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Abstract: Hepatitis B virus (HBV) infection is a global public health problem and there are 257
million people living with chronic HBV infection throughout the world. In this paper, we investigate
the dynamics of a stochastic HBV transmission model with media coverage and saturated incidence
rate. Firstly, we prove the existence and uniqueness of positive solution for the stochastic model. Then
the condition on the extinction of HBV infection is obtained, which implies that media coverage helps
to control the disease spread and the noise intensities on the acute and chronic HBV infection play a key
role in disease eradication. Furthermore, we verify that the system has a unique stationary distribution
under certain conditions, and the disease will prevail from the biological perspective. Numerical
simulations are conducted to illustrate our theoretical results intuitively. As a case study, we fit our
model to the available hepatitis B data of mainland China from 2005 to 2021.
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1. Introduction

Hepatitis B, a viral liver infection caused by the hepatitis B virus (HBV), is a major threat to public
health and security around the whole world. HBV can cause both acute and chronic hepatitis. Acute
hepatitis B refers to the virus infection less than half a year and part of the patients can recover and
get lifetime immunity. The disease course of chronic hepatitis B can be quite long, and it can lead to
severe liver disease such as cirrhosis and liver cancer [1]. Globally 257 million people were living with
chronic hepatitis B infection, which resulted in estimated 887, 000 deaths in 2015. According to the
latest fact sheets released by the World Health Organization (WHO), 296 million people were living
with chronic hepatitis B infection in 2019, and there are 1.5 million new infections each year [2].
Worldwide, hepatitis B resulted in an estimated 820, 000 deaths in 2019, mostly from cirrhosis and
hepatocellular carcinoma (primary liver cancer) [2]. Hence, hepatitis B epidemic is still a major global
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health problem.

In China, hepatitis B is one of the top three infectious diseases reported by the Chinese Center
for Disease Control and Prevention (CDC) [3]. Based on the sero-epidemiological investigation of
hepatitis B in 1992, about 9.75% of the general population in China was chronic HBV carriers. That is,
around 130 million people of mainland China were carriers of HBV in the 1990s [1]. Then an effective
and national vaccination program has been conducted by the government, especially the hepatitis B
planned immunization for newborn babies and children. The sero-epidemiological survey in 2006
showed about 7.18% of the population was hepatitis B carriers, and the number of hepatitis B carriers
was reduced by 30 million [3]. Lately in 2014, an epidemiology survey of people younger than 29
reported that the HBV infection rates were 0.32% among the group of children aged one to four,
0.94% in the group aged 5 to 14, and 4.18% in the group aged 15 to 29, respectively. The government
of mainland China has achieved remarkable results in the prevention and treatment of hepatitis B.
Nevertheless, the epidemic situation remains to be severe and complicated. At present there are 80
million HBV carriers in mainland China, among whom 28 million carriers need immediate medical
treatment. During the past decade, the number of reported incidence of hepatitis B is around one
million each year (Figure 1(a)). The incidence rates of hepatitis B in mainland China from 2005 to
2021 are presented in Figure 1(b), and the incidence rates varied from 89.00 per 100, 000 in 2007 (the
highest during 2005–2021) to 64.29 per 100, 000 in 2020 (the lowest during 2005–2021).
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(a) The number of reported incidence of hepatitis B from
2010 to 2021
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(b) The incidence rates (1/100,000) of HBV in mainland
China during 2005–2021

Figure 1. The incidence of hepatitis B in mainland China, reported by China CDC [3].

The incidence of hepatitis B is different among regions, and it could be influenced by various factors
such as vaccination and economy. Figure 2 displays the hepatitis B incidence rates in 31 provinces and
municipalities of mainland China, and the data in 2007 and 2020 are chosen and displayed. The figure
shows that the incidence decreased for most provinces (22 of 31), especially for Ningxia, Gansu,
Henan, Xinjiang and Qinghai. This strongly reveals that the immunization program with hepatitis
B vaccine is successful in most provinces, and the achievement is remarkable for western areas in
China. However, it should be pointed out, in 2020, the incidence varied from 6.15 per 100, 000 in
Beijing to 150.99 per 100, 000 in Qinghai. There is still a gap between the impoverished west and the
prosperous east.
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(a) Incidence rates of hepatitis B in provinces (regions with low incidence)
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(b) Incidence rates of hepatitis B in provinces (regions with high incidence)

Figure 2. The hepatitis B incidence rates (1/100,000) of 31 provinces in mainland China in
2007 and 2020 [3]. The data are arranged in ascending order with respect to the incidence
rates of 2020.

In the last three decades, the research on hepatitis B has attracted more and more attention from
the perspective of epidemiology and biomathematics. For instance, in 1991, Anderson and May used
a simple mathematical model to study the impacts of carriers on the transmission of HBV [4].
Zhao et al. [5] studied the dynamics of HBV transmission and proposed vaccination strategy to
prevent the prevalence in the population. In 2010, Zou et al. [1] formulated a high dimensional
deterministic model to analyze the transmission dynamics of HBV infection in China. Then in 2015
Zou et al. [6] investigated the sexual transmission dynamics of HBV in China. Zhang et al. [7]
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proposed a four dimensional HBV epidemic model involving an exponential birth rate and vertical
transmission, and fitted the parameters to the public data in Xinjiang, China. Recently Din and Li [8]
analyzed a stochastic hepatitis B epidemic model with vaccination effect and showed a case study for
Pakistan. For more mathematical epidemic models on HBV infection, one can refer to [9–12] and the
references therein.

Besides the classical compartmental models for hepatitis B epidemic, a vibrant field of research on
the virus transmission dynamics has emerged and developed rapidly [12]. The modeling approaches
usually incorporate the interaction among intracellular viral dynamics, multicellular infection process,
and immune responses [13–16]. For instance, Wang et al. [13] formulated a multi-scale computational
model of SARS-CoV-2 infection using a combination of differential equations and stochastic
modeling, and revealed heterogeneity among COVID-19 patients. Rihan and Alsakaji [14] analyzed a
stochastic delay HBV infection model with cell-to-cell transmission and cytotoxic T lymphocytes
(CTLs) immune response. Recently Mohajerani et al. [17] proposed a multiscale modeling of HBV
capsid assembly pathways, by constructing Markov state models and employing transition
path theory.

When an infectious disease breaks out in one area, the center for disease control and prevention
will release authoritative information through the mass media at the first moment, including the
potential risk of the disease and prevention measures [18]. Media coverage helps to raise public health
awareness, increase vaccine rates and reduce the spread of infections. Recently, a number of epidemic
models have taken into account the influence of media coverage on the spread of infectious
disease [19–23]. Their study suggests that media coverage is critical in disease eradication [19, 20].
There are different forms of function to represent the effect of media coverage in epidemic models.
Let S and I denote the number of the population that are susceptible and infectious respectively, and
let β be the transmission rate. Cui et al. [19] used the exponential function βexp(−mI)S I to denote the
incidence rate with media coverage, where m > 0. In another work [20], the incidence rate
incorporating media coverage takes the form: (β − β2 f (I))S I, where β > β2 and the function f (I)
satisfies f (0) = 0, f ′(I) ≥ 0, limI→+∞ f (I) = 1. In the present paper, similar to the approach in the
previous literatures [21, 24, 25], we adopt the most common form f (I) = I

b+I , where b is a half
saturation constant.

Furthermore, the transmission of HBV is disturbed by various random factors in the environment,
such as population mobility and unpredictable exposure to infections. An increasing number of
researchers have formulated stochastic hepatitis B epidemic models considering environmental
noise [8, 10, 11]. In fact, environment disturbances have an important effect on the evolution of
infectious diseases [26–30], and Gaussian white noise is usually selected as an appropriate
representation of environmental fluctuations [31]. For instance, Wang et al. [28] and Meng et al. [29]
proved that a large disturbance of white noise can lead infectious diseases to extinction. A large
number of works also indicate that stochastic disturbance can suppress disease outbreak [18, 26].

In the present paper, motivated by the above discussion, we formulate and investigate a stochastic
hepatitis B model with media coverage and saturated incidence rate. We obtain a sufficient condition
for the extinction of the disease, and prove that the stochastic system has a unique stationary
distribution under certain conditions. Moreover, as a case study, we utilize our model for fitting the
available data of mainland China from 2005 to 2021. Based on our simulation result, the incidence
rate of hepatitis B in China will remain around 50–60 per 100, 000 in the long term.
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The paper is organized as follows. In Section 2, we present the model formulation. In Section 3,
the existence and uniqueness of positive solution is proved for the stochastic model. In Section 4, we
obtain a sufficient condition for the extinction of the disease. In Section 5, the sufficient condition on
the existence of stationary distribution is obtained, which indicates that all the compartments will be
persistent. Moreover, we provide an estimation of lower bound of the expectation for the number of
infected cases. In Section 6, numerical simulations are conducted to illustrate our theoretical results.
As a case study, we fit our model to the available HBV data of mainland China from 2005 to 2021.

2. Model formulation

Recently, Khan et al. [10] proposed a stochastic model for the transmission of HBV. In their work,
the population is divided into four compartments: susceptible humans S ; acute HBV infections I1;
chronical HBV infections I2; and recovered population R. They further assumed: (i) the contact of
susceptible individuals with acutely and chronically infected hepatitis B individuals primarily causes
acutely infected species; (ii) the transmission coefficient β is subject to random fluctuation, that is,
βi → βi + ηiḂi(t) for i = 1, 2, where Bi(t) is standard Brownian motion with Bi(0) = 0 and with the
noise intensity η2

i > 0. Then the stochastic hepatitis B epidemic model in [10] was presented as follows



dS (t) = [Λ −
2∑

i=1

βiS (t)Ii(t) − (µ0 + υ)S (t)]dt −
2∑

i=1

ηiS (t)Ii(t)dBi(t),

dI1(t) = [
2∑

i=1

βiS (t)Ii(t) − (µ0 + γ + γ1)I1(t)]dt +
2∑

i=1

ηiS (t)Ii(t)dBi(t),

dI2(t) = [γI1(t) − (µ0 + µ1 + γ2)I2(t)]dt,

dR(t) = [γ1I1(t) + γ2I2(t) + υS (t) − µ0R(t)]dt,

(2.1)

where Λ is the recruitment rate of the population, µ0 is the natural mortality rate, µ1 is the disease
mortality rate, and υ represents the vaccination rate of hepatitis B. Moreover, βi (i = 1, 2) represent the
transmission rate of hepatitis B, γ is the moving rate of acutely infected humans to chronic stage, and
γi (i = 1, 2) denote the recovery rates of acutely and chronically infected hepatitis B
individuals, respectively.

In the above model, the authors chose bilinear incidence rate, that is, βS I. As a matter of fact, the
transmission of infectious diseases is complicated, and nonlinear incidence rates have been wildly
utilized in epidemic model [26, 29]. In 1978, to describe the phenomenon that incidence is increasing
and the population is saturated with the infective, Capasso and Serio [32] proposed a saturated
incidence rate βS I

1+αI . Then such saturated incidence has been extensively used in epidemic models. For
instance, Khan and Zaman [33] and Liu et al. [11] have formulated hepatitis B epidemic models with
saturated incidence rate. In addition, as discussed in the introduction part, we also incorporate the
impact of media coverage by using the function f (I) = I

b+I . Consequently, based on the deterministic
part of model (2.1), we obtain the hepatitis B model with media coverage and saturated incidence rate
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as follows

dS (t)
dt
= Λ − (β11 −

β12I1(t)
b1 + I1(t)

)
S (t)I1(t)

1 + α1I1(t)
− (β21 −

β22I2(t)
b2 + I2(t)

)
S (t)I2(t)

1 + α2I2(t)
− (µ0 + υ)S (t),

dI1(t)
dt
= (β11 −

β12I1(t)
b1 + I1(t)

)
S (t)I1(t)

1 + α1I1(t)
+ (β21 −

β22I2(t)
b2 + I2(t)

)
S (t)I2(t)

1 + α2I2(t)
− (µ0 + γ + γ1)I1(t),

dI2(t)
dt
= γI1(t) − (µ0 + µ1 + γ2)I2(t),

dR(t)
dt
= γ1I1(t) + γ2I2(t) + υS (t) − µ0R(t),

(2.2)

where the forms S Ii
1+αiIi

(i = 1, 2) represent the saturated incidence rates of acute and chronical infections,
and the forms Ii

bi+Ii
(i = 1, 2) denote the media coverage functions. Moreover, βi1 (i = 1, 2) represent

the transmission rates for acute and chronical infections, and βi2 (i = 1, 2) denote the maximal reduced
contact rates by mass media alert for acute and chronical infections, respectively. Recall that βi1 > βi2

(i = 1, 2).
Furthermore, the disease transmission and biological populations are inevitably affected by

environment noises. There are different approaches to add random perturbations to biological
systems. The transmission rates βi (i = 1, 2) are assumed to be disturbed by Gaussian white noise in
model (2.1). In this article, following the approach in [8,11,34,35], we assume that the environmental
white noise is proportional to each state variable S (t), I1(t), I2(t) and R(t). Finally we extend
model (2.2) to the following stochastic model

dS (t) = [Λ − (β11 −
β12I1

b1 + I1
)

S I1

1 + α1I1
− (β21 −

β22I2

b2 + I2
)

S I2

1 + α2I2
− (µ0 + υ)S ]dt

+ σ1S dB1(t),

dI1(t) = [(β11 −
β12I1

b1 + I1
)

S I1

1 + α1I1
+ (β21 −

β22I2

b2 + I2
)

S I2

1 + α2I2
− (µ0 + γ + γ1)I1]dt

+ σ2I1dB2(t),
dI2(t) = [γI1 − (µ0 + µ1 + γ2)I2]dt + σ3I2dB3(t),
dR(t) = [γ1I1 + γ2I2 + υS − µ0R]dt + σ4RdB4(t),

(2.3)

where Bi(t) (i = 1, 2, 3, 4) are independent standard Brownian motions with Bi(0) = 0, and σ2
i > 0

(i = 1, 2, 3, 4) denote the intensities of white noise.
Throughout the paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null
sets), then Bi(t) (i = 1, 2, 3, 4) are defined on this complete probability space. We also introduce
the following notations: Rd

+ = {(x1, x2, ..., xd) ∈ Rd : xi > 0, i = 1, 2, ..., d}, a ∧ b = min{a, b},
a ∨ b = max{a, b}, ⟨ f ⟩ = 1

t

∫ t

0
f (r)dr.

3. Existence and uniqueness of the positive solution

Since S , I1, I2 and R in system (2.3) denote the number of individuals, they should be nonnegative
from the viewpoint of biology. We first introduce some basic definitions that will be used in the
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reminder of the article [36]. In general, let X(t) be a homogeneous Markov process in the d-dimension
Euclidean space Rd described by the stochastic differential equation

dX(t) = f (X)dt +
k∑

r=1

σr(X)dBr(t), (3.1)

then the diffusion matrix is defined as

A(x) = (ai j(x)), ai j(x) =
k∑

r=1

σi
r(x)σ j

r(x).

Furthermore, the differential operator L is defined by

LV(x) =
d∑

i=1

fi(x)
∂V(x)
∂xi

+
1
2

d∑
i, j=1

ai j(x)
∂2V(x)
∂xi∂x j

,

where V(x) is an arbitrary twice continuously differential real-value function.
In this section, we obtain the following theorem which guarantees the existence and uniqueness of

positive solution for system (2.3).

Theorem 3.1. For any initial value (S (0), I1(0), I2(0),R(0)) ∈ R4
+, there is a unique positive solution

(S (t), I1(t), I2(t),R(t)) for system (2.3) on t ≥ 0 and the solution will remain in R4
+ with probability one,

namely, (S (t), I1(t), I2(t),R(t)) ∈ R4
+ for all t ≥ 0 almost surely .

Proof. Since the coefficients of system (2.3) are locally Lipschitz continuous in R4
+, then for any initial

value (S (0), I1(0), I2(0),R(0)) ∈ R4
+, there exists a unique positive solution (S (t), I1(t), I2(t),R(t)) on

t ∈ [0, τe), where τe is the explosion time [37]. Thus, it suffices to verify S (t), I1(t), I2(t) and R(t) do not
explode to infinity in a finite time, that is, τe = ∞ a.s. Let k0 > 0 be sufficiently large such that S (0),
I1(0), I2(0) and R(0) all lie within the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : min{S (t), I1(t), I2(t),R(t)} ≤
1
k

or max{S (t), I1(t), I2(t),R(t)} ≥ k},

and throughout this paper we set inf ∅ = ∞ (as usual ∅ is the empty set). Clearly, τk is increasing as
k → ∞. Let τ∞ = lim

k→∞
τk, then τ∞ ≤ τe a.s. Thus, τ∞ = ∞ a.s. implies τe = ∞ a.s. Now we state that

τ∞ = ∞. If this assertion is false, then there is a pair of constants T > 0 and ϵ ∈ (0, 1) such that

P{τ∞ ≤ T } > ϵ.

Thus there exists an integer k1 ≥ k0 such that

P{τk ≤ T } ≥ ϵ for all k ≥ k1. (3.2)

Define a C2-function V : R4
+ → R+ by

V(S , I1, I2,R) = (S − a − a ln
S
a

) + (I1 − b − b ln
I1

b
) + (I2 − 1 − ln I2) + (R − 1 − ln R),
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where a and b are positive constants to be determined later. The nonnegativity of this function can be
obtained from

v − 1 − ln v ≥ 0 for any v > 0.

Apply Itô’s formula [37] to V , and we obtain

dV(S , I1, I2,R) =LV(S , I1, I2,R)dt + σ1(S − a)dB1(t) + σ2(I1 − b)dB2(t)
+ σ3(I2 − 1)dB3(t) + σ4(R − 1)dB4(t), (3.3)

where

LV = (1 −
a
S

)[Λ −
(β11 −

β12I1
b1+I1

)S I1

1 + α1I1
−

(β21 −
β22I2
b2+I2

)S I2

1 + α2I2
− (µ0 + υ)S ] +

aσ2
1

2

+ (1 −
b
I1

)[
(β11 −

β12I1
b1+I1

)S I1

1 + α1I1
+

(β21 −
β22I2
b2+I2

)S I2

1 + α2I2
− (µ0 + γ + γ1)I1] +

bσ2
2

2

+ (1 −
1
I2

)[γI1 − (µ0 + µ1 + γ2)I2] +
σ2

3

2
+ (1 −

1
R

)[γ1I1 + γ2I2 + υS − µ0R] +
σ2

4

2

= Λ − µ0S −
aΛ
S
+

a(β11 −
β12I1
b1+I1

)I1

1 + α1I1
+

a(β21 −
β22I2
b2+I2

)I2

1 + α2I2
+ a(µ0 + υ +

σ2
1

2
)

− µ0I1 −
b(β11 −

β12I1
b1+I1

)S

1 + α1I1
−

b(β21 −
β22I2
b2+I2

)S I2

I1(1 + α2I2)
+ b(µ0 + γ + γ1 +

σ2
2

2
)

− (µ0 + µ1)I2 −
γI1

I2
+ µ0 + µ1 + γ2 +

σ2
3

2
− µ0R −

γ1I1

R
−
γ2I2

R
−
υS
R
+ µ0 +

σ2
4

2

≤ Λ − µ0S − µ0I1 − (µ0 + µ1)I2 +
aβ11I1

1 + α1I1
+

aβ21I2

1 + α2I2
+ a(µ0 + υ +

σ2
1

2
)

+
bβ12I1S

(b1 + I1)(1 + α1I1)
+ b(µ0 + γ + γ1 +

σ2
2

2
) + 2µ0 + µ1 + γ2 +

σ2
3

2
+
σ2

4

2

≤ Λ − µ0S − µ0I1 − (µ0 + µ1)I2 + aβ11I1 + aβ21I2 + a(µ0 + υ +
σ2

1

2
)

+
bβ12S
b1α1

+ b(µ0 + γ + γ1 +
σ2

2

2
) + 2µ0 + µ1 + γ2 +

σ2
3

2
+
σ2

4

2

= Λ + (
bβ12

b1α1
− µ0)S + (aβ11 − µ0)I1 + (aβ21 − µ0 − µ1)I2 + a(µ0 + υ +

σ2
1

2
)

+ b(µ0 + γ + γ1 +
σ2

2

2
) + 2µ0 + µ1 + γ2 +

σ2
3

2
+
σ2

4

2
.

Choose a = min{ µ0
β11
, µ0+µ1

β21
} and b = µ0b1α1

β12
, then

aβ11 − µ0 ≤ 0, aβ21 − µ0 − µ1 ≤ 0 and
bβ12

b1α1
− µ0 = 0,

and

LV(S , I1, I2,R) ≤ Λ + a(µ0 + υ +
σ2

1

2
) + b(µ0 + γ + γ1 +

σ2
2

2
) + 2µ0 + µ1 + γ2 +

σ2
3

2
+
σ2

4

2
:= K,
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where K is a positive number. Thus, according to Eq (3.3), one can get

dV(S , I1, I2,R) ≤ Kdt + σ1(S − a)dB1(t) + σ2(I1 − b)dB2(t)
+ σ3(I2 − 1)dB3(t) + σ4(R − 1)dB4(t).

Let k ≥ k1 and integrate the above inequality from 0 to τk ∧ T , then we have∫ τk∧T

0
dV(S , I1, I2,R) ≤

∫ τk∧T

0
Kdt +

∫ τk∧T

0
σ1(S − a)dB1(t) +

∫ τk∧T

0
σ2(I1 − b)dB2(t)

+

∫ τk∧T

0
σ3(I2 − 1)dB3(t) +

∫ τk∧T

0
σ4(R − 1)dB4(t). (3.4)

Taking the expectation of both sides of Eq (3.4) yields

E(V(S (τk ∧ T ), I1(τk ∧ T ), I2(τk ∧ T ),R(τk ∧ T ))) ≤ V(S (0), I1(0), I2(0),R(0)) + KT. (3.5)

Set Ωk = {ω ∈ Ω : τk = τk(ω) ≤ T } for k ≥ k1, then we have P(Ωk) ≥ ϵ by (3.2). Note that
for every ω ∈ Ωk, at least one of S (τk, ω), I1(τk, ω), I2(τk, ω) and R(τk, ω) equals to either k or 1

k , So
V(S (τk, ω), I1(τk, ω), I2(τk, ω),R(τk, ω)) is no less than either

k − 1 − ln k or
1
k
− 1 − ln

1
k

or n − a − a ln
k
a

or
1
k
− a + a ln(ka) or k − b − b ln

k
b

or
1
k
− b + b ln(kb).

Thus, one can obtain

V(S (τk), I1(τk), I2(τk),R(τk)) ≥ (k − 1 − ln k) ∧ (
1
k
− 1 − ln

1
k

) ∧ (k − a − a ln
k
a

)

∧ (
1
k
− a + a ln(ka)) ∧ (k − b − b ln

k
b

) ∧ (
1
k
− b + b ln(kb)).

It then follows from Eq (3.5) that

∞ > V(S (0), I1(0), I2(0),R(0)) + KT ≥ E(IΩn(ω)V(S (τk), I1(τk), I2(τk),R(τk))
= P(Ωk)V(S (τk), I1(τk), I2(τk),R(τk)) ≥ ϵV(S (τk), I1(τk), I2(τk),R(τk))

≥ ϵ[(k − 1 − ln k) ∧ (
1
k
− 1 − ln

1
k

) ∧ (k − a − a ln
k
a

)

∧ (
1
k
− a + a ln(ka)) ∧ (k − b − b ln

k
b

) ∧ (
1
k
− b + b ln(kb))],

where IΩk(ω) is the indicator function ofΩk. Taking k → ∞ will induce∞ > V(S (0), I1(0), I2(0),R(0))+
KT ≥ +∞, and it is a contradiction. Hence, we must have τ∞ = ∞ a.s.

The conclusion is confirmed. □
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4. Extinction

In this section, we mainly discuss the extinction of hepatitis B under some conditions. To begin
with, we present the following theorem.

Theorem 4.1. If min{µ0, µ1} >
(σ2

1∨σ
2
2∨σ

2
3∨σ

2
4)

2 , then the solution (S (t), I2(t), S h(t), Ih(t)) of system (2.3)
has the following properties

lim
t→∞

S (t)
t
= 0, lim

t→∞

I1(t)
t
= 0, lim

t→∞

I2(t)
t
= 0, lim

t→∞

R(t)
t
= 0 a.s.

and

lim
t→∞

∫ t

0
S (s)dB1(s)

t
= 0, lim

t→∞

∫ t

0
I1(s)dB2(s)

t
= 0, lim

t→∞

∫ t

0
I2(s)dB3(s)

t
= 0, lim

t→∞

∫ t

0
R(s)dB4(s)

t
= 0 a.s.

The proof is similar to those in [38] and hence is omitted here.
It is easy to compute that the deterministic system (2.2) admits a disease-free equilibrium point

E0( Λ
µ0+υ

, 0, 0, Λυ
µ0(µ0+υ) ). For the stochastic system (2.3), we obtain a sufficient condition on the extinction

of disease in the following theorem.

Theorem 4.2. Let (S (t), I1(t), I2(t),R(t)) be a solution of system (2.3) with initial value (S (0),I1(0),I2(0),
R(0)) ∈ R4

+. If Rs
0 := 4Λ(2β11−β12+2β21−β22)

µ0(σ2
2∧σ

2
3) < 1 and min{µ0, µ1} >

(σ2
1∨σ

2
2∨σ

2
3∨σ

2
4)

2 hold, then the disease will
tend to extinction with probability one, and the solution of system (2.3) satisfies

lim
t→∞

I1(t) = 0, lim
t→∞

I2(t) = 0, lim sup
t→∞

⟨S (t) + R(t)⟩ =
Λ

µ0
.

Proof. Denote
Q(t) = I1(t) + I2(t),

and applying Itô’s formula to ln Q yields

d ln Q = {
1

I1 + I2
[
(β11 −

β12I1
b1+I1

)S I1

1 + α1I1
+

(β21 −
β22I2
b2+I2

)S I2

1 + α2I2
− (µ0 + γ1)I1 − (µ0 + µ1 + γ2)I2]

−
1

2(I1 + I2)2 (σ2
2I2

1 + σ
2
3I2

2)}dt +
σ2I1

I1 + I2
dB2(t) +

σ3I2

I1 + I2
dB3(t)

≤ {(2β11 − β12)S + (2β21 − β22)S −
σ2

2 ∧ σ
2
3

4(I2
1 + I2

2)
(I2

1 + I2
2)}dt +

σ2I1

I1 + I2
dB2(t) +

σ3I2

I1 + I2
dB3(t)

= {(2β11 − β12)S + (2β21 − β22)S −
σ2

2 ∧ σ
2
3

4
}dt +

σ2I1

I1 + I2
dB2(t) +

σ3I2

I1 + I2
dB3(t). (4.1)

Integrate inequality (4.1) from 0 to t and divide by t on both sides, then we get

ln Q(t) − ln Q(0)
t

≤ (2β11 − β12 + 2β21 − β22)⟨S ⟩ −
σ2

2 ∧ σ
2
3

4

+
σ2

t

∫ t

0

I1

I1 + I2
dB2(s) +

σ3

t

∫ t

0

I2

I1 + I2
dB3(s).

(4.2)
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According to system (2.3), we have

d(S + I1 + I2 + R) = [Λ − µ0(S + I1 + I2 + R) − µ1I2]dt + σ1S dB1(t)
+ σ2I1dB2(t) + σ3I2dB3(t) + σ4RdB4(t)
≤ [Λ − µ0(S + I1 + I2 + R)]dt + σ1S dB1(t)
+ σ2I1dB2(t) + σ3I2dB3(t) + σ4RdB4(t).

(4.3)

Integrate the above inequality form 0 to t and divide by t on both sides, then

S (t) + I1(t) + I2(t) + R(t)
t

−
S (0) + I1(0) + I2(0) + R(0)

t

≤ Λ −
µ0

t

∫ t

0
(S + I1 + I2 + R)ds +

σ1

∫ t

0
S (s)dB1(s)

t
+
σ2

∫ t

0
I1(s)dB2(s)

t
(4.4)

+
σ3

∫ t

0
I2(s)dB3(s)

t
+
σ4

∫ t

0
R(s)dB4(s)

t
.

Furthermore, it follows from Theorem 4.1 that

lim sup
t→∞

⟨S + I1 + I2 + R⟩ ≤
Λ

µ0
a.s. (4.5)

Therefore,

lim sup
t→∞

⟨S ⟩ ≤
Λ

µ0
a.s. (4.6)

Take the superior limit on both sides of inequality (4.2), then we have

lim sup
t→∞

ln Q(t)
t
≤ (2β11 − β12 + 2β21 − β22)

Λ

µ0
−
σ2

2 ∧ σ
2
3

4

=
σ2

2 ∧ σ
2
3

4
(Rs

0 − 1) < 0 a.s.

Consequently,
lim
t→∞

Q(t) = 0 a.s.,

which implies that
lim
t→∞

I1(t) = 0, lim
t→∞

I2(t) = 0 a.s. (4.7)

On the other hand, according to Eq (4.3), we have

S (t) + I1(t) + I2(t) + R(t)
t

−
S (0) + I1(0) + I2(0) + R(0)

t

= Λ −
µ0

t

∫ t

0
(S + I1 + I2 + R)ds −

µ1

t

∫ t

0
I2ds +

σ1

∫ t

0
S (s)dB1(s)

t
+
σ2

∫ t

0
I1(s)dB2(s)

t

+
σ3

∫ t

0
I2(s)dB3(s)

t
+
σ4

∫ t

0
R(s)dB4(s)

t
.

(4.8)
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According to Theorem 4.1 and Eq (4.7), we obtain

lim sup
t→∞

⟨S (t) + R(t)⟩ =
Λ

µ0
.

The conclusion is confirmed. □

Remark 1. According to the expression of Rs
0, it is clear that the value of Rs

0 decreases with the increase
of σ2,3, β12 and β22. Since βi2 (i = 1, 2) represent the maximal reduced contact rates by mass media,
the media coverage plays an important role in disease eradication.

5. Stationary distribution and persistence

In this section, we focus on the existence of stationary distribution for system (2.3). From the
biological point of view, stationary distribution can be interpreted as a weak stability of the system,
and the disease will be persistent in the time mean sense. We first present a fundamental lemma.

Lemma 5.1. ( [39] ) The Markov process X(t), the solution of system (3.1), has a unique ergodic
stationary distribution π(·), if there exists a bounded domain D ⊂ Rd with regular boundary Γ and

(C.1) there is a positive number M such that
∑d

i, j=1 ai j(x)ξiξ j ≥ M |ξ|2, x ∈ D, ξ ∈ Rd,
(C.2) there exists a nonnegative C2-function V such that LV is negative for any x ∈ Rd\D. Then

Px{ lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rd

f (x)π(dx)} = 1,

for all x ∈ Rd, where f (·) is a function integrable with respect to the measure π.

Define

R̂s
0 =

Λ

(µ0 + γ + γ1 +
σ2

2
2 )( 2β11−β12

α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )
[
β11 − β12

1 + α1Λ

µ0+γ+γ1

+
γ(β21 − β22)

µ0 + µ1 + γ2 +
σ2

3
2

].

Theorem 5.2. If R̂s
0 > 1, then there exists a unique stationary distribution for system (2.3) and it has

the ergodic property.

Proof. We will prove the theorem by verifying the conditions in Lemma 5.1. The diffusion matrix of
model (2.3) is given by

A =


σ2

1S 2 0 0 0
0 σ2

2I2
1 0 0

0 0 σ2
3I2

2 0
0 0 0 σ2

4R2

 .
Apparently, the matrix A is positive definite for any compact subset of R4

+, so the condition (C.1) in
Lemma 5.1 holds.
Define V1 = − ln S , then

LV1 = −
Λ

S
+ (β11 −

β12I1

b1 + I1
)

I1

1 + α1I1
+ (β21 −

β22I2

b2 + I2
)

I2

1 + α2I2
+ µ0 + υ +

σ2
1

2
.
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Define

V2 = − ln I1 + a1V1 +
a2α1

µ0 + γ + γ1
I1 + c1V1 − c2 ln I2 +

c3α2

µ0 + µ1 + γ2
I2 +

a2α1

µ0 + γ + γ1
(S + R),

where a1, a2, c1, c2 and c3 are positive constants to be chosen later. By the use of Itô’s formula, we
obtain

LV2 = −
(β11 −

β12I1
b1+I1

)S

1 + α1I1
−

(β21 −
β22I2
b2+I2

)S I2

(1 + α2I2)I1
+ (µ0 + γ + γ1 +

σ2
2

2
) −

a1Λ

S
+

a1(β11 −
β12I1
b1+I1

)I1

1 + α1I1

+
a1(β21 −

β22I2
b2+I2

)I2

1 + α2I2
+ a1(µ0 + υ +

σ2
1

2
) + a2 − a2(α1I1 + 1) −

c1Λ

S
+

c1(β11 −
β12I1
b1+I1

)I1

1 + α1I1

+
c1(β21 −

β22I2
b2+I2

)I2

1 + α2I2
+ c1(µ0 + υ +

σ2
1

2
) −

c2γI1

I2
+ c2(µ0 + µ1 + γ2 +

σ2
3

2
) +

c3α2γ

µ0 + µ1 + γ2
I1

− c3(α2I2 + 1) + c3 +
a2α1Λ

µ1 + γ + γ1
−

µ0a2α1

µ1 + γ + γ1
S +

a2α1γ1

µ0 + γ + γ1
I1 +

a2α1γ2

µ0 + γ + γ1
I2

−
a2α1µ0

µ0 + γ + γ1
R

≤ −
(β11 − β12)S

1 + α1I1
−

(β21 − β22)S I2

(1 + α2I2)I1
+ (µ0 + γ + γ1 +

σ2
2

2
) −

a1Λ

S
+ a1(µ0 + υ +

σ2
1

2
)

+
a1(2β11 − β12)

α1
+

a1(2β21 − β22)
α2

− a2(α1I1 + 1) + a2 −
c1Λ

S
+

c1(2β11 − β12)
α1

+
c1(2β21 − β22)

α2
+ c1(µ0 + υ +

σ2
1

2
) −

c2γI1

I2
+ c2(µ0 + µ1 + γ2 +

σ2
3

2
) +

c3α2γ

µ0 + µ1 + γ2
I1

− c3(α2I2 + 1) + c3 +
a2α1Λ

µ1 + γ + γ1
+

a2α1γ1

µ0 + γ + γ1
I1 +

a2α1γ2

µ0 + γ + γ1
I2

≤ −3 3
√

(β11 − β12)a1a2Λ + a1(
2β11 − β12

α1
+

2β21 − β22

α2
+ µ0 + υ +

σ2
1

2
) + a2(1 +

α1Λ

µ1 + γ + γ1
)

− 4 4
√

(β21 − β22)c1c2c3γΛ + c1(
2β11 − β12

α1
+

2β21 − β22

α2
+ µ0 + υ +

σ2
1

2
) + c2(µ0 + µ1 + γ2

+
σ2

3

2
) + c3 + (

c3α2γ

µ0 + µ1 + γ2
+

a2α1γ1

µ0 + γ + γ1
)I1 +

a2α1γ2

µ0 + γ + γ1
I2 + µ0 + γ + γ1 +

σ2
2

2
. (5.1)

Choose

a1 =
Λ(β11 − β12)

( 2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )2(1 + α1Λ

µ0+γ+γ1
)
,

a2 =
Λ(β11 − β12)

( 2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )(1 + α1Λ

µ0+γ+γ1
)2
,

c1 =
Λγ(β21 − β22)

( 2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )2(µ0 + µ1 + γ2 +
σ2

3
2 )
,
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c2 =
Λγ(β21 − β22)

( 2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )(µ0 + µ1 + γ2 +
σ2

3
2 )2

,

and

c3 =
Λγ(β21 − β22)

(2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )(µ0 + µ1 + γ2 +
σ2

3
2 )
.

It follows from inequality (5.1), that

LV2 ≤ −
Λ(β11 − β12)

( 2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )(1 + α1Λ

µ1+γ+γ1
)

−
Λγ(β21 − β22)

( 2β11−β12
α1
+

2β21−β22
α2
+ µ0 + υ +

σ2
1

2 )(µ0 + µ1 + γ2 +
σ2

3
2 )
+ µ0 + γ + γ1 +

σ2
2

2

+ (
c3α1γ

µ0 + µ1 + γ2
+

a2α1γ1

µ0 + γ + γ1
)I1 +

a2α1γ2

µ0 + γ + γ1
I2

= −(µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) + (
c3α2γ

µ0 + µ1 + γ2
+

a2α1γ1

µ0 + γ + γ1
)I1 +

a2α1γ2

µ0 + γ + γ1
I2. (5.2)

Define

V3 = V2 +
a2α1γ2

(µ0 + γ + γ1)(µ0 + µ1 + γ2)
I2,

then by inequality (5.2) one can derive

LV3 ≤ −(µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) + (
a2α1γ1

µ0 + γ + γ1
+

a2α1γ2γ

(µ0 + γ + γ1)(µ0 + µ1 + γ2)

+
c3α2γ

µ0 + µ1 + γ2
)I1 ≤ −λ + λ1I1, (5.3)

where

λ = (µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) > 0,

and

λ1 =
c3α2γ

µ0 + µ1 + γ2
+

a2α1γ1

µ0 + γ + γ1
+

a2α1γ2γ

(µ0 + γ + γ1)(µ0 + µ1 + γ2)
.

Define

V4 = − ln S , V5 = − ln I2, V6 = − ln R, V7 =
1

θ + 1
(S + I1 + I2 + R)θ+1,

where θ is a positive constant that is less than one. Thus, we obtain
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LV4 = −
Λ

S
+ (β11 −

β12I1

b1 + I1
)

I1

1 + α1I1
+ (β21 −

β22I2

b2 + I2
)

I2

1 + α2I2
+ (µ0 + υ +

σ2
1

2
)

≤ −
Λ

S
+ (2β11 − β12)I1 + (2β21 − β22)I2 + (µ0 + υ +

σ2
1

2
), (5.4)

LV5 = −
1
I2

[γI1 − (µ0 + µ1 + γ2)I2] +
σ2

3

2
= −

γI1

I2
+ µ0 + µ1 + γ2 +

σ2
3

2
, (5.5)

LV6 = −
1
R

[γ1I1 + γ2I2 + υS − µ0R] +
σ2

4

2
= −

γ1I1

R
−
γ2I2

R
−
υS
R
+ µ0 +

σ2
4

2
, (5.6)

and

LV7 = (S + I1 + I2 + R)θ[Λ − µ0(S + I1 + I2 + R) − µ1I2]

+
θ

2
(S + I1 + I2 + R)θ−1(σ2

1S 2 + σ2
2I2

1 + σ
2
3I2

2 + σ
2
4R2)

≤ (S + I1 + I2 + R)θ[Λ − µ0(S + I1 + I2 + R)] +
θ

2
(S + I1 + I2 + R)θ+1(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)

= Λ(S + I1 + I2 + R)θ − µ0(S + I1 + I2 + R)θ+1 +
θ

2
(S + I1 + I2 + R)θ+1(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)

= Λ(S + I1 + I2 + R)θ − [µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S + I1 + I2 + R)θ+1

≤ A −
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S + I1 + I2 + R)θ+1

≤ A −
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1), (5.7)

where

A = sup
(S ,I1,I2,R)∈R4

+

{Λ(S + I1 + I2 + R)θ −
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1)}

< ∞.

Define a C2-function Ṽ : R4
+ → R by

Ṽ = MV3 + V4 + V5 + V6 + V7.

Choose a positive constant M such that

−Mλ + E ≤ −2, (5.8)

where

E = sup
(S ,I1I2,R)∈R4

+

{−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1)

+ (2β21 − β22)I2 + A + 3µ0 + υ + µ1 + γ2 +
σ2

1

2
+
σ2

3

2
+
σ2

4

2
}.
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It is easy to check that
lim inf

n→ ∞
(S , I1 , I2 ,R) ∈ R4

+ \ Dn

Ṽ(S , I1, I2,R) = ∞,

here, Dn = ( 1
n , n)× (1

n , n)× ( 1
n , n)× ( 1

n , n). Thus one can see that there exists at least one minimum point
(S ∗, I∗1, I

∗
2,R

∗) for the function Ṽ(S , I1, I2,R). Define a nonnegative C2-function V : R4
+ → R+ by

V(S (t), I1(t), I2(t),R(t)) = Ṽ(S (t), I1(t), I2(t),R(t)) − Ṽ(S ∗, I∗1, I
∗
2,R

∗).

According to inequalities (5.3)–(5.7), we obtain

LV ≤ −Mλ + Mλ1I1 −
Λ

S
+ (2β11 − β12)I1 + (2β21 − β22)I2 −

γI1

I2
−
γ1I1

R
−
γ2I2

R
−
υS
R
+ A + 3µ0

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1) + υ + µ1 + γ2 +

σ2
1

2
+
σ2

3

2
+
σ2

4

2
.

Now we denote a bounded closed set as follows

Dϵ = {(S , I1, I2,R) ∈ R4
+ : ϵ < S <

1
ϵ
, ϵ < I1 <

1
ϵ
, ϵ < I2 <

1
ϵ
, ϵ < R <

1
ϵ
},

where ϵ > 0, and we choose ϵ sufficiently small such that the following conditions hold in the setR4
+\Dϵ

−
min{Λ, υ, γ, γ1, γ2}

ϵ
+ D ≤ −1, (5.9)

−Mλ + Mλ1ϵ + (2β11 − β12)ϵ + E ≤ −1, (5.10)

−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 + F ≤ −1, (5.11)

−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 +G ≤ −1, (5.12)

−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 + H ≤ −1, (5.13)

−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 + J ≤ −1, (5.14)

where D, F,G,H, J are all positive constants which will be determined later. Hence, R4
+ \ Dϵ can be

divided into the following ten domains,

D1
ϵ = {(S , I1, I2,R) ∈ R4

+ : 0 ≤ S ≤ ϵ}, D2
ϵ = {(S , I1, I2,R) ∈ R4

+ : 0 ≤ R ≤ ϵ, S > ϵ},

D3
ϵ = {(S , I1, I2,R) ∈ R4

+ : 0 ≤ I1 ≤ ϵ}, D4
ϵ = {(S , I1, I2,R) ∈ R4

+ : 0 ≤ R ≤ ϵ, I1 > ϵ},

D5
ϵ = {(S , I1, I2,R) ∈ R4

+ : 0 ≤ I2 ≤ ϵ, I1 > ϵ}, D6
ϵ = {(S , I1, I2,R) ∈ R4

+ : 0 ≤ R ≤ ϵ, I2 > ϵ},
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D7
ϵ = {(S , I1, I2,R) ∈ R4

+ : S ≥
1
ϵ
}, D8

ϵ = {(S , I1, I2,R) ∈ R4
+ : I1 ≥

1
ϵ
},

D9
ϵ = {(S , I1, I2,R) ∈ R4

+ : I2 ≥
1
ϵ
}, D10

ϵ = {(S , I1, I2,R) ∈ R4
+ : R ≥

1
ϵ
}.

Obviously, R4
+ \ Dϵ = D1

ϵ

⋃
D2
ϵ

⋃
D3
ϵ

⋃
D4
ϵ

⋃
D5
ϵ

⋃
D6
ϵ

⋃
D7
ϵ

⋃
D8
ϵ

⋃
D9
ϵ

⋃
D10
ϵ . Our next task is to

verify LV ≤ −1 on R4
+ \ Dϵ .

Case 1. If (S , I1, I2,R) ∈ D1
ϵ , then

LV ≤ −
Λ

S
+ Mλ1I1 + (2β11 − β12)I1 + (2β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +

σ2
1

2

+
σ2

3

2
+
σ2

4

2
−

1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1)

≤ −
Λ

S
+ D ≤ −

Λ

ϵ
+ D, (5.15)

where

D = sup
(S ,I1,I2,R)∈R4

+

{−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1)

+ Mλ1I1 + (2β11 − β12)I1 + (2β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2
}.

According to inequality (5.9), we obtain that LV ≤ −1 for all (S , I1, I2,R) ∈ D1
ϵ .

Case 2. If (S , I1, I2,R) ∈ D2
ϵ , then

LV ≤ −
υS
R
+ Mλ1I1 + (2β11 − β12)I1 + (β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +

σ2
1

2
+
σ2

3

2
+
σ2

4

2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1)

≤ −
υS
R
+ D ≤ −

1
ϵ
+ D, (5.16)

It then follows from inequality (5.9) that LV ≤ −1 for all (S , I1, I2,R) ∈ D2
ϵ .

Case 3. If (S , I1, I2,R) ∈ D3
ϵ , then

LV ≤ −Mλ + Mλ1I1 + (2β11 − β12)I1 + (β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 + Rθ+1)

≤ −Mλ + Mλ1I1 + (2β11 − β12)I1 + E ≤ −Mλ + Mλ1ε + (2β11 − β12)ϵ + E. (5.17)

Combining inequalities (5.8) and (5.10) we derive that LV ≤ −1 for all (S , I1, I2,R) ∈ D3
ϵ .

Case 4. If (S , I1, I2,R) ∈ D4
ϵ , then

LV ≤ −
γ1I1

R
+ D ≤ −

γ1

ϵ
+ D. (5.18)
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By inequality (5.9), one can derive that LV ≤ −1 for all (S , I1, I2,R) ∈ D4
ϵ .

Case 5. If (S , I1, I2,R) ∈ D5
ϵ , then

LV ≤ −
γI1

I2
+ D ≤ −

γ

ϵ
+ D. (5.19)

Combining with inequality (5.9), we obtain that LV ≤ −1 for all (S , I1, I2,R) ∈ D5
ϵ .

Case 6. If (S , I1, I2,R) ∈ D6
ϵ , we have

LV ≤ −
γ2I2

R
+ D ≤ −

γ2

ϵ
+ D. (5.20)

According to inequality (5.9), we can deduce that LV ≤ −1 for all (S , I1, I2,R) ∈ D6
ϵ .

Case 7. If (S , I1, I2,R) ∈ D7
ϵ , we have

LV ≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]S θ+1 −

1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]S θ+1

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](Iθ+1

1 + Iθ+1
2 + Rθ+1) + Mλ1I1 + (2β11 − β12)I1

+ (2β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]S θ+1 + F ≤ −

1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
1 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 + F, (5.21)

where

F = sup
(S ,I1,I2,R)∈R4

+

{−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]S θ+1 + Mλ1I1 + (2β21 − β22)I2 + (2β21 − β22)I2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](Iθ+1

1 + Iθ+1
2 + Rθ+1) + 3µ0 + µ1 + γ2 + υ + A +

σ2
1

2
+
σ2

3

2
+
σ2

4

2
}.

Combining with inequality (5.11), we can derive that LV ≤ −1 for all (S , I1, I2,R) ∈ D7
ϵ .

Case 8. If (S , I1, I2,R) ∈ D8
ϵ , then

LV ≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

1 −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

1

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

2 + Rθ+1) + Mλ1I1 + (2β11 − β12)I1

+ (2β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

1 +G ≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 +G, (5.22)

where

G = sup
(S ,I1,I2,R)∈R4

+

{−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

1 + Mλ1I1 + (2β11 − β12)I1 + (2β21 − β22)I2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

2 + Rθ+1) + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2
}.
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By virtue of inequality (5.12), we obtain that LV ≤ −1 for all (S , I1, I2,R) ∈ D8
ϵ .

Case 9. If (S , I1, I2,R) ∈ D9
ϵ , then

LV ≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

2 −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Rθ+1) + Mλ1I1

+ (2β11 − β12)I1 + (2β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +
σ2

3

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

2 + H ≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 + H, (5.23)

where

H = sup
(S ,I1,I2,R)∈R4

+

{−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Iθ+1

2 + Mλ1I1 + (2β11 − β12)I1 + (2β21 − β22)I2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Rθ+1) + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2
}.

By virtue of inequality (5.13), we can conclude that LV ≤ −1 for all (S , I1, I2,R) ∈ D9
ϵ .

Case 10. If (S , I1, I2,R) ∈ D10
ϵ , then

LV ≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Rθ+1 −

1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Rθ+1

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 ) + Mλ1I1

+ (2β11 − β12)I1 + (2β21 − β22)I2 + 3µ0 + µ1 + γ2 + υ + A +
σ2

1

2
+
σ2

3

2
+
σ2

4

2

≤ −
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Rθ+1 + J ≤ −

1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1 + J, (5.24)

where

J = sup
(S ,I1,I2,R)∈R4

+

{−
1
4

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]Rθ+1 + Mλ1I1 + (2β11 − β12)I1 + (2β21 − β22)I2

−
1
2

[µ0 −
θ

2
(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Iθ+1

1 + Iθ+1
2 ) + 3µ0 + µ1 + γ2 + υ + A +

σ2
1

2
+
σ2

3

2
+
σ2

4

2
}.

Together with inequality (5.14), one can obtain that LV ≤ −1 for all (S , I1, I2,R) ∈ D10
ϵ .

Combining inequalities (5.15)–(5.24), we finally get a sufficiently small ϵ such that LV ≤ −1 for all
(S , I1, I2,R) ∈ R4

+\Dϵ . Therefore the condition (C.2) of Lemma 5.1 holds. According to Lemma 5.1,
system (2.3) has a unique stationary distribution and it has the ergodic property.

The conclusion is confirmed. □

Consequently, we provide an estimation of lower bound for the expectation of infective population
in the following theorem.
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Theorem 5.3. Let (S (t), I1(t), I2(t),R(t)) be a solution of system (2.3) for any initial value (S (0),
I1(0),I2(0),R(0)) ∈ R4

+. If R̂s
0 > 1, then

lim inf
t→∞

⟨I1 + I2⟩ ≥
(µ0 + γ + γ1 +

σ2
2

2 )(R̂s
0 − 1)

λ2
a.s., (5.25)

where λ2 = max{ c3α2γ

µ0+µ1+γ2
+

a2α1γ

µ0+γ+γ1
, a2α1γ2
µ0+γ+γ1

}.

Proof. Recall the function V2 in the proof of Theorem 5.2

V2 = − ln I1 + a1V1 +
a2α1

µ0 + γ + γ1
I1 + c1V1 − c2 ln I2 +

c3α2

µ0 + µ1 + γ2
I2 +

a2α1

µ0 + γ + γ1
(S + R).

Apply Itô’s formula to V2, then by inequality (5.2) we have

dV2 = LV2dt − (a1 + c1)σ1dB1(t) +
a2α1σ1

µ0 + γ + γ1
S dB1(t) − σ2dB2(t) +

a2α1σ2

µ0 + γ + γ1
I1dB2(t)

− c2σ3dB3(t) +
c3α2σ3

µ0 + µ1 + γ2
I2dB3(t) +

a2α1σ4

µ0 + γ + γ1
RdB4(t)

≤ [−(µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) + (
c3α2γ

µ0 + µ1 + γ2
+

a2α1γ1

µ0 + γ + γ1
)I1 +

a2α1γ2I2

µ0 + γ + γ1
]dt

− (a1 + c1)σ1dB1(t) +
a2α1σ1S
µ0 + γ + γ1

dB1(t) − σ2dB2(t) +
a2α1σ2

µ0 + γ + γ1
I1dB2(t) − c2σ3dB3(t)

+
c3α2σ3

µ0 + µ1 + γ2
I2dB3(t) +

a2α1σ4

µ0 + γ + γ1
RdB4(t). (5.26)

Integrate the inequality (5.26) from 0 to t and divide by t on both sides, then we obtain

V2(S (t), I1(t), I2(t),R(t)) − V2(S (0), I1(0), I2(0),R(0))
t

≤ −(µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) + (
c3α2γ

µ0 + µ1 + γ2
+

a2α1γ1

µ0 + γ + γ1
)⟨I1⟩ +

a2α1γ2

µ0 + γ + γ1
⟨I2⟩ −

ψ(t)
t
, (5.27)

where

ψ(t) =
∫ t

0
(a1 + c1)σ1dB1(s) −

∫ t

0

a2α1σ1

µ0 + γ + γ1
S dB1(s) +

∫ t

0
σ2dB2(s) −

∫ t

0

a2α1σ2

µ0 + γ + γ1
I1dB2(s)

+

∫ t

0
c2σ3dB3(s) −

∫ t

0

c3α2σ3

µ0 + µ1 + γ2
I2dB3(s) −

∫ t

0

a2α1σ4

µ0 + γ + γ1
RdB4(s).

According to the strong law of large numbers [37] and Theorem 4.1, it then follows that

lim
t→∞

ψ(t)
t
= 0 a.s.

Therefore,
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lim inf
t→∞

λ2⟨I1 + I2⟩ ≥ (µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) + lim
t→∞

ψ(t)
t

+ lim inf
t→∞

V2(S (t), I1(t), I2(t),R(t)) − V2(S (0), I1(0), I2(0),R(0))
t

= (µ0 + γ + γ1 +
σ2

2

2
)(R̂s

0 − 1) > 0 a.s.,

namely, lim inf
t→∞

⟨I1 + I2⟩ ≥
(µ0+γ+γ1+

σ2
2

2 )(R̂s
0−1)

λ2
a.s. □

Remark 2. From the viewpoint of biology, the existence of stationary distribution indicates that all the
compartments will be persistent in the time mean sense. As is discussed in [40], the lower bound for
the expectation of infective populations in Theorem 5.3 clearly shows that the disease will prevail if
R̂s

0 > 1.

6. Numerical simulations and a case study of China

In this section, we provide some numerical simulations for system (2.3) to illustrate the feasibility
of our theoretical results. Applying Milstein’s higher order method [41] to system (2.3), we obtain the
corresponding discretization equation as follows

S k+1 = S k + [Λ − (β11 − β12
I1,k

b1 + I1,k
)

S kI1,k

1 + α1I1,k
− (β21 − β22

I2,k

b2 + I2,k
)

S kI2,k

1 + α2I2,k

− (µ0 + υ)S k]∆t + σ1S k

√
∆tξk +

σ2
1

2
S k(ξ2

k − 1)∆t,

I1,k+1 = I1,k + [(β11 − β12
I1,k

b1 + I1,k
)

S kI1,k

1 + α1I1,k
+ (β21 − β22

I2,k

b2 + I2,k
)

S kI2,k

1 + α2I2,k

− (µ0 + γ + γ1)I1,k]∆t + σ2I1,k

√
∆tηk +

σ2
2

2
I1,k(η2

k − 1)∆t,

I2,k+1 = I2,k + [γI1,k − (µ0 + µ1 + γ2)I2,k]∆t + σ3I2,k

√
∆tζk +

σ2
3

2
I2,k(ζ2

k − 1)∆t,

Rk+1 = Rk + [γ1I1,k + γ2I2,k + υS k − µ0Rk]∆t + σ4Rk

√
∆tςk +

σ2
4

2
Rk(ς2

k − 1)∆t,

(6.1)

where ∆t > 0, and ξk, ηk, ζk, ςk (k = 1, 2, ...n) are independent Gaussian random variables N(0, 1), and
σ2

i > 0 (i = 1, 2, 3, 4) are the intensities of white noise.
First of all, take the data of hepatitis B of mainland China as a case study. We have provided the

reported incidence rates (1/100,000) of HBV in mainland China during 2005–2021 in Figure 1(b).
Besides, the incidence rates of hepatitis B in 31 provinces are displayed in Figure 2. By comparing
Figure 1(c) in [1] and Figure 2 (the data of 2007), one can see that the reported incidence rates of HBV
were taken as acute incidence rates therein. It is reasonable because the clinical difference between
acute and chronic HBV infections depends on the length of infection, and acute hepatitis B usually
refers to the virus infection less than six months. Therefore, inspired by the method in [1], we simulate
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the reported incidence rates in Figure 1(b) by computing the percentage of acute infection. In the
process of model fitting, we first fix the initial values such that the percentage of acute infection is close
to the incidence rate 75/100,000. Then similar to the approaches in Table 3 of [8], we fix a relatively
large value of the parameterΛ. The rest of the parameters are estimated and selected partially according
to the values in Table 1 of [1]. More specifically, we choose the initial value (S (0), I1(0), I2(0),R(0)) as
(5000, 0.4, 20, 10), and the parameters in model (2.3) are taken as

Λ = 250, β11 = 0.0168, β12 = 0.009, b1 = 0.5, α1 = 10, β21 = 0.0042, β22 = 0.002, b2 = 0.02, α2 = 10,
µ0 = 0.6, υ = 0.4, γ = 0.2, γ1 = 0.3, γ2 = 0.2, µ1 = 0.65, σ1 = 0.08, σ2 = 0.05, σ3 = 0.05, σ4 = 0.02.

Then we compute the percentage of acute HBV infection by Eq (6.1), and compare it with the incidence
rates of HBV in mainland China during 2005–2021. The simulation is displayed in Figure 3(a), which
shows that stochastic model fits the data well by selecting appropriate parameter values. The long-term
solution is given in Figure 3(b), and one can see that the incidence rate of HBV in China will remain
around 50–60 per 100, 000 in the long term.
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(b) Long time behavior of simulated incidence rates

Figure 3. The comparison between the reported hepatitis B incidence rates and the
simulation of our model. The dashed curve is the data of incidence rates (1/100,000) of HBV
in mainland China during 2005–2021 (see Figure 1(b)), and the solid curve is the percentage
of acute HBV infection simulated by model (2.3).

More simulations are conducted to illustrate our theoretical results. Firstly, let the initial value
(S (0), I1(0), I2(0),R(0)) = (0.9, 0.4, 0.2, 0.1), and we choose the parameter values in the stochastic
model (2.3) as follows

Λ = 0.1, β11 = 0.25, β12 = 0.1, b1 = 0.5, α1 = 5, β21 = 0.2, β22 = 0.1, b2 = 0.02, α2 = 5,
µ0 = 0.5, υ = 0.4, γ = 0.1, γ1 = 0.4, γ2 = 0.3, µ1 = 0.45, σ1 = 0.2, σ2 = 0.8, σ3 = 0.9, σ4 = 0.1.

It is easy to compute that

Rs
0 = 0.875 < 1, min{µ0, µ1} >

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)

2
.

Thus, the condition of Theorem 4.2 is satisfied and the disease will tend to extinction. The numerical
simulation is depicted in Figure 4.
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Figure 4. The sample path for the solution S (t), I1(t), I2(t),R(t) of the stochastic system
(2.3), where the disease will go to extinction. The initial value (S (0), I1(0), I2(0),R(0)) =
(0.9, 0.4, 0.2, 0.1), and the parameters are taken as Λ = 0.1, β11 = 0.25, β12 = 0.1, b1 = 0.5,
α1 = 5, β21 = 0.2, β22 = 0.1, b2 = 0.02, α2 = 5, µ0 = 0.5, υ = 0.4, γ = 0.1, γ1 = 0.4, γ2 =

0.3, µ1 = 0.45, σ1 = 0.2, σ2 = 0.8, σ3 = 0.9, σ4 = 0.1.

Then we fix the same initial value (S (0), I1(0), I2(0),R(0)) = (0.9, 0.4, 0.2, 0.1), and the parameter
values in the stochastic model (2.3) are taken as

Λ = 9, β11 = 0.8, β12 = 0.01, b1 = 0.5, α1 = 10, β21 = 0.8, β22 = 0.02, b2 = 0.02, α2 = 10, µ0 = 0.6,
υ = 0.4, γ = 0.4, γ1 = 0.3, γ2 = 0.2, µ1 = 0.65, σ1 = 0.3, σ2 = 0.4, σ3 = 0.3, σ4 = 0.5.

One can compute that

R̂s
0 = 1.3353 > 1.

Therefore, the condition of Theorem 5.2 is satisfied, and system (2.3) has a stationary distribution. The
numerical simulation is shown in Figures 5 and 6, which indicates that the system will be persistent in
mean and the disease will prevail.
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Figure 5. The sample path for the solution S (t), I1(t), I2(t),R(t) of the stochastic system
(2.3), where all the compartments will be persistent in mean and the disease will prevail.
The initial value (S (0), I1(0), I2(0),R(0)) = (0.9, 0.4, 0.2, 0.1), and the parameters are taken
as Λ = 9, β11 = 0.8, β12 = 0.01, b1 = 0.5, α1 = 10, β21 = 0.8, β22 = 0.02, b2 = 0.02, α2 =

10, µ0 = 0.6, υ = 0.4, γ = 0.4, γ1 = 0.3, γ2 = 0.2, µ1 = 0.65, σ1 = 0.3, σ2 = 0.4, σ3 = 0.3,
σ4 = 0.5.
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Figure 6. The density function diagrams of the solution S (t), I1(t), I2(t),R(t) of the
stochastic system (2.3), with the same parameter values given in Figure 5.
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7. Conclusions and discussion

Since most realistic systems are disturbed by various stochastic factors, in this paper, we have
investigated a stochastic HBV transmission model with media coverage and saturated incidence rate.
To begin with, we prove the existence and uniqueness of global positive solution of system (2.3).
Then we prove that hepatitis B will tend to extinction if Rs

0 < 1 and min{µ0, µ1} >
(σ2

1∨σ
2
2∨σ

2
3∨σ

2
4)

2 ,
while system (2.3) has a unique ergodic stationary distribution if R̂s

0 > 1. According to the expression
of Rs

0 and R̂s
0, the noise intensities and mass media alert are crucial factors in the disease control.

We also obtain an estimation of lower bound of the expectation for the number of infectious cases.
Moreover, as a case study, we fit our stochastic model to the data of reported incidence rates of HBV in
mainland China, and it is anticipated that the incidence rate of HBV in China will remain around 50–60
per 100, 000 for a long time to come.

It should be mentioned that the present HBV transmission model is formulated from a standard
SIR epidemic model. This modeling method often divides the total population into several
compartments under the assumption that individuals are homogeneous [42]. In other words, our
modeling approach is conducted on the single spatial scale, without the consideration of human
behavior, contact heterogeneity, and population spatial or social structure [12]. In recent years,
multiscale models have been introduced to improve the modeling of disease transmission [43].
Guo et al. [42] developed a heterogeneous graph modeling approach to describe the dynamic process
of influenza virus transmission. Since the outbreak of coronavirus disease 2019 (COVID-19)
throughout the world, the modeling of SARS-CoV-2 dynamics has further motivated the trends on
multiscale modeling [44, 45], from the small scale of the virus itself and cells to the large scale of
individuals and further up to the collective behavior of populations [46]. For instance,
Hayden et al. [47] extended a classical SIR model to a SIRC model by considering the coronavirus
concentration in the air (denoted by C). The researchers proposed multi-scale epidemic models by
linking the disease transmission to information dissemination dynamics [48] and to the behavior
change dynamics [49]. Such multiscale modeling approaches provide important insights into HBV
transmission dynamics.

Some interesting research topics deserve further consideration. In stochastic epidemic modeling,
Gaussian white noise has been usually adopted to represent environment disturbances and to reflect the
fluctuations of disease transmission. Meanwhile different types of noise has also been investigated in
the literatures [50–54]. For instance, Lévy noise is introduced to represent some abrupt environmental
shocks and disasters [53], and telephone noise (also known as telegraph noise or burst noise) can
be regarded as instantaneous transitions between different regimes [54]. We hope to formulate more
realistic models considering different types of noise in future research.
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