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Abstract: Transformer is widely used in medical image segmentation tasks due to its powerful ability 
to model global dependencies. However, most of the existing transformer-based methods are two-
dimensional networks, which are only suitable for processing two-dimensional slices and ignore the 
linguistic association between different slices of the original volume image blocks. To solve this 
problem, we propose a novel segmentation framework by deeply exploring the respective 
characteristic of convolution, comprehensive attention mechanism, and transformer, and assembling 
them hierarchically to fully exploit their complementary advantages. Specifically, we first propose a 
novel volumetric transformer block to help extract features serially in the encoder and restore the 
feature map resolution to the original level in parallel in the decoder. It can not only obtain the 
information of the plane, but also make full use of the correlation information between different slices. 
Then the local multi-channel attention block is proposed to adaptively enhance the effective features 
of the encoder branch at the channel level, while suppressing the invalid features. Finally, the global 
multi-scale attention block with deep supervision is introduced to adaptively extract valid information 
at different scale levels while filtering out useless information. Extensive experiments demonstrate 
that our proposed method achieves promising performance on multi-organ CT and cardiac MR 
image segmentation. 

Keywords: medical image segmentation; double transformer; local multi-channel attention; global 
multi-scale attention; convolutional neural network; deep supervision 
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1. Introduction 

Medical image segmentation accurately captures the shape and volume of target organs and 
tissues through pixel-level classification, resulting in clinically useful diagnosis, treatment and 
intervention information [1]. Traditional medical image segmentation methods usually only rely on 
the low-level property of pixel-level features. Therefore, it is difficult for them to achieve satisfactory 
segmentation performance in the case of low contrast [2]. In addition, methods based on deep 
convolutional neural networks (CNN) have been applied to many medical image segmentation tasks, 
such as automatic multi-organ segmentation for computed tomography (CT) [3,4], colorectal polyp 
segmentation for colonoscopy videos [5], and prostate segmentation for magnetic resonance (MR) [6]. 
The convolution operation is essentially based on the basic mathematical operation between pixel 
values, and many excellent works based on mathematical models have emerged in recent years [7–9]. 

UNet [10] is undoubtedly a classic encoder-decoder framework for medical image segmentation, 
where the encoder extracts deep features by successive downsampling, and then the decoder uses the 
encoder outputs to continuously upsample to the original resolution. However, it may exhibit 
limitations in modeling explicit global dependencies due to the restricted receptive field of 
convolutional network. To address this problem, some studies utilized 3D convolution [11], attention 
mechanism [12], dilated convolution [13], and dynamic convolution [14] to efficiently extract 
feature information at different levels and increase the receptive field of the network. However, these 
methods still have certain limitations in capturing long distance dependencies due to the inherent 
restriction of convolution. 

In recent years, transformer [15] has demonstrated excellent capabilities in natural language 
processing and is effective in learning global information and training on large-scale data [16,17]. It 
has recently attracted extensive attention and research in the fields of computer vision [18,19] and 
medical image processing [20,21]. Vision Transformer (ViT) [22] divided the input images into a series 
of patches for encoding and utilizes pure transformer blocks to model the global information. Swin 
Transformer [23] achieved the most advanced performance in a variety of computer vision tasks by 
generating hierarchical feature representations through self-attention layers with sliding windows of 
linear complexity rather than general quadratic. Chen et al. [20] first explored the potential of 
transformer in the field of medical image segmentation by employing transformer as the powerful 
encoders. Then, there have been many hybrid structures combining CNN and transformer [24–29]. By 
adding transformer to CNN-based networks, they can flexibly extract global and local feature 
information and achieve excellent segmentation performance. However, most of them only aggregate 
at the same level, ignoring the problem of semantic inconsistency between high-level and low-level 
features. Moreover, they only pass up the features of each level in decoder stage, not take full 
advantage of the features of different scales globally. 

In this paper, we propose a novel hierarchical double transformer with comprehensive attention 
for accurate volumetric medical image segmentation. The main contributions are as follows: 

1) We propose a new 3D model that hierarchically integrates convolutions, transformers, and 
comprehensive attention mechanisms to fully exploit their respective roles. Specifically, we first use 
convolution to perform preliminary low-level feature extraction, then use transformer to extract high-
level features and downsample to reduce the amount of data and computation, and finally use multiple 
attention mechanisms to help enhance effective contextual semantic information. 
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2) From the perspective of network structure, we first introduce a novel double transformer 
structure used to extract features in encoding and restore the original resolution of feature maps in 
decoding. Then the local multi-channel attention mechanism (LMCA) and the global multi-scale 
attention mechanism (GMSA) adaptively filter out the effective features of the coding branch at the 
channel and scale levels in turn, while suppressing or filtering out the invalid features 

3) The proposed method is implemented on two challenging medical image segmentation tasks, 
including abdominal multi-organ CT and cardiac MR datasets. Compared with the other four methods, 
our method achieves the highest Dice coefficient and obtains the best performance. 

The rest of this article is organized as follows. Section 2 illustrates the specific details of our 
method. Section 3 describes the implementation details of the experiment and the experimental results. 
Section 4 provides the detailed discussion of the proposed modules. Finally, the conclusion is presented 
in Section 5. 

2. Materials and methods 

2.1. Datasets and pre-processing 

We conducted extensive experiments on Synapse multiorgan segmentation (Synapse) dataset [30] 
and automated cardiac diagnosis challenge (ACDC) dataset [31]. The Synapse dataset includes 30 
patients with a total of 3779 axial abdominal CT scan slices. Each case has 8 abdominal organs 
including aorta, gallbladder, spleen, left kidney, right kidney, liver, pancreas, and stomach. According 
to reference [20], 18 cases are extracted to construct the training set, and the remaining 12 cases are 
used for testing. The ACDC dataset includes 3D MRI images of 100 patients. The labels for each case 
include left ventricle (LV), right ventricle (RV), and myocardium (MYO). According to the setting of 
reference [20], the training data, validation data, and test data in the experiment are divided in a ratio 
of 7:1:2. All data are normalized and simple data augmentation, e.g., random rotation and flipping. 

2.2. Overall structure 

The overall structure of proposed method is shown in Figure 1, it includes two stages of encoder 
at the left end and decoder at the right end. This encoder and decoder structure has been used in many 
studies and achieved desirable performance [32–35]. In our model, it first utilizes a shrinking layer 
consisting of multiple convolutional layers to extract shallow features instead of a straightforward pure 
transformer. Then, the feature maps are passed to the double encoder block consisting of volume 
transformer and downsampling block. The double encoder block performs flat feature mapping and 
sequence-to-sequence position encoding on the incoming feature map. This encoding mode has both 
long implicit dependencies and small computational and spatial complexity. The volume transformer 
based on self-attention mechanism can adaptively adjust the receptive field according to the input 
feature. Fine extraction of higher-level features is continuously performed by stacking multiple 
hierarchical dual-encoding blocks and down-sampling blocks. Next, stacking multiple hierarchical 
upsampling blocks, local multi-channel attention blocks, and double decoder blocks progressively 
perform multiple pixel-level feature reconstruction. Finally, the global multi-scale attention block 
(GMSA) integrates features at different scale levels and outputs segmentation results. Through LCMA 
to eliminate the semantic gap between the left and right branch features at the channel level and GMSA 
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to adaptively enhance the effective information at different scale levels, it has certain pertinence to the 
blurred area and can accurately identify and segment target organs. 

 

Figure 1. The overall structure of proposed method. The middle blue connecting lines 
represent the long-distance transfer of the key and value vectors of the transformer in the 
encoder stage. 

2.3. The encoder stage 

The encoder stage includes shrinking layer, double encoder block, and down-sampling. Unlike 
UNetr [36], we use convolution and transformer jointly to extract features. Specifically, the shrinking 
layer is composed by stacking four layers of convolution, batch normalization, and activation. It not 
only helps the extraction of shallow features but also relieves the computational burden of subsequent 
multiple transformers by reducing the volume size. The double encoder block consists of two layers 
of volume transformer which is shown in Figure 2. Each layer is mainly built on the volumetric multi-
head self-attention (VMSA), followed by the Multi-Layer Perceptron (MLP) [15]. Specifically, given 
the input 𝑋 ∈ 𝑅஼ൈுൈௐൈ஽ with the spatial resolution of H × W × D and channels of C. It is first 
flattened and transposed into sequences with dimension of C ×N, where N =H × W × D. Then, it gets 
query (𝑄 ∈ 𝑅௡ൈேൈ௖), key (𝐾 ∈ 𝑅௡ൈேൈ௖) and value (𝑉 ∈ 𝑅௡ൈேൈ௖) through a linear layer, where n refers 
to the number of self-attention heads, c =C / n. After that, the following Eq (1) computes the attention 
function on query Q, key K, and value V. 
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Here, LB refers to the learnable relative position encoding. As shown on the right side of Figure 2, 
different from the general relative position encoding, learnable position coding vectors Lv, Lh and Ld 
are first obtained simultaneously in the vertical, horizontal, and depth directions. Then we extend them 
to the same volumetric shape, add them together, and finally reshape them to match the shape of Q 
vector. After that, multiple self-attention heads are concatenated to get the output, which can be 
expressed as following Eq (2): 

1 2( , , , )iVMSA Concat head head head                                                        (2) 

where i refers to the number of head. Unlike the general structure, we do not add the original input 
directly to the result of self-attention. Instead, we introduce a learnable weight w to the original input, 
which is initialized to 1 and automatically learns the optimal weight value. Therefore, for an efficient 
transformer layer, X represent input, Z represent output. Its computational procedure can be 
summarized as follows: 

( ( ))X VMSA Norm X wX                                                                 (3) 

( ( ))Z MLP Norm X X                                                                    (4) 

 

Figure 2. The structure of volumetric transformer in the encoder stage. 

2.4. The decoder stage 

The decoder part is shown on the right side of Figure 1 above, it mainly consists of upsampling, 
local multi-channel attention and double decoder blocks. Upsampling is achieved by 3D deconvolution. 
Inspired by various 2D attention mechanisms [37–39], our model also utilizes 3D attention 
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mechanisms. The local multi-channel attention structure is shown in Figure 3. It extracts effective 
information from the high-level features and low-level features propagated from the left end by 
stacking multi-channel average pooling, max pooling and multi-path dilated convolution (MPDC) 
blocks. The structure of MPDC is shown on the right of Figure 3. It mainly uses convolution blocks 
with different dilation rates of multipath to model feature information. The different dilation rates of 
each branch mean different receptive field sizes. By fusing features extracted from different receptive 
fields, more detailed global and local information can be obtained. Each convolution block of the 
module is stacked with 3-dimensional convolution with the kernel size of 1 or 3, group normalization 
and GELU activation functions. Specifically, the convolution blocks are first used to reduce the 
number of channels by one third of the original dimension, which can compress the information and 
reduce the computation. Then, the feature information is extracted simultaneously using three voids 
convolution blocks with cavity rates of 1, 2, and 4 respectively. Finally, they are splice together in 
channel dimension and depth-wise convolution is used to integrate the feature information. The 
information at different levels is then fused to help eliminate the semantic gap between the features at 
different levels at the encoding and decoding ends. Specifically, given the skip high level feature Xs 
and the low level feature Xl, the output of LMCA can be obtained by the following formulas: 

( ( )) ( ( ))s s sY M Ap X M Mp X                                                              (5) 

( ( )) ( ( ))l l lY M Ap X M Mp X                                                              (6) 

( ( , ))s l sLMCA Sigmoid C Y Y X                                                             (7) 

where M(.) refers to the output of the MPDC layer, Ap(.) and Mp(.) represent the output of the 
average pooling layer and the max pooling layer in turn, and C represents the concatenation at the 
channel level. 

 

Figure 3. The structure of the LMCA block. 
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Figure 4. The structure of the volumetric transformer decoder block. 

The double decoder block obtains high-level features by integrating the features of the lower 
branch, skip-connected features, skip-connected key, and value vectors. It mainly includes volumetric 
transformer decoder block. As shown in Figure 4, it consists of two parallel volumetric multi-head 
self-attention (VMSA) blocks and a multilayer perceptron layer. In the volumetric multi-head self-
attention block on the left, the key and value vectors are computed by the features passed from encoder, 
while on the right, the key and value vectors are directly obtained by skip connection. The high-level 
semantic features can be obtained by splicing the attention maps of the left and right VMSA and 
sending them to the feedforward neural network. The specific calculation process is similar to the 
transformer in the encoder stage described in detail in Section 2.3. 

Global scale attention integrates features at different scales. Its structure is shown in Figure 4, the 
low level two low-resolution features are first up-sampled to the same resolution as the high level 
feature, and stitched together in the channel dimension for channel-level and pixel-level information 
filtering. The weights at the channel level are implemented by max pooling and average pooling layers, 
while the pixel level is implemented by 3D convolutional layers. Through these two weights, the 
effective information can be adaptively enhanced and the invalid information can be suppressed. 
Specifically, given the high-resolution feature X1 and two low-resolution features X2, X3, the output of 
GMSA can be obtained by the following formulas: 

1 2 3( , ( ), ( ))X C X up X up X                                                                     (8) 

( ( ( )) ( ( )))Y Sigmoid MLP Ap X MLP Mp X X                                                    (9) 
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( ( ))GMSA Sigmoid Y Y                                                                    (10) 

where C represents the concatenation at the channel level, MLP(.) refers to the output of the multi-
layer perceptual layer, Ap(.) and Mp(.) represent the output of the average pooling layer and the max 
pooling layer in turn, ሺ. ሻ means two 3D convolutional layers. 

 

Figure 5. The structure of the GMSA block. 

3. Experiment 

3.1. Experiment details and evaluation metrics 

We conducted experiments on the PyTorch platform with NVIDIA RTX A6000 and did not use 
any pre-trained weights to train the proposed network. For Synapse multi-organ dataset, we set the 
batch size of 2 and epoch of 1200. For ACDC dataset, the batch size is 2 and epoch is 1500. The 
stochastic gradient descent (SGD) optimizer is employed to train our model, where the initial learning 
rate is set to 0.01, the momentum is 0.99 and the weight decay is 3e-5. The evaluation metrics include 
dice coefficient (Dice) and 95% Hausdorff distance (95HD), they are calculated as follows:   

2
( , )

X Y
Dice X Y

X Y





                               (11) 

 , max(min ( , ))
ss

s s y Yx X
HD X Y ED x y


¢                           (12) 

 , max( ( , ), ( , ))s s s s s sHD X Y HD X Y HD Y X ⅱ                     (13) 

where X and Y represent the prediction and ground truth, ED is the Euclidean distance operator, while 
Xs and Ys are the sets of surface points of the predicted and ground truth. 

3.2. Experiments results 

We evaluated the performance of the proposed method on multi-organ Synapse (CT) and cardiac 
ACDC (MR) datasets and compared with various state-of-the-art models including Unet [10], 
Transunet [20], Unetr [36], UTnet [40]. Table 1 reports the quantitative results on the Synapse dataset, 
where the evaluation metrics are Dice and 95HD. It can be seen that our method achieves the best 
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results on eight different organs and average dice similarity coefficient (DSC) of 88.91%, which shows 
our method significantly outperforms previous works. The results on the ACDC dataset are shown in 
Table 2, where the proposed method achieves the best results on the overall average results, RV and 
MYO, and is more than 3 percentage points higher than the other methods, while on LV only slightly 
lower than Transunet [20]. 

Table 1. Quantitative comparison of segmentation performance using different methods 
on Synapse dataset (Dice in %, 95HD in mm). The best performance is shown in bold. 

Methods Average 

Dice 

Average 

95HD 

Aorta Gallbladder Kidney 

(L) 

Kidney 

(R) 

Liver Pancreas Spleen Stomach

Unet [10] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58 

Transunet [20] 77.48 31.69 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62 

UTnet [40] 77.65 26.73 86.68 62.50 83.58 75.33 94.83 59.02 85.62 73.68 

Unetr [36] 79.56 22.97 89.99 60.56 85.66 84.80 94.46 59.25 87.81 73.99 

Ours 88.91 10.63 92.73 80.24 87.61 87.37 96.95 82.73 94.10 89.56 

Table 2. Quantitative comparison of segmentation performance using different methods 
on ACDC dataset (Dice Similarity Coefficient (DSC) in %). The best performance is 
shown in bold. 

Methods Average RV MYO LV 

Unet [10] 86.90 86.20 82.50 92.20 

Transunet [20] 89.71 88.86 84.54 95.73 

UTnet [40] 88.30 88.20 83.50 93.10 

Unetr [36] 88.61 85.29 86.52 94.02 

Ours 92.27 91.42 89.71 95.69 

3.3. Visualization of segmentation results 

We qualitatively compare the experimental results on Synapse data, and the visualization of its 
segmentation results is shown in Figure 6. It can be seen that the proposed method produces less class 
classification errors than other methods and is closer to the ground truth. Specifically, in the top row 
of picture in Figure 6, other methods misclassify the liver as the spleen or the right kidney misclassifies 
the left kidney. While in the middle row are errors for over- or under-segmentation of the stomach, it 
is clear that the proposed method is less prone to such errors. 

The visualization of segmentation results on the ACDC dataset is shown in Figure 7. It can be 
seen that for the part of the right ventricle represented by the red area in the figure, various other 
methods have over-segmented errors, dividing some non-right ventricular parts into the right ventricle. 
Our method is significantly less prone to this error. 
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Figure 6. The segmentation results visualization in the Synapse dataset. The top is the 
color labeling of each organ. From left to right, ground truth and results of various methods 
are plotted on the original image. In particular, the areas where the differences are evident 
are clearly circled with red wireframes. 

 

Figure 7. The segmentation results visualization in the ACDC dataset. The top is the color 
labeling of each organ. From left to right, ground truth and results of various methods are 
plotted on the original image. 
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4. Discussion 

We discuss the proposed method on the Synapse dataset, performing detailed ablation 
experiments on each proposed component in the network. First, we denote the most primitive model 
with only volume transformers for encoding and decoding as VT. On the basis of VT, LMCA block, 
GMSA block, and volume transformer decoding (VTD) block are gradually added. Their detailed 
structures are discussed in Section 2 and correspond to Figures 3–5. Finally, deep supervision (DS) is 
performed on the feature maps of the three branches fed into the GMSA block and the final network 
output. Both feature maps use dice loss and cross entropy loss, and all their coefficients are set to 1. 
The results of the ablation experiments are shown in Table 3. The left end is the model with different 
components, and the right end is the corresponding dice coefficient on the Synapse dataset. It can be 
seen that the result of using only the volume transformer for encoding and decoding is 87.13%. 
Immediately after adding LMCA, GMSA, and VTD, it increased steadily by 0.28, 0.27, and 0.54 
percentage points. Finally, the result reaches 88.51% by using deep supervision. These prove that each 
component can help guide accurate segmentation, especially VTD has a significant effect on the model. 

Table 3. Quantitative comparison of segmentation performance using different 
components on Synapse dataset. 

Method Average Dice (%) 

Ours (VT) 87.13 

Ours (VT + LMCA) 87.41 

Ours (VT + LMCA + GLMS) 87.74 

Ours (VT + LMCA + GLMS + VTD) 88.28 

Ours (VT + LMCA + GLMS + VTD + DS) 88.51 

Table 4. Quantitative comparison of segmentation performance using different 
components on Synapse dataset. 

Component Existence Dice (%) 95HD (mm) 

LRPE √ 88.91 10.63 

LRPE × 88.34 11.57 

MPDC √ 88.91 10.63 

MPDC × 88.45 10.98 

We also conduct separate ablation experiments on the Synapse dataset for general transformers 
and proposed volume transformers with the learnable relative position encoding (LRPE) module. The 
experimental results are shown in Table 4. The volumetric transformer with LRPE and weight values 
resulted in a 0.57 percentage point improvement in Dice and a 0.96 mm increase in 95HD, respectively. 
In addition, we also conduct ablation experiments on the proposed MPDC module. As shown in Table 4, 
removing it means replacing it with a regular MLP layer in the network, and it brings a significant 
improvement in both Dice and 95HD. 
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5. Conclusions 

In this paper, we propose a novel hierarchical volumetric transformer with comprehensive 
attention for accurate volumetric medical image segmentation. It first proposes a novel double 
transformer block to help extract features serially in the encoder and restore the feature map resolution 
to the original level in parallel in the decoder. Then the local multi-channel attention block is proposed 
to adaptively enhance the effective features of the encoder branch at the channel level, while 
suppressing the invalid features. Finally, the global multi-scale attention block with deep supervision 
is introduced to adaptively extract valid information at different scale levels while filtering out useless 
information. We demonstrate the remarkable effectiveness and robustness of the proposed method for 
medical image segmentation through extensive experiments. 
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