − sin)

and λ1 < 0, the biomass x(t) will die out. Case (ii): In the case of m f (sin) > 2h(S ∗ − sin), one obtains
LW1 ≤ m f (sin) − h(S ∗ − sin) − 1

2σ
2 f 2(sin) when σ2 ≤ m

f (sin) ; nevertheless, at this point m f (sin) − h(S ∗ −

sin) − 1
2σ

2 f 2(sin) > 0. On the contrary, when σ2 > m
f (sin) , we have LW1 ≤

m2

2σ2 − h(S ∗ − sin) < 0 owing to

σ > m
√

2h(S ∗−sin)
>

√
m

f (sin) . Hence, if m f (sin) > 2h(S ∗ − sin) and σ > m
√

2h(S ∗−sin)
, the microorganism x(t)

will be extinct. The proof is completed.

In line with Theorem 4.1, it can be validated that stochasticity will result in the disappearance of the
species of model (2.2) when the magnitude of stochasticity is large enough. In contrast, how does the
biomass change in the turbidostat in the case of small intensity of disturbance? In the following, we
discuss the stochastic strong permanence of the microorganism.
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4.2. Stochastic strong permanence

This subsection is intended for stochastic strong permanence of the biomass of model (2.2) under
the influence of small noise. To figure out the permanence of the microorganism for model (2.2), we
introduce the equation

dX(t) = X(t)
[
m f (S (t)) − h(S ∗)

]
dt + σ f (S (t))X(t)dB(t) (4.1)

with initial value φ2. Let us first prepare the following useful lemma.

Lemma 4.1. Denote ∂Λ := {(S , x) ∈ Λ : x = 0}. Then, there is a T > 0 such that

E

∫ T

0
F̃(S (t))dt ≥

3
4
λ2T (4.2)

for any (φ1, φ2) ∈ ∂Λ, where F̃(S (t)) = −1
2σ

2 f 2(S ) + m f (S ) − h(S ∗).

Proof. If φ2 = 0, then x(t) = 0 for all t ≥ −τM, and the first equation of model (2.2) turns into

dS (t) = h(S ∗ − S (t − τ(t)))(sin − S (t))dt. (4.3)

Apparently, the solution of (4.3) converges to sin. Consequently,

lim
t→∞

1
t

∫ t

0
F̃(S (r))dr = F̃(sin) = λ2.

for every (φ1, φ2) ∈ ∂Λ. Then, we can find a positive number T fulfilling (4.2).

Theorem 4.2. If λ2 > 0, then X(t) of model (4.1) is strongly stochastically permanent, that is, for any
γ > 0, there exists a α1 > 0 such that

lim inf
t→∞

P{X(t) ≥ α1} > 1 − γ.

Proof. Introduce a Lyapunov function Wθ = Xθ, where θ ∈ R is a constant that needs to be specified.
Simple calculations for Wθ on the grounds of Itô’s formula give

LWθ = θXθ

[
m f (S ) − h(S ∗) +

θ − 1
2

σ2 f 2(S )
]
. (4.4)

Define Oθ = sup(S ,X)∈Λ

{
θ
[
m f (S ) − h(S ∗) + θ−1

2 σ
2 f 2(S )

]}
. Then, for any starting value φ2, we get

from (4.4) that LWθ ≤ OθXθ. By applying Itô’s formula and taking expectations, we obtain

E(Xθ(t)) ≤ Xθ(0) exp(Oθt) (4.5)

for any t ≥ 0, φ2 > 0. On the basis of Itô’s formula, (4.1) becomes

d ln X(t) =
(
m f (S ) − h(S ∗) −

1
2
σ2 f 2(S )

)
dt + σ f (S )dB.
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Integrating both sides of the above equality from 0 to t yields

ln X(t) − ln X(0) =
∫ t

0
F̃(S (r))dr +

∫ t

0
σ f (S )dB(r). (4.6)

Define W2(t) = ln X(0) − ln X(t). From (4.6), one has

W2(t) = −
∫ t

0
F̃(S (r))dr −

∫ t

0
σ f (S )dB(r).

According to Lemma 4.1 and Feller property, it then follows from the above equation that we can
find a sufficiently small δ1 > 0 such that

E(W2(T )) = −E
∫ T

0
F̃(S (r))dr ≤ −

λ2

2
T (4.7)

for φ2 < δ1. In the light of (4.5), for any fixed t ≥ 0, we get

E(eW2(t) + e−W2(t)) = E
(

X(0)
X(t)

+
X(t)
X(0)

)
≤ E(eO−1t + eO1t) < ∞.

It then suffices from [38, Lemma 2.2] to show that

lnE(eθW2(T )) ≤ E(θW2(T )) + Õθ2, θ ∈ [0,
1
2

],

where Õ is a constant which is dependent on T , O−1 and O1. If θ is sufficiently small and fulfills
Õθ2 ≤

λ2θT
4 , we get from (4.7) that

E

(
Xθ(0)
Xθ(T )

)
= E(eθW2(T )) ≤ exp

(
−
λ2θT

2
+ Õθ2

)
≤ exp

(
−
λ2θT

4

)
,

which further implies

E(X−θ(T )) ≤ X−θ(0) exp
(
−
λ2θT

4

)
= c1X−θ(0) (4.8)

for φ2 < δ1, where c1 = exp(−λ2θT
4 ). Noting (4.5), we obtain

E(X−θ(T )) ≤ δ−θ1 exp(O−θT ) := C

for any φ2 > δ1. This, combined with (4.8), means that

E(X−θ(T )) ≤ c1X−θ(0) +C

for any φ2. Considering that the Markov property, the following inequation

E(X−θ((k + 1)T )) ≤ c1E(X−θ(kT )) +C

holds for any φ2. By the method of recursion, we obtain

E(X−θ(nT )) ≤ cn
1X−θ(0)) +

C(1 − cn
1)

1 − c1
.
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This together with (4.5) results in

E(X−θ(t)) ≤
(
cn

1X−θ(0) +
C(1 − cn

1)
1 − c1

)
exp(O−θT ), t ∈ [nT, (n + 1)T ].

Consequently,

lim sup
t→∞

E(X−θ(t)) ≤
C

1 − c1
exp(O−θT )

as n→∞. The theorem easily follows from an application of Markov’s inequality to the above inequation.

Combining Theorem 4.2 and the comparison principle, we conclude the following theorem about the
permanence of the microorganism x(t) of model (2.2).

Theorem 4.3. The microorganism x(t) is strongly stochastically permanent provided λ2 > 0.

In the contents above, the microorganism may die out in the case that the magnitude of stochasticity is
sufficiently large, and the microorganism will be strongly stochastically permanent when the magnitude
is small enough. Nevertheless, what we’re more curious about is whether the microorganism fluctuates
near the wanted biomass concentration sin − S ∗ under the combined action of delayed measurements and
random disturbance. Therefore, in the rest of this article, we will make an investigation on the asymptotic
behaviors of model (2.2) around the steady states of the corresponding deterministic delayed model.

5. Analysis of asymptotic behaviors

In this section, we look into the asymptotic stability of the washout equilibrium and asymptotic behavior
of model (2.2) around the interior equilibrium E∗ of its corresponding deterministic delayed model.

Theorem 5.1. Assume that λ1 < 0; then, the washout equilibrium E0 = (sin, 0) is asymptotically stable
in probability.

Proof. Set the Lyapunov function

W3(S , x) = (sin − S )2 + xp, (5.1)

where p ∈ (0, 1) will be determined later. Applying Itô’s formula to (5.1) yields

LW3(S , x) = − 2(sin − S )
[
h(S ∗ − S (t − τ(t)))(sin − S ) − m f (S )x

]
+ σ2 f 2(S )x2

+ pxp [
m f (S ) − h(S ∗ − S (t − τ(t)))

]
+

1
2

p(p − 1)σ2 f 2(S )xp

= − 2h(S ∗ − S (t − τ(t)))(sin − S )2 + x[2m f (S )(sin − S ) + σ2 f 2(S )x]

+
1
2

p2σ2 f 2(S )xp + pxpF(S , x).

Noticing that λ1 < 0, we can choose sufficiently small positive numbers p, ν such that −2h(S ∗ −
S (t − τ(t))) ≤ −2h(S ∗ − sin) ≤ p(λ1 + ν) < 0. Let Dδ1 := (sin − δ1, sin] × [0, δ1) for δ1 ∈ (0, sin). For
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any (S , x) ∈ Dδ1 , x has a tendency to 0 as δ1 approaches to 0+, which combined with the continuity of
F(S , x) leads to

pxpF(S , x) ≤ pxp(F(sin, 0) + ν1) = pxp(λ1 + ν1).

If p and δ1 are small enough, the following inequation holds:

x[2m f (S )(sin − S ) + σ2 f 2(S )x] +
1
2

p2σ2 f 2(S )xp ≤ pν2xp

for any (S , x) ∈ Dδ1 , where 0 < ν1, ν2 < ν and ν = ν1 + ν2. Hence, for any (S , x) ∈ Dδ1 , we obtain

LW3 ≤ p(λ1 + ν)W3.

By virtue of [38, Theorem 3.1], we deduce that the microorganism-free equilibrium (sin, 0) is
asymptotically stable in probability.

Our control target is to make the random paths close to E∗ with a delayed state feedback of the form
h(S ∗ − S (t − τ(t))). Whereas, E∗ is no longer the equilibrium of stochastic delayed model (2.2), the
asymptotic behavior of model (2.2) around the steady state E∗ will be discussed.

For convenience of the analysis below, we introduce some notations:

ϖl = inf
S∈[0,sin]

f ′(S ), ρl = inf
s∈[S ∗−sin,S ∗]

h′(s), ρu = sup
s∈[S ∗−sin,S ∗]

h′(s). (5.2)

Theorem 5.2. Suppose that λ2 > 0 and

τM <
2(ρl + mϖl)

ρu(1 + x∗ + m + mx∗ + h2(S ∗) + m f 2(sin))
.

Then, there exists T2 > 2τM such that

lim sup
t→∞

1
t
E

∫ t

T2

(S (r) − S ∗)2dr ≤
J1

J2
, lim sup

t→∞

1
t
E

∫ t

T2

(x(r) − x∗)2dr ≤
J1

J2
,

where
J1 =

x∗ρu

2
(h2(S ∗) + m f 2(sin))τM +

1
2
σ2x∗ f 2(sin),

J2 = ρl + mϖl −
ρu

2
(1 + x∗ + m + mx∗ + h2(S ∗) + m f 2(sin))τM.

Proof. Noting that λ2 > 0, by Theorem 4.3, we can choose a pair of positive numbers T1 and α2 <

min{sin − S ∗, α1} satisfying x(t) ≥ α2 a.s. for all t ≥ T1. Thus,

S (t) = sin − x(t) ≤ sin − α2 = S a, t ≥ T1.

It follows that S a ∈ (S ∗, sin) owing to 0 < α2 < sin − S ∗ < sin for t ≥ T1. On account of the mean
value theorem, we can get that

dS (t) ={[h(S ∗ − S (t − τ(t))) − m f (S (t))](sin − S (t))}dt − σ f (S (t))x(t)dB(t)
={[h(S ∗ − S (t − τ(t))) − h(0) + m f (S ∗) − m f (S (t))](sin − S (t))}dt − σ f (S (t))x(t)dB(t)
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={h′(ξ)(S ∗ − S (t − τ(t)))(sin − S (t)) + m( f (S ∗) − f (S (t)))(sin − S (t))}dt − σ f (S (t))x(t)dB(t)

=

{
h′(ξ)

(
S ∗ − S (t) +

∫ t

t−τ(t)
dS (r)

)
(sin − S (t)) + m( f (S ∗) − f (S (t)))(sin − S (t))

}
dt

− σ f (S (t))x(t)dB(t),

where ξ ∈ [0, S ∗ − S (t − τ(t))] or [S ∗ − S (t − τ(t)), 0]. By the inequality 2ab ≤ a2 + b2, we infer

(S (t) − S ∗)
∫ t

t−τ(t)
dS (r)

=(S (t) − S ∗)
[ ∫ t

t−τ(t)
h(S ∗ − S (r − τ(r)))(sin − S (r))dr −

∫ t

t−τ(t)
m f (S (r))x(r)dr −

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

]
=(S (t) − S ∗)

[ ∫ t

t−τ(t)
h(S ∗ − S (r − τ(r)))(S ∗ − S (r))dr +

∫ t

t−τ(t)
h(S ∗ − S (r − τ(r)))x∗dr

−

∫ t

t−τ(t)
m f (S (r))(S ∗ − S (r))dr −

∫ t

t−τ(t)
m f (S (r))x∗dr −

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

]
≤

1
2

[ ∫ t

t−τ(t)
h2(S ∗ − S (r − τ(r)))(S ∗ − S (r))2dr + (S ∗ − S (t))2τM

]
+

x∗

2

[ ∫ t

t−τ(t)
h2(S ∗ − S (r − τ(r)))dr + (S ∗ − S (t))2τM

]
+

m
2

[ ∫ t

t−τ(t)
f 2(S (r))(S ∗ − S (r))2dr + (S ∗ − S (t))2τM

]
+

mx∗

2

[ ∫ t

t−τ(t)
f 2(S (r))dr + (S ∗ − S (t))2τM

]
− (S (t) − S ∗)

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

≤
1
2

(
1 + x∗ + m + mx∗

)
τM(S ∗ − S (t))2 +

(h2(S ∗)
2
+

m f 2(sin)
2

) ∫ t

t−τM

(S ∗ − S (r))2dr

+
x∗

2
(h2(S ∗) + m f 2(sin))τM − (S (t) − S ∗)

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r),

for all t ≥ T1 + 2τM.
We define a Lyapunov functional U1 as follows:

U1(S (t)) =
∫ S (t)−S ∗

0

u
sin − S ∗ − u

du, (5.3)

which is nonnegative and belongs to class C1 over [0, sin). It follows from (5.3) that its derivative along
all trajectories of model (2.2) for any t ≥ T1 + 2τM satisfies

dU1(t) =
{
h′(ξ)

(
S ∗ − S (t) +

∫ t

t−τ(t)
dS (r)

)
(S (t) − S ∗) + m( f (S ∗) − f (S (t)))(S (t) − S ∗)

+
sin − S ∗

2(sin − S )2σ
2 f 2(S (t))x2(t)

}
dt − σ f (S (t))(S (t) − S ∗)dB(t)

≤

{
− h′(ξ)(S (t) − S ∗)2 − m f ′(η)(S (t) − S ∗)2 +

1
2
σ2 f 2(S (t))(sin − S ∗)
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+ h′(ξ)
[1
2

(
1 + x∗ + m + mx∗

)
τM(S ∗ − S (t))2 +

x∗

2
(h2(S ∗) + m f 2(sin))τM

+

(h2(S ∗)
2
+

m f 2(sin)
2

) ∫ t

t−τM

(S ∗ − S (r))2dr
]
− h′(ξ)(S (t) − S ∗)

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

}
dt

− σ f (S (t))(S (t) − S ∗)dB(t)

≤

{
− h′(ξ)(S (t) − S ∗)2 − m f ′(η)(S (t) − S ∗)2 +

1
2
σ2x∗ f 2(sin)

+
h′(ξ)

2

(
1 + x∗ + m + mx∗

)
τM(S ∗ − S (t))2

+
h′(ξ)

2
(h2(S ∗) + m f 2(sin))

∫ t

t−τM

(S ∗ − S (r))2dr +
x∗h′(ξ)(h2(S ∗) + m f 2(sin))τM

2

− h′(ξ)(S (t) − S ∗)
∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

}
dt − σ f (S (t))(S (t) − S ∗)dB(t)

≤

{
−

[
h′(ξ) + m f ′(η) −

h′(ξ)
2

(
1 + x∗ + m + mx∗

)
τM

]
(S (t) − S ∗)2

+
x∗h′(ξ)

2
(h2(S ∗) + m f 2(sin))τM +

h′(ξ)
2

(h2(S ∗) + m f 2(sin))
∫ t

t−τM

(S ∗ − S (r))2dr

+
1
2
σ2x∗ f 2(sin) − h′(ξ)(S (t) − S ∗)

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

}
dt

− σ f (S (t))(S (t) − S ∗)dB(t),

where η ∈ [S ∗, S (t)] or [S (t), S ∗].
Construct a differentiable function U2, whose specific mathematical expression is

U2(S (t)) = U1(S (t)) +
h′(ξ)

2
(h2(S ∗) + m f 2(sin))

∫ t

t−τM

∫ t

l
(S ∗ − S (r))2drdl. (5.4)

A preliminary calculation gives, for any t ≥ T1 + 2τM,

dU2(t) ≤
{
−

[
h′(ξ) + m f ′(η) −

h′(ξ)
2

(
1 + x∗ + m + mx∗

)
τM

]
(S (t) − S ∗)2

+
x∗h′(ξ)

2
(h2(S ∗) + m f 2(sin))τM +

h′(ξ)
2

(h2(S ∗) + m f 2(sin))
∫ t

t−τM

(S ∗ − S (r))2dr

+
1
2
σ2x∗ f 2(sin) − h′(ξ)(S (t) − S ∗)

∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

−
h′(ξ)

2
(h2(S ∗) + m f 2(sin))

∫ t

t−τM

(S ∗ − S (r))2dr

+
h′(ξ)

2
(h2(S ∗) + m f 2(sin))(S ∗ − S (t))2τM

}
dt − σ f (S (t))(S (t) − S ∗)dB(t)

≤

{
−

[
ρl + mϖl −

ρu

2

(
1 + x∗ + m + mx∗ + h2(S ∗) + m f 2(sin)

)
τM

]
(S (t) − S ∗)2

+
x∗ρu

2
(h2(S ∗) + m f 2(sin))τM +

1
2
σ2x∗ f 2(sin)
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− h′(ξ)(S (t) − S ∗)
∫ t

t−τ(t)
σ f (S (r))x(r)dB(r)

}
dt − σ f (S (t))(S (t) − S ∗)dB(t).

Taking the integral from T2 > T1 + 2τM to t and then taking the expectation, we have

E[U2(t)] ≤U2(T2) + E
∫ t

T2

dU2

≤U2(T2) − E
∫ t

T2

[
ρl + mϖl

−
ρu

2

(
1 + x∗ + m + mx∗ + h2(S ∗) + m f 2(sin)

)
τM

]
(S (r) − S ∗)2dr

+
x∗ρu

2

(
h2(S ∗) + m f 2(sin)

)
τM(t − T2) +

1
2
σ2x∗ f 2(sin)(t − T2)

− h′(ξ)E
∫ t

T2

(S (y) − S ∗)
∫ y

y−τ(t)
σ f (S (ς))x(ς)dB(ς)dy.

On the basis of the Burkholder-Davis-Gundy inequality, we get

E

∣∣∣∣∣ ∫ y

y−τ(t)
(S (y) − S ∗)σ f (S (ς))x(ς)dB(ς)

∣∣∣∣∣
≤E

(
sup

y−τM≤ς≤y

∣∣∣∣∣ ∫ y

y−τ(t)
(S (y) − S ∗)σ f (S (ς))x(ς)dB(ς)

∣∣∣∣∣)
≤4E

∣∣∣∣∣ ∫ y

y−τ(t)
(S (y) − S ∗)2σ2 f 2(S (ς))x2(ς)dς

∣∣∣∣∣ 1
2

≤ 4σs2
in f (sin)τ

1
2
M.

It suffices from Fubini’s Theorem to obtain

E

∫ t

T2

(S (y) − S ∗)
∫ y

y−τ(t)
σ f (S (ς))x(ς)dB(ς)dy =

∫ t

T2

(S (y) − S ∗)E
∫ y

y−τ(t)
σ f (S (ς))x(ς)dB(ς)dy = 0.

Hence,

E

∫ t

T2

[
ρl + mϖl −

ρu

2

(
1 + x∗ + m + mx∗ + h2(S ∗) + m f 2(sin)

)
τM

]
(S (r) − S ∗)2dr

≤U2(T2) +
x∗ρu

2

(
h2(S ∗) + m f 2(sin)

)
τM(t − T2) +

1
2
σ2x∗ f 2(sin)(t − T2).

(5.5)

Taking the superior limit of both sides of (5.5) leads to

lim sup
t→∞

1
t
E

∫ t

T2

[
ρl + mϖl −

ρu

2
(1 + x∗ + m + mx∗ + h2(S ∗) + m f 2(sin))τM

]
(S (r) − S ∗)2dr

≤
x∗ρu

2
(h2(S ∗) + m f 2(sin))τM +

1
2
σ2(sin − S ∗) f 2(sin).

This completes the proof of Theorem 5.2.
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Remark 5.1. In view of Theorem 5.2, when the magnitude of stochasticity and the delay of measurements
are small, the expected time average of the distance between the equilibrium E∗ and the stochastic
solution (S (t), x(t)) will finally bind in a narrow area. That is, the solutions of stochastic delayed
model (2.2) will be swinging around a point near the steady state E∗ of the corresponding deterministic
delayed model when the magnitude of stochasticity and the delay of measurements are small, and it
shows the biologically intuitive fact that the smaller the magnitude of stochasticity and the delay of
measurements are, the closerS (t) will be to S ∗. Meanwhile, x(t) will be closer to x∗.

6. Numerical simulations

In this section, we carry out some numerical simulations to support our theoretical findings. In
order to be more consistent with the actual situation, we fit model (2.2) to the experimental data
of Espie and Macchietto [39], which is yeast culture in a fermenter by continuously adding the
limiting nutrient containing glucose. Model (2.2) is obtained by substitution of variables, and then
the original form of (2.2) is as follows:dS (t) = {h(S ∗ − S (t − τ(t)))(sin − S (t)) − m

α
f (S (t))x(t)}dt − σ

α
f (S (t))x(t)dB,

dx(t) = {x(t)(m f (S (t)) − h(S ∗ − S (t − τ(t))))}dt + σ f (S (t))x(t)dB.
(6.1)

To clarify our results, we consider the growth function f (S ) in the form of the classical Monod
function [40, 41]

f (S ) =
S

β + S
.

In the case of τ f = 0, t j = τM j, we establish the following feedback control law:

h(S ∗ − S (t − τ(t))) = l + υ · tanh
(
S ∗ − S

(
τM

⌊
t
τM

⌋))
,

where ⌊A⌋ = max{ j ∈ {0, 1, 2, . . .} : j ≤ A} is the floor function. Obviously, τM

⌊
t
τM

⌋
= τM j when

t ∈ [τM j, τM( j+1)), which means τM

⌊
t
τM

⌋
is an increasing piecewise constant function. h(S ∗−S (t−τ(t)))

is a decreasing function of S due to the hyperbolic tangent function.
In order to estimate the parameter values of the corresponding deterministic delayed model of

model (6.1), we initially use the least squares method to identify the parameters that best suit the
deterministic model, aiming to minimize the sum of the squared differences between the output of the
deterministic model and the laboratory data of S and x in [39]. Denote the collection of parameters Π =
(l, ν, S ∗, τM, sin, β,m, α)T . Let h(Z(t),Π) = (h(S ∗−S (t− τ(t)))(sin−S (t))− m

α
f (S (t))x(t), x(t)(m f (S (t))−

h(S ∗ − S (t − τ(t)))))T , where Z(t) = (S (t), x(t))T . For the given set of experimental data points of [37]
(t1,Y1), (t2,Y2), . . . , (tn,Yn), the objective function of minimizing the squared sum of errors is

Ξ1(Π) = Σn
i=1(h(Z(ti),Π) − Yi)2.

In order to achieve a satisfactory agreement between the output of the stochastic model and the
experimental data, we search for an appropriate noise intensity of the stochastic model after estimating
the parameters for the deterministic model. Ξ1, the sum of the squares of the distances of the experimental
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data points from the mean of their ordinate values (Ξ2), and the corresponding r-squared value [42]
for experimental data and stochastic simulation data are calculated in the search for an appropriate
noise strength. The statistical measure fitting r2 can be calculated using the relation r2 = 1 − Ξ1

Ξ2
, which

quantifies goodness of fit. We investigated 100 possible random noise intensity values σ ∈ [0, 1],
and the stochastic model was then simulated 100 times for each of these 100 possible values. The
correlation coefficient r2 between the experimental data and the average output of the 100 stochastic
simulations was calculated. Finally, the best estimated parameter values are reported in Table 1.
Using these parameter values, we plotted the substrate and the species (see Figure 1c,d) obtained from
the average of 100 simulations of the stochastic model (6.1). The blue dots represent the experimental
data, the cyan solid lines are the trajectories after 100 simulations of the stochastic model and the
green lines are the mean values among these trajectories (see Figure 1a,b). By consulting some
information [43, 44], we learned that the response time of the optical sensor is very short, only about a
few seconds (1s ≈ 2.778 × 10−4h). Our estimated delay parameter τM is 3 × 10−4, which is in line with
the actual situation.

Table 1. The parameters, units and estimated values of model (6.1).

Parameter Unit Values
l hour−1 0.3
υ None 0.039
S ∗ g/L 1.425
τM hour 3 × 10−4

sin g/L 33
β g/L 0.19
m hour−1 0.34
α g dry weight/g 0.53
σ None 0.04

In the case of the estimated parameter values, the positive equilibrium of the corresponding
deterministic model of model (6.1) is E∗ = (1.425, 16.7348). After a simple calculation, we obtain
λ2 > 0 and τM = 3 × 10−4 < 2(ρl+mϖl)

ρu(1+x∗+m+mx∗+h2(S ∗)+m f 2(sin)) = 3.2982 × 10−4, which satisfies the conditions
in Theorem 5.2. As a result, the biomass is strongly stochastically permanent, and the average distance
between the positive equilibrium E∗ and (S (t), x(t)) ultimately becomes very small, i.e.,

lim sup
t→∞

1
t
E

∫ t

T2

(S (r) − S ∗)2dr = 0.1225, lim sup
t→∞

1
t
E

∫ t

T2

(x(r) − x∗)2dr = 0.2601.

Through numerical simulations, we know that with the value of the delay parameter τM gradually
increasing and crossing the value τ0

M ≈ 2.3, a periodic solution of the corresponding deterministic
model will bifurcate from the positive equilibrium E∗, which means positive equilibrium E∗ will become
unstable. As is shown in Figure 2, the solution of nutrient S (t) and microorganism x(t) of model (6.1)
will fluctuate around the stable periodic solutions of the deterministic model when τM = 3 > τ0

M . By
comparing Figure 1d and Figure 2b, the delay of measurements may affect the extent to which the
microbial concentration deviates from the desired concentration when the magnitude of stochasticity
is small.
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(d)
Figure 1. The experimental data and the fitting curves of model (6.1) for the substrate S (t),
and the species x(t). The blue dots represent the experimental data and the red dotted lines
are the fitting curves for the deterministic model. The cyan solid lines are the trajectories
after 100 simulations of the stochastic model, and the green lines are the mean values among
these trajectories.
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Figure 2. Numerical simulations of solutions S (t) and x(t) with σ = 0.04, τM = 3. (a) Time
series of S (t) for deterministic and stochastic models. (b) Time series of x(t) for deterministic
and stochastic models.
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To reveal the effect of parameters σ on the dynamics of model (6.1), we perform some simulations
with the estimated parameter values except to σ. Set σ = 0.4, and we have h(S ∗ − sin) = 0.261 <

m f (sin) = 0.3381 and λ1 = −0.002 < 0, which is consistent with conditions in Theorem 4.1. In this case,
microorganisms eventually die out exponentially, even if τM increases to 3 (see Figure 3b,d). It follows
that relatively strong disturbances in the environment exert a destructive influence on the survival of the
population, leading to the extinction of the population.

0 20 40 60 80 100
0

5

10

15

20

25

30
DDE
SDE

(a)

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

DDE
SDE

(b)

0 20 40 60 80 100
0

5

10

15

20

25

30
DDE
SDE

(c)

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20 DDE
SDE

(d)
Figure 3. Numerical simulations of solutions S (t) and x(t) with σ = 0.4. (a) Time series
of S (t) for deterministic and stochastic models when τM = 3 × 10−4. (b) Time series of x(t)
for deterministic and stochastic models when τM = 3 × 10−4. (c) Time series of S (t) for
deterministic and stochastic models when τM = 3. (d) Time series of x(t) for deterministic
and stochastic models when τM = 3.

7. Conclusions

This paper puts forward and explores a stochastic turbidostat model (2.2) with feedback control on
its output, in which the feedback merely relies on the substrate level with piecewise constant delayed
measurements. Such a stochastic model well depicts the effects of laboratory equipment and stochasticity
on microbial culture. For the sake of governing the dynamics of the microorganism for model (2.2),
we explore sufficient conditions of stochastic strong permanence and extinction of the species. In
addition, the stochastic asymptotical stability of the washout equilibrium and the asymptotic behavior

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6215–6236.
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of model (2.2) around E∗ are discussed. More particular, the mean distance between E∗ and stochastic
solution (S (t), x(t)) is dependent on the magnitude of stochasticity and delay of measurements, and the
random paths are closer to E∗ the less the stochastic disturbance intensity and delay of measurements
are. In summary, the magnitude of stochasticity could determine the survival of microorganisms, while
the delay of measurements may affect the extent to which the microbial concentration deviates from the
desired concentration when the magnitude of stochasticity is small. In microbial culture, the earlier the
stabilization is, the better to improve efficiency. Hence, the smaller the delay and noise intensity are, the
easier it is to achieve the goal, which means sophisticated laboratory instruments are more instrumental
in achieving our control objectives.

As a result of these findings, we clarify that stochasticity and delayed measurements play an important
role in a nutrient-microorganism model. Our research contributes to a better understanding of microbial
culture. On the basis of the work, it is of great significance to study the effects of environmental noise
and delayed measurements on the dynamics of the multi-nutrient or multi-microorganism models. We
leave these as future work.
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