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Abstract: Investigating the effect of changes in neuronal connectivity on the brain’s behavior is of 
interest in neuroscience studies. Complex network theory is one of the most capable tools to study the 
effects of these changes on collective brain behavior. By using complex networks, the neural structure, 
function, and dynamics can be analyzed. In this context, various frameworks can be used to mimic 
neural networks, among which multi-layer networks are a proper one. Compared to single-layer 
models, multi-layer networks can provide a more realistic model of the brain due to their high 
complexity and dimensionality. This paper examines the effect of changes in asymmetry coupling on 
the behaviors of a multi-layer neuronal network. To this aim, a two-layer network is considered as a 
minimum model of left and right cerebral hemispheres communicated with the corpus callosum. The 
chaotic model of Hindmarsh-Rose is taken as the dynamics of the nodes. Only two neurons of each 
layer connect two layers of the network. In this model, it is assumed that the layers have different 
coupling strengths, so the effect of each coupling change on network behavior can be analyzed. As a 
result, the projection of the nodes is plotted for several coupling strengths to investigate how the 
asymmetry coupling influences the network behaviors. It is observed that although no coexisting 
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attractor is present in the Hindmarsh-Rose model, an asymmetry in couplings causes the emergence of 
different attractors. The bifurcation diagrams of one node of each layer are presented to show the 
variation of the dynamics due to coupling changes. For further analysis, the network synchronization 
is investigated by computing intra-layer and inter-layer errors. Calculating these errors shows that the 
network can be synchronized only for large enough symmetric coupling. 

Keywords: multi-layer networks; asymmetry coupling; neuronal network; synchronization; attractor 
 

1. Introduction 

Brain performance analysis is one of neuroscience’s most critical aspects. Understanding how the 
brain works and diagnosing its disorders can be improved by studying the neurons’ behaviors. In the 
brain, the activities of neurons and their interactions produce a wide range of collective phenomena 
such as partial synchronization (i.e., cluster synchronization and chimera states [1,2]), complete 
synchronization [3], and spiral waves [4,5]. Generally, in the network of oscillations, synchronization 
can be affected by changes in the system, such as changes in temperature, external stimuli, or coupling 
strength [6–8]. Scientists, however, are interested in maintaining synchronization when network 
criteria change, for example, its dimension [9,10]. Numerous studies deal with the synchronization of 
neurons [11–13]. This phenomime has been widely studied as it plays a crucial role in brain activities, 
such as attention, working memory, learning, etc. [14,15]. A network science approach and graph 
theory can be useful in examining brain behavior. In most mental disorders, abnormalities in neural 
synchronization have been seen. Patients with schizophrenia are diagnosed with abnormalities in 
neural synchronization in the gamma range (30–50 Hz) [16], while those with Major Depression are 
diagnosed with disruptions in spontaneous alpha-band (8–12 Hz) synchrony [17]. Interpersonal neural 
synchronization is also observed among people when they cooperate. As observed in [18], such 
synchronization is higher among people who are solving a puzzle in a group (joint attention) rather 
than completing that puzzle individually (individual attention). 

In graph modeling, nodes represent units, and links represent their connections [19]. Brain units 
can refer to single neural cells, groups of neurons, or cortical brain regions. Also, the connectivity can 
reflect physical connections between neurons, known as structural connectivity or functional 
connectivity, which refers to an indirect interaction between different brain regions. Different types of 
brain imaging can reveal these connections. For instance, the diffusion weighted imaging (DWI) 
technique indicates structural connectivity in the brain [20], and the functional magnetic resonance 
imaging (fMRI) technique shows functional connectivity [21].  

Due to recent computational advances, many studies have been conducted to analyze the 
functional and structural characteristics of the brain [22]. In several studies, functional and anatomical 
asymmetry has been evident in the brain [23]. Different human criteria like gender [24] also contribute 
to these asymmetry patterns. As an example, anatomical asymmetry in the Sylvian fissure has been 
detected [25].  It has been shown that men are more likely to display this asymmetry among right-
handed people than women, while vice versa is true for left-handers [26]. Besides, it has been shown 
that the brain exhibits asymmetries in dyslexic children [27], schizophrenic patients [28], and those 
with Alzheimer’s disease [29]. In most cases, these asymmetrical patterns were found between the 
hemispheres. Other asymmetry effects in dynamical networks have also been examined [30]. Medeiros 
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et al. [31] used asymmetry coupling to show that an ecological network becomes ordered through 
asymmetric coupling.  

Although several studies have represented the brain as a single network [32], developing some 
powerful theoretical frameworks like higher-order networks [33] and multi-layer networks [34] in 
recent years has offered a complete representation of the brain. Multi-layer networks can represent 
each aspect of the brain through a different layer. For instance, in [35], each functional and anatomical 
connectivity was considered as one layer of a multi-layer network to investigate the brain’s multiplex 
motifs. Hence, recently, more attention has been paid to multi-layer neuronal networks [36]. Some 
studies have considered the brain as a multiplex network framework in which information of the 
specific frequency band is encoded in one layer [37]. From another perspective, based on the cerebral 
cortex data, each brain hemisphere can be seen as one layer of a multi-layer network. For instance, 
in [38], such a model was chosen to investigate how matching a network’s structural and dynamical 
parameters lead to the formation of chimera states in the brain. 

In light of the above studies, here, a two-layer network of neuron models is considered to 
investigate asymmetric coupling strength effects on the network behavior and neurons’ dynamics. This 
multi-layer model indicates that asymmetry in coupling strength results in an asymmetry in the 
trajectories of layers. The result is obtained by analyzing the phase space projections of nodes and 
plotting bifurcation diagrams of a single node of each layer by changing the coupling strength. 
Furthermore, computing intra-layer and inter-layer errors of the network demonstrates that it can be 
synchronized with large enough symmetric coupling strengths. 

In this paper, the model is described in Section 2, and its obtained results are mentioned in 
Section 3. In this section, some trajectories of symmetric and asymmetric coupling are plotted to 
examine the effect of these couplings on the neurons’ dynamics. To quantify the synchronizability of 
the multi-layer network, the error between and within layers is computed. Finally, the conclusion is 
drawn in Section 4. 

2. Model 

Here, a two-layer neuronal network is considered where each layer is a ring of 10 nodes, also 
known as a double-chain network. This structure is used as a minimal model for the brain hemispheres 
connected through the corpus callosum. The model schematic is represented in Figure 1. As the node’s 
dynamics, the Hindmarsh-Rose (HR) model is utilized. Here, the mathematical form of this model has 
been described in Eq (1). 

                 {�̇� , = 𝑢 , + 3 × 𝑣 , − 𝑣 , − 𝑤 , + 𝐼 + 𝐶 �̇� , = 

1 − 5 × 𝑣 , − 𝑢 ,  �̇� , = −𝑟 × 𝑤 , + 𝑟 × 𝑠 × 1.6 + 𝑣 ,     (1) 

In this model, 𝑣 ,  represents the axon membrane potential of the 𝑚-th neuron in the layer 𝐿, 
where 𝐿 = 1, 2 and 𝑚 = 1, 2, … ,10. Also 𝑢 ,   and 𝑤 ,  are the spiking and bursting variables of that 
node, respectively. Here 𝐶 = 𝑐 + 𝑐  represents two types of coupling; within layers ( 𝑐 ) and 
between layers (𝑐 ), which are defined by Eq (2) [31]. The coupling is considered as: 

𝑐 = 𝑣 ,( ) + 𝑣 ,( ) − 2 × 𝑣 , × 𝜎                                      (2-a) 
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𝑐 = (𝜎 × 𝑣 , − 𝜎 × 𝑣 , ) × 𝐴                                           (2-b) 

In Eq (2), 𝜎 is the coupling strength or synaptic strength between neurons where subscripts 𝐿 and 
𝐿  define the layer 𝐿  and the opposite one, respectively. The adjacency matrix 𝐴  indicates the 
connections between the nodes of each layer. Hence, in our model 𝐴 = 1 for 𝑚, 𝑚 = {5,6}. 

 

Figure 1. The schematic of the two-layer neuronal network. Layers correspond to brain 
hemispheres connected to each other by the corpus callosum. Each layer contains 10 nodes 
connected in a ring structure, making the network similar to a double-chain network. 

3. Results 

Here, the effects of asymmetric coupling on network dynamics are analyzed. As the couplings 
are alternated, the neurons’ behaviors in each layer are examined. First, one coupling strength remains 
constant, and the network dynamics are analyzed in phase space based on variations of the other 
coupling strength. Next, by choosing one coupling as a bifurcation parameter, bifurcation diagrams of 
one node in each layer are plotted to see the variation of the network dynamics due to asymmetric 
coupling. In the end, intra-layer and inter-layer synchronization errors are calculated to investigate the 
effects of asymmetric coupling. 

Using 𝑟 = 0.006, 𝑠 = 4, and 𝐼 = 3.2 in Eq (1), each neuron results in chaotic oscillations when 
𝐶 = 0, which means there is no coupling among nodes. Notice that HR does not have any coexisting 
attractor. Nevertheless, as the coupling asymmetry increases, different attractors emerge. To show this 
phenomenon, some projections of nodes are illustrated in Figure 2 for 𝜎 = 10  and variable 𝜎 , 
whereas those of 𝜎 = 10 with variable 𝜎  are shown in Figure 3. Plotting the phase spaces of nodes 
allows us to analyze how asymmetry in coupling strength affects neurons’ dynamics. As can be seen 
in both figures, the trajectories are the same under equal coupling strengths. As the couplings become 
more asymmetric, the trajectories of each layer become different. Increasing the asymmetries between 
coupling can change the dynamics of the layers and lead to periodic oscillations or even quiescent. 
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Figure 2. 3-D phase spaces of the network layers projection with fixed 𝜎  and different 𝜎 . 
The pink trajectories represent neural behaviors in the left layer of the model (𝐿 = 1), and 
the green ones indicate neurons in the right layer (𝐿 = 2). In the equal coupling strengths 
for both layers, no asymmetry in trajectories is seen; however, as asymmetry arises in the 
coupling, the asymmetry between layers’ trajectories can be seen. Hence, asymmetry 
coupling induces coexisting. 

As variations in coupling strength result in different attractors in the layers, the bifurcation 
diagrams of nodes are plotted as a function of 𝜎  for both layers. Figure 4 illustrates the maximum 
potential of the first node of each layer by varying 𝜎  for some fixed 𝜎 . The pink diagrams illustrate 
the maximum voltage of the first node of layer 𝐿 = 1, and the green diagrams illustrate the voltage of 
the first node of layer 𝐿 = 2. It can be seen that changing the coupling strength alters the network 
dynamics. As shown in Figure 4(a) (for fixed 𝜎 = 0.1), when 𝜎  increases and more asymmetry 
occurs in the coupling, the dynamics of the layer 𝐿 = 1 changes and finally become periodic. The 
periodic region emerges for 𝜎 > 1.79. Moreover, the maximum amplitude of the neurons of layer 
𝐿 = 1 decreases. In this case, the dynamics of the second layer are not changed significantly. Figure 
4(b),(c) depict results for larger 𝜎 , 𝜎 = 1, and 𝜎 = 5, respectively. As it can be seen, for larger 𝜎 , 
the variation in the dynamics of the second layer is more remarkable. Similar to Figure 4(a), for 𝜎 =

1, the maximum amplitude of the neurons of layer 𝐿 = 1 is decreased by increasing 𝜎 . Although in 
most couplings, the behavior is chaotic, in Figure 4(c), a periodic window can be seen for 7.58 < 𝜎 <
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8.18 for the first neuron of both layers. Figure 4(d) shows the bifurcations for 𝜎 = 10. Here, more 
periodic windows can be seen for both layers. The biggest ones in 𝐿 = 1 and 𝐿 = 2 are 6.56 < 𝜎 <

8.02 and 6.67 < 𝜎 < 8.02, respectively. Maximum amplitude values of the first node in layer 𝐿 = 1 
do not seem to change drastically; however, the one in layer 𝐿 = 2 increases at first and then remains 
constant. 

 

Figure 3. 3-D phase spaces of the network layers projection with fixed 𝜎  and different 𝜎 . 
The pink trajectories represent neural behaviors in the left layer of the model, and the green 
ones indicate neurons in the right layer. No asymmetry in trajectories is seen in the equal 
coupling strengths for both layers. However, as asymmetry arises in the coupling, the 
asymmetry between layers’ trajectories can be seen. Hence, asymmetry coupling induces 
coexisting. 

Network behaviors can also be better understood by evaluating synchronization, which is 
obtained by computing intra-layer (𝐸𝑟𝑟  and 𝐸𝑟𝑟 ) and inter-layer (𝐸𝑟𝑟) errors through Eq (3). 

𝐸𝑟𝑟 = 〈 ∑ 𝑋 , − 𝑋 , 〉  , ∀ 𝑋 ∈ {𝑣, 𝑢, 𝑤} (3-a) 

𝐸𝑟𝑟 = 〈 ∑ 𝑋 , − 𝑋 , 〉  , ∀ 𝑋 ∈ {𝑣, 𝑢, 𝑤} (3-b) 
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𝐸𝑟𝑟 = 〈 ∑ 𝑋 , − 𝑋 , 〉  , ∀ 𝑋 ∈ {𝑣, 𝑢, 𝑤} (3-c) 

As shown in Figure 5, each error is calculated in the 𝜎 − 𝜎  plane and color bars indicate the 
error values. As a result of choosing large 𝜎  and small 𝜎  (e.g., 𝜎 = 1.1 and 𝜎 = 12), the intra-layer 
error of layer 𝐿 = 1 is significantly larger compared to the opposite choices. In the case of 𝐸𝑟𝑟 , the 
result is completely opposite. Both intra-layer errors tend to be zero as asymmetry fades. The minimum 
error can be obtained when 𝜎 = 𝜎 . The result is the same for interlayer error, although in this case, 
any asymmetry in coupling enlarges the error. 

 

Figure 4. The bifurcation diagram of 𝑣 ,  (left panel) and 𝑣 ,  (right panel) vs 𝜎  for 𝜎 =

 0.1 (a), 𝜎 =  1 (b), 𝜎 =  5 (c), and 𝜎 =  10 (d). Dynamics vary as a result of variations 
in coupling. Chaotic and periodic oscillation in all diagrams can be seen. 

Also, Figure 6 shows errors as a function of 𝜎  for some fixed 𝜎 . When 𝜎  is chosen as 𝜎 ≤ 1, 
errors cannot be precisely equal to zero in the symmetry case (𝜎 = 𝜎 ). However, the minimum 𝐸𝑟𝑟 
occurs at those points. In Figure 6(a), more asymmetry reduces 𝐸𝑟𝑟  while a similar pattern could not 
be observed in 𝐸𝑟𝑟 . Based on its bifurcation diagram in Figure 4(a), it appears that in 𝜎 = 0.1 and 
𝜎 > 1.79, neurons oscillate periodically in 𝐿 = 1 and chaotically in 𝐿 = 2. Hence, there is a reduction 
in 𝐸𝑟𝑟  that reflects the ordered dynamics in the layer. Figure 6-b shows that the error trend tends to 
be the same, whereas in this case, when 𝐸𝑟𝑟  reduces, 𝐸𝑟𝑟  increases, and as a result, 𝐸𝑟𝑟 increases. 
When 𝜎  is set to larger values as in Figure 6(c),(d), the minimum errors are found for the symmetric 
coupling. Furthermore, compared to the corresponding bifurcations (Figure 4(c),(d)), for those 
couplings that place the neuron within the periodic window, the errors are somewhat reduced (which 
can be seen for 𝜎 = 5). 
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Figure 5. Intra-layer (a-b) and inter-layer (c) errors in the 𝜎 − 𝜎  planes. Color bars 
indicate the error value of the panel. In each plane, darker colors represent lower errors, 
and black illustrates the near-zero error. When the coupling asymmetry decreases, the 
errors decrease as well. As compared to choosing the opposite value, (a) leads to the largest 
error when 𝜎  is large and 𝜎  is small, and (b) has the opposite result; however, any 
asymmetry in (c) enlarges the total error. 

 

Figure 6. Intra-layer (𝐸𝑟𝑟  and 𝐸𝑟𝑟 ) and inter-layer (Err) errors versus 𝜎  for 𝜎 =  0.1 
(a), 𝜎 =  1  (b), 𝜎 =  5  (c) and 𝜎 =  10  (d). Generally, the tendency for errors to 
decrease to zero is stronger in more symmetric couplings. Errors declination can also be 
caused by neuron placement in periodic dynamics regions due to changes in coupling 
strength. Comparing errors for different coupling strengths shows that symmetry can lead 
to lower errors between layers of the multi-layer network when the coupling strength is 
large enough. 
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4. Conclusions 

Asymmetry is an essential phenomenon that participates in different brain performances. In this 
study, we considered a multi-layer network with two layers, each one as a mini model of one brain 
hemisphere. This viewpoint examined the effect of asymmetry in coupling strength, which led to 
asymmetry in the trajectories. The HR model was used as the dynamics of each node. For each layer, 
a different coupling was used for connecting its nodes. Then, the dynamics of the multi-layer network 
were examined in the phase space. Despite the absence of coexisting attractors in the HR model, 
asymmetry in couplings led to various attractors in the network. For better analyses, the bifurcation 
diagrams of the first node of each layer were plotted as a function of one coupling strength while the 
other one was chosen fixed. Moreover, intra-layer and inter-layer errors of neurons were calculated to 
investigate the synchronization of the network. Errors were almost equal to zero for symmetric 
couplings that were large enough. 
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Appendix 

The MATLAB codes used for simulations can be found from: 
https://drive.google.com/file/d/1AtbEvrTsJm2CTWSNp272WnasIe85ipk5/view?usp=share_link. 
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