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Abstract: Soil element monitoring wireless sensor networks (SEMWSNs) are widely used in soil
element monitoring agricultural activities. SEMWSNs monitor changes in soil elemental content
during agriculture products growing through nodes. Based on the feedback from the nodes, farmers
adjust irrigation and fertilization strategies on time, thus promoting the economic growth of crops. The
critical issue in SEMWSNs coverage studies is to achieve maximum coverage of the entire monitoring
field by adopting a smaller number of sensor nodes. In this study, a unique adaptive chaotic Gaussian
variant snake optimization algorithm (ACGSOA) is proposed for solving the above problem, which
also has the advantages of solid robustness, low algorithmic complexity, and fast convergence. A new
chaotic operator is proposed in this paper to optimize the position parameters of individuals, enhancing
the convergence speed of the algorithm. Moreover, an adaptive Gaussian variant operator is also
designed in this paper to effectively avoid SEMWSNs from falling into local optima during the
deployment process. Simulation experiments are designed to compare ACGSOA with other widely
used metaheuristics, namely snake optimizer (SO), whale optimization algorithm (WOA), artificial
bee colony algorithm (ABC), and fruit fly optimization algorithm (FOA). The simulation results show
that the performance of ACGSOA has been dramatically improved. On the one hand, ACGSOA
outperforms other methods in terms of convergence speed, and on the other hand, the coverage rate is
improved by 7.20%, 7.32%, 7.96%, and 11.03% compared with SO, WOA, ABC, and FOA, respectively.

Keywords: coverage optimization; snake optimizer; chaotic operator; Gaussian variant; power
consumption




3192

1. Introduction

With the comprehensive promotion of agricultural automation technology and the rapid
development of IoT technology, soil element monitoring wireless sensor networks (SEMWSNs) have
become essential tools for monitoring the agricultural production environment [1-5]. SEMWSNs use
the agricultural internet of things (AloT) concept, characterized by low cost, flexible structure, and
self-organizing networks [6]. SEMWSNs can accurately collect and transmit data on the content of
various elements in the soil [7]. By deploying SEMWSNSs in natural production environments, farmers
can make more accurate agricultural production decisions based on the soil info collected by the sensor
nodes. SEMWSNSs coverage is one of the crucial research directions in agriculture, seeking solutions
to maximize the range of the destination field by changing the distribution position of wireless sensor
nodes [8—11]. SEMWSNs are widely used in agricultural production activities but face finite power,
lower node dependability, and complex application surroundings. These problems significantly impact
data collection and transmission at the nodes, limiting the network’s overall performance [12,13].
Avoiding too many blind spots in the monitoring range when sensor nodes are inappropriately
deployed is one of the essential aspects of research on SEMWSNs [14]. The primary approach taken
in extensive farmlands to reduce economic costs is the unplanned distribution of sensor nodes by
Unmanned Aerial Vehicles. However, the random deployment of sensor nodes is often haphazardly
dispersed, resulting in coverage gaps or repetition in parts of the farmland [15].

Wireless sensor coverage optimization problem can be described as an N-P hard problem, and
researchers have done much research on metaheuristic algorithms for solving N-P hard problems. For
example, Tanweer et al. proposed a new particle swarm optimization algorithm (PSO) to find the
optimal strategy [16]. The inspiration for the ant colony optimization algorithm (ACO) is the foraging
behavior of an actual ant colony. This behavior is exploited in artificial ant colonies to search for
discrete and continuous optimization problems [17]. Heidari et al. proposed the harris hawk
optimization (HHO) algorithm [18] and the hunger game search (HGS) algorithm [19], respectively,
based on the predatory behavior of animals. Wang et al. proposed the monarch butterfly optimization
(MBO) algorithm inspired by the migratory behavior of American monarch butterflies [20]. Zheng et
al. proposed an improved wild horse optimizer (IWHO) for the shortcomings of WHO to optimize the
problem of low exploitation capability and stagnation in local optimization [21]. Although these
metaheuristics algorithms perform well, they suffer from low availability and evolutionary stagnation
in local optimization. Applying them to the coverage problem of SEMWSNS, there are still more
coverage gaps and redundancy in the coverage area. The main focus of this paper is to optimize the
deployment location of wireless sensor nodes. ACGSOA effectively reduces the monitoring blind spots
and maximizes the savings of sensor node resources by using a smaller number of sensor nodes and
finally finds a solution that maximizes the coverage of the monitoring field.

This paper proposes a novel coverage optimization pattern for SEMWSNSs, and a unique adaptive
chaotic Gaussian variant snake optimization algorithm (ACGSOA) is designed. The algorithm uses
multiple optimization operators to accelerate the convergence speed and augment the global
exploration capability of the algorithm. Relevant simulation experiments show that the approach
proposed in this study effectively improves the network coverage rate.

The main contributions of this paper are as follows.

1) This paper proposes a unique adaptive chaotic Gaussian variant snake optimization algorithm.
The algorithm combines the advantages of the chaotic operator and adaptive Gaussian variant
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operator, which has low time complexity and high efficiency and can perform the SEMWSNs coverage
task excellently.

2) Two new operators, the chaotic operator and the adaptive Gaussian variant operator, are
designed. The chaotic operator is used to optimize the sensor node position parameters, speeding up
the algorithm’s convergence. The adaptive Gaussian variant operator not only dramatically enhances
the global search capability of ACGSOA but also effectively prevents ACGSOA from falling into
local optimum.

3) A new mathematical model for coverage optimization of SEMWSNss is developed. The model
considers and optimizes several essential factors affecting the performance of SEMWSNS, including
the node sensing distance, the number of nodes, and the coverage area. In addition, the model proposes
a new objective function to balance the relationship between these factors and serves as an evaluation
criterion for adequate coverage.

4) New relevant simulation experiments are designed to compare ACGSOA with WOA, ABC,
and FOA according to different constraints. The results show that ACGSOA has a remarkable
improvement in terms of convergence speed, coverage results, and energy saving.

The remainder of the paper is organized as follows: Section 2 presents relevant research on the
coverage optimization problem for SEMWSNSs. Section 3 displays the coverage optimization pattern
for SEMWSNs. Section 4 proposes ACGSOA to deal with the coverage optimization problem for
SEMWSNSs. Subsequently, there are simulation experiments and discussions of the results in Section 5.
The conclusions section is given in Section 6.

2. Related work

Last decades, the coverage of wireless sensors in agriculture had attracted increasing attention. In
different application scenarios, the coverage constraints to be considered are not precisely the same,
so different deployment schemes arise. Traditional approaches to sensor node deployment are large-
scale deployments of static nodes, too many of which can cause data redundancy [22]. Traditional
wireless sensor deployment schemes typically use virtual force and computational geometry
algorithms. Virtual force and computational geometry algorithms show exclusive advantages in fixed
node distribution. However, the main objective of the coverage strategies currently used is to
maximize network coverage using a small number of nodes in combination with dynamic scheduling
methods [23]. Moreover, with the increasing demand for applications in harsh environments, the long-
established haphazard distribution methods are no longer desirable for the coverage optimization of
SEMWSNSs [24]. Metaheuristic algorithms have been widely used in wireless sensor deployment due
to their advantages, such as fewer parameters, easy implementation, and good search performance.

Bionic algorithms based on PSO, ACO, and genetic algorithm (GA), as the first proposed
metaheuristic algorithms, received much favor from researchers once they were proposed. Saha et
al. [25] proposed an adaptive virtual anchor node based on an improved shortest path algorithm with
PSO technique. The method improves the accuracy by reducing the localization error for unknown
nodes. However, the method needs to improve the problem that PSO converges slowly and tends to
fall into local optimum. Hanh et al. [26] modified local exploration, initialization, and representation
of individuals, to elevate the field coverage rate based on GA. Hanh used field integration as an
adaptation function to enhance the dependability of the simulation, but the computational complexity
of the method is very high. Lee et al. [27] proposed an ant colony-based scheduling algorithm (ACB-
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SA) to solve the energy coverage problem. This algorithm can extend the sensor lifetime, but the effect
is not significant. In addition, the slow convergence speed of ACO, the tendency to fall into local
optimum, and the inapplicability for optimization problems with continuous solution space still need
to be improved. Although this strategy effectively speeds up the algorithm’s convergence, it increases
its time complexity and running time.

Research on metaheuristic algorithms has never stopped. In recent years researchers have
proposed much faster and better metaheuristic algorithms, which are also effectively used in various
industries. Two teams, Hussien and Sharma, have improved the algorithm’s performance by combining
the chaotic operator with the harris hawk optimizer (HHO) [28-30] and applied it to wireless sensor
networks (WSNs) with good results. Meanwhile, the Hussien team explored and combined the
optimization operator [31,32] with the metaheuristic algorithms to enhance the utility of COOT
optimization algorithm [33], the remora optimization algorithm (ROA) [34], the water-cycle algorithm
(WCA) [35], and the aquila optimizer (AO) [36]. Although the above optimization algorithms have
relatively good results, these algorithms still have problems such as slow convergence and relatively
poor solution quality in dealing with such high dimensional problems as SEMWSNs coverage.
Strumberge et al. applied the monarch butterfly optimization (MBO) algorithm to the task scheduling
and WSNs location optimization problems [37], using a multi-stage localization approach to enhance
the search capability of the algorithm. At the same time, the team also investigated the moth search
algorithm (MSA), optimized the original algorithm, and used it to solve the WSNs location problem [38].
However, several of the above algorithms have certain advantages, but they can easily fall into
suboptimal solutions with small solution spaces and poor solution robustness when solving high-
dimensional problems. Funda et al. [39] applied the hunger games search (HGS) optimization
algorithm to a practical engineering problem. The team combined chaotic operators with HGS, which
effectively accelerated the convergence speed of HGS algorithm. However, the algorithm is prone to
suboptimal solutions, and the algorithm’s robustness is not good. Jesline et al. [40] optimized the
butterfly optimization algorithm (BOA) and applied it to the field of WSNSs, effectively reducing the
overall energy consumption of WSNs and extending the sensor lifetime. However, the algorithm tends
to fall into local optima and the complexity of the algorithms increases. Deepa et al. [41] propose a
new algorithm called LWOA based on the levy flight mechanism and whale optimization algorithm
(WOA) to solve the problem that the randomly deployed sensor node positions are easily trapped in
local optima. LWOA significantly improves the search capability of WOA, but the convergence speed
is not significantly improved.

To address the problems of slow convergence speed, easy fall into local optimum, poor solution
quality, and high algorithm complexity in the abovementioned studies. It is necessary to propose an
algorithm with fast convergence speed, strong search capability, robustness, and low algorithm
complexity in solving high-dimensional problems. In this study, to maximize cost and wireless sensor
resources savings, this paper proposes a unique coverage model for SEMWSNs that considers the
number of nodes, coverage area, and power consumption during deployment. In addition, inspired by
the snake optimizer (SO) [42], this paper proposes a novel adaptive chaotic Gaussian variant snake
optimization algorithm (ACGSOA). ACGSOA has a faster convergence speed, higher coverage quality,
and better ability to jump out of the local optimum compared with other metaheuristics and can
effectively reduce network power consumption.
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3. System model
3.1. Coverage strategy

The coverage problem of SEMWSNs is related to the deployment location and model of the nodes.
Generally speaking, depending on the sensing direction, node sensing models can be divided into
omnidirectional and directed sensing models. Regarding sensing characteristics, the node sensing
models can be classified into Boolean and probabilistic sensing models. Standard SEMWSNs coverage
control methods can be divided into target coverage, fence coverage, and area coverage. Target
coverage means that the SEMWSNs complete monitoring of a specified number of stationary or
moving targets in the monitoring area. Fence coverage refers to the ability of the SEMWSNs to monitor
a moving target as it traverses the sensor node deployment area. Depending on the model, fence
coverage can be divided into “exposed traversal” and “worst and best coverage”. Area coverage refers
to the ability of SEMWSNSs to complete monitoring coverage of a specified target area. It is usually
required that any point in the area is covered by at least one sensor node.

According to the qualities of SEMWSNSs, this paper selects an area coverage approach to monitor
changes in the content of various elements in soil in agricultural fields. This paper intends to maximize
coverage through fewer sensor nodes so that the entire sensor network can monitor soil info within the
target area at all times. The area coverage model used in this paper is shown in Figure 1.
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Figure 1. SEMWSNSs area coverage model.

For ease of application, the wireless sensor coverage model is further simplified in this paper.
Nodes are admitted to placing anywhere within the monitoring region, assuming that the region is
two-dimensional.

1) Nodes are placed in the target area. Each node is considered a mass point.

2) The wireless sensor sensing way uses the Boolean sensing model.

3) The sensing distance of each node is p, which is taken as 5.

The coverage problem of SEMWSNs can be thought of as randomly placing nodes within the
target area and using a population intelligence algorithm to adjust the node positions to achieve
maximum coverage ultimately.
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3.2. Sensing model

The agricultural soil element monitoring system uses the efficiency of data transmission between
wireless sensor nodes as an essential indicator in selecting the transmission way. This paper assumes
that the target region 4 of SEMWSNSs is two-dimensional, considered a square field consisting of
W x L pixel blocks. NV isomorphic nodes are deployed in the target region. Each node has the same
parameter information, radius of communication R., and sensing radius p. To assure the stability of
the SEMWSNS, the set of nodes can be represented as T = {t, t,, t3,+, ty}, Where the position of
the monitoring node is p; = (x;, ¥;), and the coordinates of pixel m are assumed to be m = (x,y).
Equation (1) represents the distance between the monitoring node and the pixel point.

d(p,m) =/(x — x)% + (y — y,)? (1)

This paper uses the Boolean model as the wireless sensor sensing way. The Boolean model
considers that when the length between the monitored pixel and the sensing node is less than or equal
to the sensing radius p, the target is considered to be sensed with probability 1. In comparison, the
target is not sensed when the distance between the monitored target and the sensing node is greater
than the sensing radius p. The specific formulas of the Boolean model are shown in Eq (2) and Figure 2.

1’ d(til m) S p

0, d(t;,m)>p )

Peov(ti,m) = {

A
L

Figure 2. Boolean sensing model.
3.3. Evaluation metrics

Coverage algorithms can be evaluated in a variety of ways. Generally, they can be evaluated in
the following three ways.

1) Coverage rate: The primary function of SEMWSNs is to complete the coverage of the
monitored area or the monitored target, so coverage capability is an essential criterion for evaluating
the coverage protocol or algorithm of SEMWSNs. All nodes are detected as mutually independent
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events, and the comprehensive sensing probability of all nodes for a particular target is shown in Eq (3),

pcov(T: m) =1- Hciec(l - pcov(ti; m)) (3)

where T denotes all nodes in the target region; in area coverage problems, the coverage rate is usually
defined as the ratio of the entire field covered by the SEMWSNs to the field as the whole of the
monitored field. It is described as shown in Eq (4),

Scov(T) = % 4)
where L is the target region’s length, W is the target region’s width, and P.,,(T) is the sum of the
sensing probabilities of all sensor nodes in the target region.

2) Coverage efficiency: Coverage efficiency is usually used to evaluate the utilization of a sensor
node within a coverage area. In area coverage, the coverage efficiency is described as the ratio of the
range of all nodes in the monitoring area to the sum of the scope of multiple nodes. In the case where
the monitored area is completely covered, the higher the coverage efficiency, the smaller the size
repeatedly monitored by the node, and the more efficient the utilization of the wireless sensor node.
The specific mathematical representation is shown in Eq (5).

_ UP;oy(T)
Teov = 2 Peow(T) (5)

The relation between coverage rate and coverage efficiency is shown in Eq (6).

_ Scon(T)XLxW
rCOU -

Nxxp? ©)

3) Network connectivity: SEMWSNs are self-organizing into networks where all nodes must
upload data to the gateway nodes via wireless multi-hop. If the sensor nodes cannot access the network,
the nodes cannot transmit the sensed data to the user. At the same time, nodes need to maintain
communication with surrounding nodes to collaborate on tasks such as sensing and data fusion, so
maintaining network connectivity is critical to the coverage of SEMWSNs.

3.4. Coverage objective function

The coverage problem of SEMWSNs can be studied from two aspects: how to ensure the adequate
coverage of nodes over the target area to accurately transmit and collect soil data of the target area.
The other is to improve the coverage scope of the SEMWSNs with a reasonable spatial resource
allocation to ensure high node resource utilization.

This paper uses the magnitude of coverage to represent the level of coverage of the node over the
monitored area. The final strategy in this paper is to constantly monitor the target area with maximum
coverage while ensuring that the nodes use fewer nodes at high coverage and that the nodes can collect
and transmit soil element data for an extended period. The SEMWSNs coverage mathematical model
solution function is shown in Eq (7).

flx) = Max(scov(T)) @)
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3.5. Power consumption analysis of SEMWSNs

In SEMWSNSs, the three components of inter-node communication, data sensing, and data
collection and processing are the main components of power consumption. In the SEMWSNSs coverage
model, this paper simplifies the SEMWSNs by considering only the energy required by the
communication module, the transmission power consumption, and the receiving power consumption
of each sensor node. Equations (8) and (9) represent the power consumption required by a node to
receive and transmit data, respectively.

Et(k; d) =k X (Eetec + Eamp X am) (®)
Er(k) =k X Egec )

In Eq (8), E;(k,d) denotes the energy consumed by a node to send & bit of data to another node,
d denotes the distance between two nodes, Egj. denotes the electronic energy parameter, &gpmy
denotes the power amplification factor, n denotes the quality factor of the communication environment
where the sensor is located, the worse the communication environment, the larger the value of n. The
value of n takes the range of 2 to 4. In Eq (9), E, (k) represents the energy required for a sensor node
to receive k bits of data.

The energy required for a sensor node to receive and send data constitutes the total energy E
consumed by a sensor node, as shown in Eq (10).

E=E, +E, (10)

Assuming the presence of /V nodes in the target region, the total energy consumed by all sensors when
communicating can be calculated using Eq (11), where Ej,,, is the total system power consumption.

Esum = Zgzl E, (11)
4. ACGSOA for improved coverage rate of SEMWSNs

This paper proposes an adaptive chaotic Gaussian variant snake optimization algorithm
(ACGSOA) for optimizing the coverage of SEMWSN in the target region. This paper designs a new
chaotic operator to make the initial positions of the resulting wireless sensor nodes more uniform and
improve the convergence speed of the algorithm. Also, to address the problem of quickly falling into
local optima, an adaptive Gaussian variant operator is designed in this paper to complement the
exploration capability of the algorithm. Using ACGSOA, maximum coverage of the target area using
a smaller number of sensor nodes is achieved, and the overall network power consumption is reduced.

4.1. Snake optimizer

Snake optimizer [42] (SO) is an optimization algorithm proposed by Professors Hashim, F. A.
and Hussien, A. G. in 2022, whose algorithm is inspired by the foraging and reproductive behavior
and patterns of snakes. SO first generates randomly distributed populations to be able to start the
optimization process. SO is mainly influenced by temperature and the amount of food. When the
amount of food is more significant than a set threshold, SO searches for food and updates its position
relative to the food by selecting random locations, and this phase is the exploration phase. The
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development phase of SO is relatively complex and is divided into a near-food mode, a combat mode,
and a mating mode; all three modes are affected by both temperature and the amount of food.

This paper proposes ACGSOA by combining the novel chaotic operator with the new Gaussian
variational operator based on SO, so the relevant mathematical principles of SO and ACGSOA are
explained in detail in the subsequent subsections. In ACGSOA, a series of unique behaviors of the
snake symbolizes finding the optimal solution for the coverage of SEMWWSNs. ACGSOA process is
divided into Chaotic initialization for nodes of SEMWSNSs, grouping and adaptive Gaussian variant of
ACGSOA’s population, coverage rate exploration, and coverage rate development.

4.2. Chaotic initialization for nodes of SEMWSNs

The first step in applying ACGSOA to SEMWSNSs coverage optimization problem is determining
the initialized wireless sensor node locations. To deploy the initial nodes as uniformly as possible, a
novel chaotic initialization strategy is proposed in this paper, which helps to speed up the algorithm’s
convergence. The chaotic mapping distribution and histogram are shown in Figure 3(a),(b),
respectively. According to Figure 3(a), it can be seen that the chaotic operator proposed in this paper
is more uniformly distributed.
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Figure 3. Chaotic distribution.

The expression for chaotic sequence generation is shown in Eq (12),
zn+1) =4z(n)®—-3z(n) {(neN*} (12)

where z(n) € [—1,1]. The chaotic sequence is mapped into the space of values of the optimization
variables, and the chaotic properties are used to search for the node’s initial position. The specific
steps are:

1) For M individuals in a D-dimensional space, a D-dimensional vector Z = {z;,2,,**, Y4} is
randomly generated as the first individual, where z; € [-1,1],1 < i < d.

2) Use Eq (12) for M-1 iterations of ¥ to produce the remaining M-1 individuals.

3) The resulting chaotic variables are mapped into the search space of the solution according
to Eq (13).
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(1+Zid)x(xu_xl) (13)

xid:xL+ >

where x;4 is the location of individual i in the d-th dimension; z;; is the d-th dimensional value of
individual i generated by Eq (12); and x,, and x; are the maximum and minimum of the values taken
for x;4, respectively.

4.3. Grouping and adaptive Gaussian variation of ACGSOA's population

Applying ACGSOA to SEMWSN:S, the individual’s fitness in ACGSOA represents the coverage
rate of the SEMWSN:s. It is necessary to calculate each individual’s fitness to find the best individual’s
current position before proceeding with other operations of ACGSOA. The formula for calculating the
fitness is shown in Eq (7). In ACGSOA, populations are divided into two groups, and current fitness
values are calculated for the individual in each group. This paper assumes that the number of male
individuals is fifty percent and the number of female individuals is fifty percent. Equations (14) and (15)
are used to divide the populations,

M= [3] (14

N =N — N, (15)

where NV is the population size of SEMWSNs, N, and Ny are the number of males and females,
respectively.
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Figure 4. Gaussian distributions.

To avoid ACGSOA from falling into local optimum, after a certain number of individuals are
randomly selected, the adaptive Gaussian variant operator is designed in this paper to perform various
operations on them. The mutated individuals can be calculated using the following Eqs (16) and (17),

Vi=X;+ex (Xg, —X;) i €1, Nyl (16)
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Vi=X;+ex(Xg, = X;) i € [Ny + 1,N] (17)

where e denotes a Gaussian distribution with a variance of 1 and a mean of 0, the Gaussian distribution
is shown in Figure 4. Xp,, is the most adapted individual in the male population, and Xz is the most

adapted individual in the female population. X; denotes the individual to be mutated.
4.4. Coverage rate exploration

During the deployment of SEMWSNS, the size of the food in ACGSOA represents the current
individual best fitness, which is the best coverage of SEMWSNSs, and the location of the food is the
present global best fitness location. The population search for the food location is equivalent to the
search for the SEMWSNSs’ best coverage solution. ACGSOA chooses the viable strategies for the
coverage problem by the fitness value size, calculated after the individuals move to a new position in
each iteration. In the SEMWSNs coverage optimization problem, if the food quantity is less than a set
threshold of 0.25, individuals will search for food and update their location by choosing any random
location. The formula for defining the number of food items is given in Eq (18). The location update
method is shown in Egs (19) and (21),

Q =cy Xexp (— %) (18)

where g is the present number of iterations; G is the maximum number of iterations. c¢; is a constant
and is taken as 0.5,

Xi,m(g + 1) =0 X Am X (X(Xminmax)rand,m(g)min) (19)

where X; ., is the location of the male individual; X4 m 1S the location of the randomly selected
male individual; rand € [0,1]; A,, is the ability of the male individual to find food, and the food
finding ability is calculated as shown in Eq (20),

A, = exp (— ff—m) (20)

im

where frgnam 15 the Xpgngm fitness value for the location of a randomly selected male, and f; ,, is
the X;,, fitness value for the location of a male. ¢, is a constant, taken as 0.5,

Xi,f(g + 1) =0 X Af X (X(Xminmax)rand,f(g + 1)min) (21)

where X; ¢ is the location of female individuals; X,4,4 5 is the location of randomly selected females;
Ay 1s the ability of females to find food, and the food-finding ability is calculated as shown in Eq (22),

— _ frand,f)
Ar = exp ( _fi,f (22)

where frana s 18 the X,qnq ¢ fitness value for the location of a randomly selected female individual,
and f;  is the X; ., fitness value for the location of a female individual.
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4.5. Coverage rate development

In the SEMWSNs coverage optimization problem, the particular behavior of ACGSOA
individuals helps to find a better coverage solution. There are two types of individual behavior, one in
which individuals fight each other to update position and the other in which mating between males and
females takes place to update position. In ACGSOA, when the amount of food is greater than 0.25,
and the temperature is greater than 0.6, individuals will only update their position continuously to find
the best fitness. The temperature definition formula is shown in Eq (23). Position updating is shown
in Eq (24),

_ g
Temp = exp (— E) (23)
Xi,j(g + 1) = Xfood + c3 X Temp X rand (Xfood — Xi_j(g)) (24)

where X; ; is the individual location, Xrood is the best location of the individual, c3 is a constant,

which is taken as 2.

If the amount of food is greater than 0.25 and the temperature is less than 0.6, the individual will
be in mating or fight pattern.

1) Fight pattern: Individuals update their position parameters by fighting with each other, with
position updates as shown in Eqs (25) and (27),

Xim(g + 1) = ¢3 X rand x Fy X (@ X Xpese,r) = Xim(9)) + Xim(9) (25)

where X; , is the location of the i-th male; Xj.s ¢ is the best position of the female; and F,, is the
male fighting power, as shown in Eq (26),

E, = exp (— f—b;sit’f ) (26)
Xip(g+1) = cg x rand x Fy x ((Q X Xpesem) = Xip(9)) + X (9) 27)

where X; ¢ is the position of the i-th female; Xjesm 1s the best male location; and Fy is the female
fighting power, as shown in Eq (28).

Fy = exp (- L2esm) (28)

i

2) Mating pattern: Position update between males and females through mating, with eggs laid
after mating, and ACGSOA further determining whether the eggs hatch. The position is updated as
shown in Egs (29) and (30),

Xim(g + 1) = ¢ X rand x My x (0 X Xi (@) = Xim(@)) + Xim(@)  (29)

Xip(g + 1) = 5 xrand x My x ((Q % Xim(9)) = Xir(9)) + Xi(9) (30)
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where X; ., is the location of the i-th male; X; ¢ is the location of the i-th female; and My, and My
are the mating ability of males and females, respectively, as shown in Eqs (31) and (32),

M,, = exp (— ]{l—f> (31)
M _ fi,m
r=ew(-72) @2

where f; , is the fitness value of the i-th male position; f; r is the fitness value of the i-th female

position; and if the egg hatches, a new individual is produced. The worst male and female positions
are found, and the new individual is used to replace the worst individual.

4.6. ACGSOA steps

ACGSOA implementation process is divided into the following steps.

Step 1: Set the relevant parameters in the algorithm. The number of sensors /N, the number of
populations pop_size, the maximum number of iterations G, and the boundary parameters x; and x,,.

Step 2: The sensor node locations and randomly generated population locations are initialized
using the chaotic operator, and the populations are Gaussian mutated.

Step 3: Divide the population into two groups.

Step 4: Calculate the population fitness and find the best individuals.

Step 5: Calculate temperature and food quantity.

Step 6: Determine if Q is greater than the food threshold of 0.25. If Q is less than the food
threshold, find the current global optimal fitness according to Eqs (19) and (21). If Q exceeds the food
threshold, determine whether Temp is greater than the temperature threshold of 0.6.

Step 7: If Temp is greater than the temperature threshold, the individual position is updated
according to Eq (24). If Temp is less than the temperature threshold, further determine whether rand >
0.6 or rand < 0.6.

Step 8: If rand > 0.6, the population enters fight mode, and the position is updated according to
Eqgs (25) and (27). If rand < 0.6, the population enters mating mode and is updated according to Eqs (29)
and (30).

Step 9: Replace the worst individual and update the global best fitness.

Step10: If the total number of iterations G’ does not arrive, skip to step 4. If the maximum number
of iterations G has arrived, output the coverage strategy.

The flowchart of ACGSOA is shown in Figure 5.

4.7. ACGSOA complexity analysis

In this paper, the size of the population is set to NV, the maximum number of iterations is G, and
the solving spatial dimension is D. The time complexity of ACGSOA is analyzed according to the
criterion related to the algorithm’s time complexity. The final result is that the time complexity of
population initialization using the chaotic operator in ACGSOA is O(N), the time complexity of
updating the position using the Gaussian variant operator change is O(D), the time complexity of
finding the local optimum is O(N X D), and the total time complexity of ACGSOA is 0(G X N X D).
As aresult, the overall time complexity of ACGSOA is comparable to that of SO and does not increase
the operational cost of the algorithm.
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FigureS. Flowchart of ACGSOA in SEMWSNS.

The pseudo-code of ACGSOA proposed in this paper is shown in Algorithm 1.

Algorithm 1. Adaptive Chaotic Gaussian Variant Snake Optimization Algorithm

1: Initialize Problem Setting (M, pop_size, G, i, x;, and x;,)
2: The randomly generated population positions are initialized using chaotic operators using Eqgs (12) and (13).

3: Adaptive Gaussian variant in population.

4: Divide population pop_size to 2 equal groups Ny, and Ny using Egs (14) and (15).

5: while (i < G) do
6:  Find the best individual
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Algorithm 1. Adaptive Chaotic Gaussian Variant Snake Optimization Algorithm

7:  Calculate temperature (Zemp) and food quantity (Q) using Eqs (18) and (23)
8: if (Q < 0.25) then

9: Find the current global optimal fitness using Eqs (19) and (21)
10:  else
11: if (Temp > 0.6) then
12: update individual position using Eq (24)
13: else
14: if (rand < 0.6) then
15: Fight pattern Eqs (25) and (27)
16: else
17: Mating pattern Eqs (29) and (30)
18: replace the worst individual and update the global best fitness
19: end if
20: end if
21:  endif

22: end while
23: Return best solution.

5. Results and discussion

To verify the validity of ACGSOA proposed in this paper in improving the coverage of
SEMWSNs, a series of simulation experiments were conducted. ACGSOA is compared with SO,
WOA, ABC, and FOA. The results of the experiments covered in this paper are averages derived from
the effects of 100 experiments. The simulation experiments included comparing node deployment
locations, algorithm running time, network power consumption, and coverage. Different types of
simulations were performed with different numbers of sensors to reflect the usefulness of SEMWSNs.
In addition, all simulations were acted on a computer equipped with an 15-12400F CPU @ 3.20GHz,
and the fitness function used in the algorithms follows Eq (7).

To compare the performance of different algorithms for SEMWSNs coverage optimization, a
unified standard parameter is used to ensure the objectivity and impartiality of the simulation
experiments. In the simulation experiments, the population size of all algorithms was set to 30, and the
maximum number of iterations was set to 1000. Detailed parameter settings for the four algorithms are
shown in Table 1.

This paper assumes that the sensor nodes of SEMWSNs are deployed in a square monitoring area
of W X L. Table 2 lists the experimental parameters of the SEMWSNs node deployment area and the
simulation results for different constraints. All the results in Table 2 are the average results obtained
after 100 simulations. When the simulation area is 50 X 50 m?, the sensing radius R of the sensor
nodes is set to 5 m, and the communication radius R, is set to 10 & 2 m. When the simulation area
is 30 X 30 m?, R, issetto2.5m,and R, issetto 5+ 1 m. The number of sensor nodes is indicated
by N and consists of 54, 44, 33, and 27 sensor nodes.
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Table 1. Detailed parameter settings for the algorithm.

Name of algorithm Basic parameters of the algorithm

ACGSOA pop = 30, G =1000,c;=0.5,c2=0.05,c3=2

SO pop = 30, G =1000,c1=0.5,¢c2=0.5,c3=2

WOA pop =30, G =1000, a=2to0, b=1, | =[-1,1]
ABC pop = 30, G = 1000, limit =20, a=1

FOA pop = 30, G = 1000, s = 0.2

Table 2. Results of ACGSOA compared with SO, WOA, ABC and FOA under different constraints.

Algorithm  Factor Variables 50 x 50 50 x 50 50x50  30x30
N =54 N = 44 N = 33 N =27
ACGSOA  Coverage rate (%) 99.76 97.24 87.24 57.00
Consumed execution time (s) 17.491 13.292 9.820 3.66
SO Coverage rate (%) 92.56 86.76 77.72 52.89
Consumed execution time (s) 24.06 22.12 20.61 7.30
WOA Coverage rate (%) 92.44 89.96 76.00 50.11
Consumed execution time (s) 19.27 14.06 11.75 4.70
ABC Coverage rate (%) 91.80 85.12 74.56 49.11
Consumed execution time (s) 18.45 14.28 11.73 5.33
FOA Coverage rate (%) 88.73 80.20 63.74 41.52
Consumed execution time (s) 36.15 30.33 21.99 8.54

Figure 6(a)—(d) visualizes ACGSOA, SO, WOA, ABC, and FOA simulation results for optimizing
coverage of SEMWSNs under different constraints. The data in the figures are the average results obtained
after 100 simulation experiments were conducted. Figure 6 shows that this paper’s proposed ACGSOA
node coverage optimization has the most robust performance, indicating the best quality when applied
to SEMWSNSs. According to Figure 6(a), the optimized ACGSOA was used for SEMWSNSs under
50m X 50m, N = 54, and the final ACGSOA node coverage is all higher than that of SO, WOA,
ABC, and FOA. The coverage rates for SO, WOA, ABC, and FOA were 92.56%, 92.44%, 91.80%,
and 88.73%, respectively. By viewing Figure 4(a), FOA has a poor initial probability of 75% and the
algorithm’s slow convergence rate, and the result is not satisfactory at 88.73.

Analyzing FOA, it is due to the inability of FOA to make full use of the population information
that results in FOA falling into local extremes and a decrease in convergence accuracy. For SO, WOA,
and ABC, the coverage results are similar, with SO and WOA being slightly better, SO, WOA and
ABC are improved compared to FOA. However, there are still some problems. This paper can see that
SO converges slowly by analyzing SO. According to Table 2, This paper can learn that SO takes longer
to run compared to both WOA and BOA algorithms, and the reason for this is that SO divides the
population into two groups. The two groups cannot make full use of the location information. WOA
and ABC suffer from premature convergence, low solution accuracy, and the same tendency to fall
into localization. In ACGSOA, a new chaotic operator is designed to enhance the convergence speed
of the algorithm, and an adaptive Gaussian variant operator is also designed to improve the search
capability of ACGSOA, which is conducive to jumping out of the local extreme. Under the condition of
50m X 50m, N = 54, the experiment results show that the coverage of ACGSOA is as high as 99.76%,
and the coverage rate of ACGSOA is improved by 7.20%, 7.32%, 7.96%, and 11.03%, respectively,
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compared with the other four algorithms. The above result shows that the improvement method
proposed in this paper can effectively enhance ACGSOA’s optimization-seeking ability and get the
best coverage rate with fewer iterations.

Figure 6(a) shows that the convergence speed of ACGSOA is significantly improved compared
to the other four algorithms. WOA reaches a maximum of 92.44% after 400 iterations. ABC reaches a
maximum of 91.80% after 300 iterations. SO reaches a maximum of 92.56% after 500 iterations. FOA
reaches a maximum of 88.73% after 900 iterations. However, ACGSOA reached 95.80% after 100
iterations. The above results demonstrate that the novel chaotic operator and the new adaptive Gaussian
variational operator designed in this paper effectively improve the algorithm’s convergence speed and
global search ability. Further analysis of Figure 6(b)—(d) shows the same conclusion.

Figure 6(b) shows a ten wireless sensor nodes reduction compared to Figure 6(a). ACGSOA
optimized coverage in Figure 6(b) is also as high as 97.24%, which is 4.68%, 4.8%, 5.44%, and 8.51%
higher than SO, WOA, ABC, and FOA coverage results in Figure 6(a), respectively. Comparing the
results of the two photos demonstrates that ACGSOA can achieve better coverage with fewer nodes

deployed and can effectively reduce deployment costs. The same conclusion is reached by analyzing
Figure 6(c),(d).
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Figure 6. Iteration curves under different constraints.
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Figure 7. Coverage results after algorithm optimization with 50 m X 50 m, N = 54.

Figure 7(a), (b) shows the initial coverage effect of FOA and ACGSOA in the context of
constraint (1). Based on the images, it can be learned that the distribution of randomly deployed nodes
in FOA and ACGSOA is highly uneven. The initial distribution includes a large amount of coverage
redundancy and coverage gaps, which seriously wastes unlimited sensor node resources and increases
the deployment cost. Figure 7(c)—(g) shows the coverage results of applying the five algorithms to
SEMWSNs in the context of constraint (1). According to Figures 7(e) and 5(g), it can be seen that the
optimized deployment results using WOA and FOA show a better distribution result. However, there
are still more coverage redundant and gaps, and the node coverage after optimization by two algorithms
still needs to be optimized. Figure 7(d), (f), and (c) show that the application of SO, ABC, and

Mathematical Biosciences and Engineering

Volume 20, Issue 2, 3191-3215.



3209

ACGSOA to SEMWSNs achieves better results, but the coverage rate is better with ACGSOA. Using
ACGSOA algorithm for SEMWSNs node coverage optimization yields a more uniform node
distribution, and the result has fewer coverage gaps and redundancy relative to other algorithms. The
maximum coverage of ACGSOA is almost one hundred percent.

Figure 8(a)—(e) shows the coverage results of applying the four algorithms to SEMWSNSs in the
context of constraint (2). According to Figure 8, it can be seen that ACGSOA is still the algorithm
with the highest coverage rate when reducing the number of nodes by a certain amount and is equally
close to complete coverage. Comparing Figure 8(a) with Figure 7(b)—(d), it is easy to conclude that
ACGSOA has a more uniform distribution of nodes, significantly fewer coverage gaps, redundancy,
and the best coverage. This result shows that ACGSOA has less impact on coverage and lower
economic cost in reducing the number of SEMWSNs nodes, maximizing the benefits. Under the same
target region size, node sensing distance, and communication distance conditions, this paper explores
the trend of coverage change as the number of nodes changes. The simulation results show that the
higher the number of nodes at a given range, the better the coverage effect and the smaller the coverage

redundancy and gaps within the monitoring area.
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Figure 8. Coverage results after algorithm optimization with 50 m X 50 m, N = 44.

In this paper, a failure rate of 8% was set at the time of deployment to prevent individual node
failures from causing a drop in coverage rate. For the simulation experiments, the actual number of

nodes used in Figures 7 and 8 are 50 and 40, respectively.
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Figure 9 represents the variation of ACGSOA, SO, WOA, ABC, and FOA coverage with the
number of sensor nodes in the SEMWSNS. It was found that the coverage of SEMWSNSs increased
with the number of nodes. When the number of nodes is the same, ACGSOA has a more significant
advantage over SO, WOA, ABC, and FOA. With the same parameters, ACGSOA can be better adapted
to different numbers of sensor nodes, allowing for a more comprehensive application of coverage
optimization. Also, the increased network coverage indicates improved network monitoring quality
and data accuracy, making ACGSOA advisable for coverage optimization of SEMWSNS.

1

0.9
0.8
0.7
0.6
0.5
04
03
0.2
0.1

0

Nodes=20 Nodes=25 Nodes=30 Nodes=35 Nodes=40 Nodes=45 Nodes=50

.

J

mACGSOA mSO mWOA mwABC mFOA

Figure 9. Trends in coverage of SEMWSNSs.

According to the above analysis and results, it can be learned that ACGSOA dramatically
improves the coverage of SEMWSNs compared to SO, WOA, ABC, and FOA. Compared with the
other three algorithms, ACGSOA achieves 95% coverage using fewer nodes. At the same time, SO,
WOA, ABC, and FOA deploy too many nodes and are prone to coverage redundancy, affecting data
transmission accuracy. According to Figure 9, this paper calculates the power consumption of
SEMWSNs with different deployment algorithms when SEMWSNs are deployed. Some critical
parameters of the power consumption calculation model in SEMWSNs are as follows: E, .. =
50nJ/bit, k=1Mbit, n=3, &mp =100 pJ/bit/m? . The power consumption results of
different algorithms, as shown in Table 3. All the results in Table 3 are the average results obtained
after 100 simulations. This paper focuses on calculating the power consumption generated by
exchanging data with all other nodes within the communication range of a certain node. The results
show that SEMWSNSs show the highest power consumption after optimal deployment using FOA,
while SEMWSNSs exhibit the lowest power consumption after optimal deployment using ACGSOA.
ACGSOA proposed in this paper accomplishes the objective of reducing the power consumption
of SEMWSNSs.
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Table 3. Power consumption of different coverage algorithms.

N =35 N =40 N = 45 N = 50
ACGSOA 49.97 (J) 63.93 (J) 79.11 (J) 91.23 (J)
SO 63.01 (J) 78.35 (J) 94.53 (J) 126.63 ()
WOA 62.08 (J) 74.06 (J) 106.79 () 122.71 ()
ABC 5427 (J) 76.17 (J) 103.56 () 116.97 ()
FOA 73.11 (J) 80.17 (J) 114.16 (J) 138.86 (J)

6. Conclusions

To improve the coverage of SEMWSNs, a novel adaptive chaotic Gaussian variant snake
optimization algorithm (ACGSOA) is designed in this paper. The innovation of ACGSOA lies in the
design of various optimization operators to enhance the performance of ACGSOA. A new chaotic
operator is designed, which speeds up the algorithm’s convergence. A new Gaussian variant operator
is also proposed, effectively preventing SEMWSNs from falling into local optima during deployment.
Subsequently, ACGSOA is compared with SO, WOA, ABC, and FOA to demonstrate its effectiveness
for coverage optimization of SEMWSNSs. According to the simulation results, the coverage capability
of ACGSOA far exceeds that of other algorithms and effectively saves node resources. The application
of ACGSOA in the coverage optimization of SEMWSNSs significantly improves the coverage rate
while reducing the number of nodes used and provides a research basis for further development of
intelligent agriculture.

Although ACGSOA proposed in this paper has demonstrated its superior performance through
simulation, it still needs some improvement due to the limitations of research capability and
environmental conditions. In this paper, the sensor nodes in SEMWSNSs are statically and randomly
distributed in the monitoring area. However, some application scenarios require the sensor nodes to be
distributed as mobile monitoring data. In the future, the distribution of sensor nodes as mobile
monitoring data to improve the practicality and adaptability of the algorithm will be investigated in
some application scenarios. Future research can place the network in a 3D scene and be heterogeneous.
The impact of environmental factors such as temperature, noise, and obstacles on SEMWSNs nodes
will be considered in the future.
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