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Abstract: Radiomics, providing quantitative data extracted from medical images, has emerged as a 
critical role in diagnosis and classification of diseases such as glioma. One main challenge is how to 
uncover key disease-relevant features from the large amount of extracted quantitative features. Many 
existing methods suffer from low accuracy or overfitting. We propose a new method, Multiple-Filter 
and Multi-Objective-based method (MFMO), to identify predictive and robust biomarkers for disease 
diagnosis and classification. This method combines a multi-filter feature extraction with a 
multi-objective optimization-based feature selection model, which identifies a small set of predictive 
radiomic biomarkers with less redundancy. Taking magnetic resonance imaging (MRI) images-based 
glioma grading as a case study, we identify 10 key radiomic biomarkers that can accurately 
distinguish low-grade glioma (LGG) from high-grade glioma (HGG) on both training and test 
datasets. Using these 10 signature features, the classification model reaches training Area Under the 
receiving operating characteristic Curve (AUC) of 0.96 and test AUC of 0.95, which shows superior 
performance over existing methods and previously identified biomarkers. 

Keywords: radiomics; medical image analysis; glioma grades; biomarkers; multi-filters; 
multi-objective optimization 
 

1. Introduction 

As a common central nervous system (CNS) tumor, gliomas can be classified as low-grade 
gliomas (LGG) including grades I and II and high-grade gliomas (HGG) including grades III and IV 
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according to the World Health Organization (WHO) classification of CNS tumors based on the 
malignancy [1]. In the radiology reports, the classification of gliomas into LGG and HGG is an 
important standard of care [2–4]. Patients with different grades of gliomas require different surgical, 
radiotherapy, and chemotherapy plans [5]. Glioblastoma multiforme (GBM) is the most aggressive 
type of glioma (WHO grade IV), leading to a poor prognosis with a median survival time of around 15 
months even after multimodal treatment [6]. Therefore, accurate prediction of LGG and HGG is 
crucial for improving treatment. 

Medical imaging, in particular Magnetic Resonance Imaging (MRI), shows the characteristics 
of human cancer non-invasively and is widely used in clinical practice to aid diagnosis of brain 
tumor. By transforming medical images into quantitative data and extracting thousands of 
quantitative features as imaging markers, radiomics is becoming increasingly more important in 
analyzing tumor phenotypes [7–10]. It is increasing clear that radiomic features can greatly help to 
predict grades of glioma [11–13]. Basic MRI modalities available from any clinical scanner, 
including native T1-weighted pre-contrast (T1), T1-weighted post-contrast (T1-Gd), T2, and 
T2-FLAIR sequences, provide key details related to each part of the tumor. The combination of 
radiomic features derived from multiparametric MRI had good classification performance in glioma 
grading [14,15]. Cui et al. [16] compared prediction performance of features extracted from four 
modalities of MRI images (i.e., T1, T1-Gd, T2, and FLAIR) and found features derived from T1 and 
T1-Gd showed better prediction accuracy. Other studies either lacked prediction validation using 
external test datasets [17] or were not capable of uncovering radiomic biomarkers for glioma 
grading [14,18]. The large mass of quantitative features from complex clinical imaging arrays 
requires sophisticated machine learning algorithms to uncover their relevance with the tumor 
phenotypes. Therefore, identifying predictive and robust biomarkers and developing efficient models 
for glioma grading still remain challenging. 

Image filters are important for feature extraction and further prediction performance. Recently, 
Gao et al. [19] applied six image filters in glioma MRI images to extract six categories of features, 
including Wavelet, Laplacian of Gaussian (LoG), Square, Square Root, Logarithm and Exponential 
features. By directly mixing all categories of features, a mathematical model was built for predicting 
the grades of glioma tumors. Different image filters highlight the information of the MRI images of 
glioma patients from different angles, and it is worth trying to analyze each category of filter features 
individually. In addition, existing computational models usually employed a single-objective 
optimization-based model for feature selection [16–20]. While single-objective-based feature 
selection can well control the number of selected features, it limits diversity of feature selection and 
easily leads to unreliable results. 

To address these limitations, we developed a Multi-Filter-based feature extraction and 
Multi-Objective-based feature selection (MFMO) model to identify critical radiomic features for 
disease diagnosis and classification. By taking glioma grades as a case study, the multi-filter feature 
extraction was performed using eight different image filters in both T1 and T1-Gd MRI images. A 
novel multi-objective feature selection algorithm was developed to get robust features with high 
diversity from each category of the eight filters. A multi-step feature selection approach including the 
use of SHapley Additive exPlanations (SHAP) method was further employed to select important 
features with high contribution to the model prediction as the radiomic biomarkers. By applying to 
glioma images including 167 patients collected from the Cancer Imaging Archive (TCIA), 30 patients 
from MICCAI Brain Tumor Segmentation 2013 Challenge (BraTS 2013) and another 34 patients from 
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Ivy Glioblastoma Atlas (lvyGAP), we demonstrated the effectiveness of MFMO in distinguishing 
glioma grades over existing methods and revealing predictive and robust radiomic biomarkers. 

2. Materials and methods 

2.1. Framework of MFMO model 

The proposed framework of MFMO included three major components: multi-filter-based 
feature extraction, multi-objective-based feature selection, and identification of important filters and 
features. We describe each of them in detail below. 

2.1.1. Multi-filter-based feature extraction 

We extracted radiomic features by considering the whole tumors (including peritumoral and 
intratumoral regions) as regions of interest (ROI). Among the four modalities including T1, T1-Gd, 
T2, FLAIR, we focused on T1 and T1-Gd modalities of MRI images and extracted multi-filter 
radiomic features from images in T1 and T1-Gd modalities. For MRI image of a patient in one 
modality, seven image filters were used to process the image. These seven image filters were 
Wavelet (including eight channels: HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL), LoG 
(Laplacian of Gaussian, with kernel size being 2, 3, 4, and 5), Square, Square Root, Logarithm, 
Exponential, and Gradient. By including the original images that were not processed by any filter, we 
can extract eight categories of image filters from corresponding images. 

Table 1. The number of features from each category of filters in T1 and T1-Gd modalities. 

Image filters # of features 
Wavelet 688 
LoG 344 
Original 100 
Exponential 86 
Gradient 86 
Logarithm 86 
Square 86 
SquareRoot 86 
Total 1562 

For a patient with MRI images in T1 and T1-Gd modalities, we finally got sixteen categories of 
filter features for a patient. Each category of features consisted of the shape, the first-order and the 
high-order texture features (including gray-level co-occurrence matrix (GLCM), gray-level run 
length matrix (GLRLM), gray-level size zone matrix (GLSZM) and gray level dependence matrix 
(GLDM) from ROI of the corresponding transformed MRI images. Table 1 showed the number of 
features in each category. In sum, we applied different image filters in MRI images and extracted 
radiomic features from transformed MRI images. The image filter and feature extraction were 
accomplished through an open-source Python package PyRadiomics 3.0 [21]. PyRadiomics assigns a 
value to each feature, which describes the distribution of intensities within the image region. 
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Definitions of image filters and features were publicly available at PyRadiomics website 
(https://pyradiomics.readthedocs.io/en/latest/features.html). 

2.1.2. Multi-objective-based feature selection 

Our multi-objective-based feature selection model aims at identifying a subset of features 
𝑆  𝑋, 𝑋 ∈  ℝ   , which not only can accurately predict glioma grades, but also exhibit less 
redundancy. In the feature matrix 𝑋, 𝑚 is the number of patients and n is the number of features. 𝑆 
is mainly obtained by solving the following multi-objective optimization problem: 

max
   

 ∶  
| |

∑  𝑁𝑀𝐼 𝑠 , 𝑐 ∈        

    min
  

 ∶  
| |

∑ 𝑁𝑀𝐼 𝑠 , 𝑠,  ∈       
                     

1

2
 

where 𝑁𝑀𝐼 𝐴, 𝐵  is the normalized mutual information between two random variables A and B, 
which is defined as [22]: 

𝑁𝑀𝐼 𝐴, 𝐵   2  ,

  
              (3) 

Given the entropy of 𝐴 (denoted by 𝐻 𝐴 ), the mutual information 𝑀𝐼 𝐴, 𝐵  is defined as: 

 𝑀𝐼 𝐴, 𝐵   𝐻 𝐴   𝐻 𝐵   𝐻 𝐴, 𝐵                      (4) 

The 𝑁𝑀𝐼 value ranges from 0 to 1, where the larger values represent the high relevance 

between the two variables 𝐴 and 𝐵. Here, 𝑠 ∈ ℝ  and 𝑠 ∈ ℝ  are the calculated intensity 

value vectors of the 𝑖-th and 𝑗-th feature across 𝑚 patients, and |𝑆| is the number of selected 

features in 𝑆 ∈ ℝ | |. 𝑠  is the 𝑖th column of 𝑆. Therefore, 𝑁𝑀𝐼 𝑠 , 𝑐  represents the relevance 

of the selected feature 𝑠  with the prior label information of patients (e.g., the glioma grade c) and 

𝑁𝑀𝐼 𝑠 , 𝑠  represents the relevance of two selected features 𝑠  and 𝑠 . The first objective function 

Eq (1) maximizes the relevance of candidate features to the glioma grades and the second objective 

function Eq (2) minimizes redundancy among the selected features. 
The above multi-objective optimization problem can be solved the classical Nondominated 

Sorting Genetic Algorithm-II (NSGAII) algorithm [23]. When running NSGAII, the size of the 
solution set was set to 100, and the maximum generation number was set to 50. For the mutation 
operator, the mutation probability was set to 0.2. The z-score-normalized values of features were 
used as inputs. 

The multi-objective optimization model finds a Pareto front in the solution set and each solution 
on the front represents a combination of individual features, which exhibits a good balance the 
relevance and the redundancy. For each feature group on the Pareto front, we selected no more than 
ten features by utilizing a feature selection method named MIC-mRMR, which used maximal 
information coefficient (MIC) [24] as the correlation metric. Among all feature groups on the Pareto 
front, we further identified the optimal feature group with the highest training AUC on the training 
dataset, where a linear regression (LR) model was used for classifying glioma grades and the AUC 
was calculated by comparing with the true labels of patients in the training dataset. 
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2.1.3. Identification of radiomic biomarkers via a multi-step approach 

To further reduce the number of radiomic features and identify the important and reliable 
radiomic biomarkers for glioma grading, we proposed a multi-step approach. First, for each category 
of the filter features, we applied the multi-objective-based feature selection method to obtain a set of 
ten features, and utilized a LR classifier to assess the performance of each filter in distinguishing 
between HGG and LGG. We retain the selected features from the top five filters with the highest 
training AUC. For each category of the filter features, we chose the number ten as the number of 
obtained features due to the following two reasons: 1) a small number of biomarkers are easier for 
their evaluation during diagnostic process and application as therapeutic targets; 2) previous studies 
also indicated that 10–20 features are likely sufficient for glioma diagnosis and classification [16,19]. 
In addition, we found that the performance of our model was relatively robust when varying the 
number of obtained features (Table S1). 

Second, for the ten features selected from each category of the five filter features, we computed 
the SHAP values of each feature, and took the average of the absolute values of the SHAP values of 
each feature as a measurement of feature importance. We selected the top three features with the 
highest average values of the absolute values of the SHAP values within each category, leading to a 
total of 15 features across the five categories of filter features. Of note, the number three here is not 
fixed and can be changed. The model performance was relatively robust with respect to different 
number of features from each filter (Table S2). The average of the absolute value of the SHAP value 
of each feature is the average impact on output magnitude of each feature. In the following, we will 
refer the average of the absolute value of the SHAP value as SHAP value for short. The higher the 
value, the more important the feature is. SHAP value is shown to more effectually discriminate 
among model output classes [25] and can be used to explain a large variety of models including 
linear models (e.g., linear regression) and tree-based models (e.g., random forest), while other 
metrics can only be used to explain limited model types. Therefore, we choose the SHAP value as 
the measure of feature importance. In our study, SHAP [25] measures the contribution of each 
feature of the LR model and assigns each feature an importance value for the LR model prediction, 
which is useful for interpreting and improving model prediction. 

Third, we built a LR classifier using these 15 features, and selected 10 important features with 
the highest SHAP value. 

This multi-step feature filtering method was performed in training dataset. The first step 
selected the different filters with better performance to ensure the diversity of radiomic features, and 
the last two steps reduced the number of features to reduce the risk of overfitting. 

2.2. Classification and evaluation 

To assess the effectiveness of the selected features, we used the LR classifier to classify HGG 
and LGG patients and employed four metrics to evaluate the performance of the LR classifier, 
including the area under receiver operating characteristic (ROC) curve (AUC), Accuracy, Sensitivity 
and Specificity. Linear regression classifier was achieved by Scikit-learn [26]. Sensitivity represents 
the proportion of positive sample that are correctly identified as such while specificity represents the 
proportion of negative sample that are correctly classified. 
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2.3. Method comparisons 

We compared the performance of our MFMO method against four previously proposed methods 
for predicting glioma grades [14,19,20,27]. Briefly, in Cho et al. [20], mRMR algorithm and RF 
model were used for feature selection and classification, respectively. In Gao et al. [19], PCA algorithm 
and RF model were used for feature selection and classification, respectively. In Chen et al. [14], 
partial least squares (PLS) regression and support vector machine (SVM) were used for reducing the 
number of the extracted features, and predicting glioma grades. In Kha et al. [27], two steps of 
features selection were performed, including Spearman’s Correlation Coefficient (SCC) and the 
combination of XGBoost-SHAP analysis. For the datasets used in our study, we kept features with 
SCC greater than 0.8 and discarded features with SCC less than 0.8. XGBoost model was employed 
for predicting glioma grades. Because these methods did not provide source codes, we implemented 
the methods based on their description in the original paper. The best model and parameters 
described in the original papers were selected for comparison analysis. 

2.4. Training and test datasets 

The training datasets are the TCGA-LGG and TCGA-GBM Segmentation Datasets [28,29] 
from The Cancer Imaging Archive (TCIA), which are available from the public website 
(http://wiki.cancerimagingarchive.net/x/LIZyAQ, http://wiki.cancerimagingarchive.net/x/KoZyAQ). 
Computer-aided and manually corrected segmentation labels for the preoperative multi-institutional 
scans of 102 HGG and 65 LGG patients with the corresponding skull-stripped and co-registered 
multimodal MRI data were collected for training. The test dataset was collected from MICCAI Brain 
Tumor Segmentation 2013 Challenge (BraTS 2013) [30,31]. Of note, there is not any duplicated 
sample between the training and test datasets. The clinical image data of BraTS 2013 test dataset 
consists of multi-contrast MRI scans of 20 HGG and 10 LGG patients. The clinical image data of 
BraTS 2013 dataset and data providers were described in [30]. Briefly, the clinical data was acquired 
at four different centers—Bern University, Debrecen University, Heidelberg University, and 
Massachusetts General Hospital—over the course of several years, using MR scanners from different 
vendors and with different field strengths (1.5T and 3T) and implementations of the imaging 
sequences (e.g., 2D or 3D) [30]. Computer-aided segmentation was applied. Then the clinical images 
were manual annotated and segmented as HGG and LGG by experts. BraTS 2013 dataset was 
identical to the BraTS 2012 challenge with the omission of the synthetic dataset [32]. 

We also used Ivy Glioblastoma Atlas (lvyGAP) MRI dataset from TCIA as another test dataset [33], 
which is available from the public website (https://wiki.cancerimagingarchive.net/x/64MvB). 
However, IvyGAP only contains HGG images of 34 subjects segmented. We thus combined HGG 
images (34 patients) from lvyGAP and LGG images (10 patients) from BraTS 2013 dataset as a new 
test dataset. Similar to a previous study [34], we applied Synthetic Minority Over-sampling 
Technique (SMOTE) to the new test dataset, leading a new balanced dataset (34 HGG cases and 34 
LGG cases). This new test dataset was denoted by IvyGAP-BraTS. We used two modalities of MRI 
images: T1 and T1-Gd. We used PyRadiomics for feature extraction, and conducted and reported 
radiomics analyses based on International Biomarker Standardization Initiative (IBSI) guidelines [35]. 
To be clearer, the IBSI checklist was provided in Table S3. 
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3. Results 

3.1. Overview of MFMO for glioma grading 

 

Figure 1. Framework of MFMO. (A) The MFMO model takes T1 and T1-Gd MRI 
images as inputs. Images are divided into training and test datasets. (B) Upon receiving 
inputs, MFMO applies multi-filter feature extractions in the images. For each category of 
the eight filter features, a multi-objective-based feature selection method is employed and 
the feature group with the highest AUC is selected. Top 10 features are selected for each 
filter. The top five filters are further selected based on the computed AUC of feature 
groups. The top three features from each category of the five filters are selected as 
candidate biomarkers for glioma grading. The final 10 radiomic biomarkers are 
determined based on the classification performance and the SHAP values of each feature. 
(C) The framework of the proposed multi-objective-based feature selection method. 

To identify the important and robust radiomic features for glioma grading, MFMO took MRI 
images as inputs (Figure 1A) and first extracted multi-filter radiomic features using an open-source 
Python package PyRadiomics 3.0 [21]. Each filter represented one category of radiomic features and 
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contained tens to hundreds of radiomic features (Materials and Methods, Table 1). By default, eight 
filters were applied including the original images that were not processed by any filter, leading to a 
total of 1562 radiomic features across all filters. Second, for each category of the eight filters, a 
two-objective-based feature selection method was proposed and applied (Figure 1B,C). Based on the 
Pareto front of the two-objective optimization model, MFMO identified different combinations of 
individual features that not only accurately predicted glioma grades, but also exhibited less 
redundancy. For each filter, the feature group with the highest AUC based on a linear regression 
model was selected. Third, the number of filters and features were further reduced by using a 
multi-step approach, including selecting the top five filters with the highest AUC and the top three 
features with the highest SHAP value within each filter. The SHAP value of each feature quantified 
feature importance for classification (Materials and Methods). Finally, 10 important features were 
identified by computing the SHAP values. The overall framework of our proposed MFMO method 
was presented in Figure 1. 

3.2. Identification of important filters for glioma grading 

 

Figure 2.  Prediction performance across eight categories of filter features in T1 and 
T1-Gd modalities. Two metrics were calculated. (A) AUC in the training dataset, (B) 
Accuracy in the training dataset, (C) AUC in the BraTS 2013 test dataset, (D) Accuracy 
in the BraTS 2013 test dataset. 
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For each of the two MRI modalities including T1-Gd and T1, we selected a set of ten features 
from each category of filter features by using the multi-objective-based feature selection method in 
MFMO, and then built a LR classifier to grade glioma. By computing AUC using the selected filter 
features from each modality in both training and test datasets, we observed that the eight sets of 
selected T1-Gd filter features had a training AUC of 0.918 and a BraTS 2013 test AUC of 0.882 on 
average, while those of selected T1 filter features had a training AUC of 0.851 and a BraTS 2013 
test AUC of 0.739 on average (Figure 2A,C). By evaluating the performance using another metric 
called Accuracy, we also observed an overall higher Accuracy value in the T1-Gd modality compared 
to T1 modality (Figure 2B,D). These results showed that radiomic features extracted from T1-Gd 
MRI images generally had better classification performance than those from T1 MRI images. In the 
subsequent analysis, we focused on the T1-Gd MRI images. 

We next identified the important filters based on the T1-Gd modality. Based on the calculated 
AUC values in the training phase, the top five categories of filter features were Wavelet, Original, 
SquareRoot, LoG and Gradient. The training AUCs of these five categories of selected features 
were 0.952, 0.930, 0.929. 0.917, and 0.915, and the BraTS 2013 test AUCs of these selected features 
were 0.880, 0.930, 0.940, 0.950, and 0.950, respectively. 

These five categories of selected filter features had a training AUC of 0.928 and a BraTS 2013 
test AUC of 0.93 on average. These results not only indicated that the feature selection algorithm can 
accurately predict the glioma grades, but also suggested that our approach was not likely overfitted 
and underfitted due to the comparable prediction performance across training and test datasets. 

3.3. MFMO identified previously unrecognized radiomic features for glioma grading 

Table 2. The selected 10 signature features. 

Filter Feature class Feature name Short feature name 

Original GLSZM SmallAreaEmphasis SAE 

Original GLSZM SizeZoneNonUniformityNormalized SZNUN 

Gradient GLRLM RunLengthNonUniformity RLNU 

SquareRoot GLDM DependenceEntropy DE 

Gradient GLSZM GrayLevelNonUniformity GLNU 

Wavelet-HLH GLCM Idm IDM 

SquareRoot GLSZM ZoneEntropy ZE 

Wavelet-HLL first-order RootMeanSquared RMS 

SquareRoot shape SmallAreaEmphasis SAE 

LoG GLDM DependenceNonUniformity DNU 

Using the multi-step feature filtering method (Materials and Methods), we obtained 10 
important radiomic features across the five categories of filter features (Table 2). Using the 
combination of all 10 features for predicting glioma grades via LR classifier, the AUC is 0.96, 0.95, 
and 0.955 on the training, BraTS-2013 test and lvyGAP-BraTS test datasets, respectively (Table 3; 
Figure 3A,B). The high accuracy, sensitivity and specificity were also achieved by using these 10 
features in the training and test datasets (Figure 3A,B; Table 3). The consistent high AUC values 
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between the training and test datasets suggested that the 10 features selected by our model were 
stable and reliable in classifying LGG and HGG. 

Table 3. Performance of 10 signature features in the training and test datasets. 

Dataset AUC Accuracy Specificity Sensitivity 
Training 0.962 0.910 0.877 0.931 
Test BraTS 2013 0.95 0.867 1 0.75 
Test lvyGAP-BraTS 0.955 0.887 0.941 0.912 

 

Figure 3. Comparison of prediction performance across different classifiers.  (A) 
Performance of 10 signature features in the training dataset. (B) Performance of 10 
signature features in the BraTS 2013 test dataset. (C) Contribution of each of the 10 
features to the model prediction. The contribution was quantified using the mean of 
absolute values of SHAP values of each feature. 

 

Figure 4. Comparison of prediction performance across different classifiers. 
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Moreover, we compared LR classifier with other classifiers including Support Vector Machine 
(SVM), random forest (RF) and XGBoost based on the 10 signature features identified by MFMO. 
We found that SVM, RF and XGBoost had higher training AUC but lower test AUCs on BraTS 2013 
and lvyGAP-BraTS test dataset compared to LR (Figure 4), which indicates that these classifiers had 
higher risk of overfitting. These results demonstrate that although LR classifier is simple, it has an 
advantage of reducing overfitting while achieving relatively high prediction accuracy. This 
observation is also consistent with the well-known knowledge that overfitting often occurs when the 
model is too complex. 

 

Figure 5. Distribution of image intensity values of the two selected features in HGG and 
LGG groups. The feature SAE quantifies the distribution of small size zones and DE 
measures gray level dependencies. (A) SAE feature in the training dataset, (B) SAE feature 
in the BraTS 2013 test dataset, (C) DE feature in the training dataset, (D) DE feature in the 
BraTS 2013 test dataset. P-values from Kolmogorov-Smirnov test were indicated. 

We then assessed the contribution of each of the 10 features to the LR model prediction, which 
was measured by a SHAP value. The DependenceEntropy (DE) feature from the SquareRoot filter 
had relatively high SHAP values (Figure 3C), suggesting the importance in distinguishing HGG from 
LGG patients. DE measures the uncertainty and randomness of gray level dependencies of the 
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images. The smaller the DE value, the stronger the dependencies of the gray levels SAE. SZNUN 
and DE describe the ROI heterogeneity from connection density, variability and dependencies of 
gray level size zones perspectives, respectively, suggesting the importance of gray levels in 
quantifying heterogeneity. Among the 10 signature features, five of them were only found by our 
method [19]: Gradient_GLRLM_RLNU, SquareRoot_GLDM_DE, Wavelet-HL_GLCM_IDM, 
Wavelet-HLL_first-order_RMS and LoG-sigma-2-0-mm-3D_GLDM_DNU. 

For the common signature Original_GLDM_SAE, we examined the distribution of the 
calculated intensity values from the T1-Gd MRI images, and observed significantly higher SAE 
values in the HGG patients compared to LGG patients in both training and test datasets (Figure 5A,B; 
Kolmogorov-Smirnov test). For the specific signature identified by our method such as 
SquareRoot_GLDM_DE, we also observed significant differences in the distributions between HGG 
and LGG patients in both training and test datasets (Figure 5C,D). However, smaller DE values were 
observed in the HGG patients compared to LGG patients. These results showed that SAE and DE 
feature was indeed effective in distinguishing HGG and LGG. 

3.4. MFMO showed superior performance over existing methods and previously reported biomarkers 

 

Figure 6. Comparison of MFMO against other methods in BraTS 2013 and 
IvyGAP-BraTS test datasets. 

We next compared our MFMO method against four previously machine learning methods for 
predicting glioma grades, including Cho et al. [20], Gao et al. [19], Chen et al. [14], and Kha et al. [27]. 
Although Cho et al. [20] also considered both the relevance of candidate features to the glioma 
grades and the redundancy among the selected features, they performed feature selection using a 
single-objective model. After training these methods on the training dataset, we compared their 
performance in two test datasets. On the BraTS 2013 and lvyGAP-BraTS test datasets, MFMO 
reached the AUC of 0.95 and 0.955 respectively, which was higher than other methods (Figure 6). In 
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terms of Accuracy, MFMO exhibited better results than Gao et al and Chen et al, and comparable 
results with Cho et al on the BraTS 2013 test dataset and with Kha et al on the lvyGAP-BraTS test 
dataset. In addition, MFMO exhibited highest Specificity values and moderate Sensitivity. The high 
Specificity suggested the good ability of MFMO in identifying LGG patients. Together, these results 
showed the overall better performance of our proposed method MFMO in glioma grading. 

 

Figure 7. Comparison of prediction performance using the 10 features identified using 
MFMO and the previously reported 15 features. ROC and its associated AUC in (A) the 
training dataset and (B) the BraTS 2013 test dataset. 

Gao et al. [19] identified 15 important features by using multiple-filter features as biomarker in 
glioma grading and found RF classifier had the best performance. We utilized these 15 biomarkers 
and built the RF classifier to predict grades of glioma in our datasets. Figure 7 showed the 
performance comparison between the RF classifier built using the identified 15 biomarkers and the LR 
classifier built using our proposed 10 signature features. We found that RF classifier built by 15 
biomarkers had the risk of overfitting, where the training dataset had AUC of 1.00 and the BraTS 2013 
test dataset had AUC of 0.80. On the contrast, the 10 signature features selected by our model 
achieved AUC of 0.96 on the training dataset and AUC of 0.95 on the BraTS 2013 test dataset, 
suggesting that our model achieved more robust and better classification performance in a smaller 
feature number. The identified 10 signature features can be considered as important biomarkers in 
classifying LGG and HGG. 

4. Discussion 

In this study, we applied several different filters (Wavelet, LoG, Square, Square Root, 
Logarithm, Exponential, and Gradient) in T1 and T1-Gd MRI images and extracted more diversified 
radiomic features. Different image filters highlight the information of the MRI images of glioma 
patients from different angles. Simple mixing of different filter features might cause information 
confusion and reduce the sensitivity of image filters to images. We analyzed radiomics features from 
different modalities MRI images and image filters individually and provided evidence for the 
effectiveness of different filters in T1 and T1-Gd MRI modalities. By exploring different 
combinations of the four modalities (T1, T1-Gd, T2, FLAIR), Cui et al. [16] found that while the 
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addition of more modalities increased the prediction accuracy overall, T1-Gd alone was as good as 
most combinations of modalities, suggesting that T1-Gd contains some information that is more 
informative in the classification task. Cui et al. also pointed out the potential disadvantages of adding 
more data, which could increase computational cost, introduces unknown sources of error, and 
increases patient burden both financially and timewise. Therefore, we hope to find candidate 
biomarkers from one modality that can also achieve relatively good prediction accuracy. In 
agreement with the findings from Cui et al., we observed that T1-Gd had better classification 
performance than T1 modality, and thus focused on T1-Gd filters to select candidate signature features. 

Most of existing studies employed single-objective feature selection algorithm [18–20]. On 
contrast, we consider feature selection as a multi-objective optimization problem with the two 
objectives of maximizing the relevance of candidate features to the glioma grades and minimizing 
redundancy among the selected features. We applied multi-objective genetic algorithm NSGAII to 
solve this optimization model. Previous study by Lam et al. [34] also showed the advantages of 
genetic algorithm in glioma radiomic feature selection. Different from single-objective feature 
selection algorithm, multi-objective-based feature selection can find diversified feature groups on the 
Pareto front. Given that NSGA-II is able to find much better spread of solutions and better 
convergence near the true Pareto-optimal front [36], we combined the NMI and NSGAII to search 
for excellent feature groups which had good prediction performance and employed MIC-mRMR to 
restrict the number of selected features in each feature group. By using NMI-NSGAII and 
MIC-mRMR simultaneously, we bring the advantages of the multi-objective and single-objective 
feature selection algorithm together to better select radiomic features. 

Particularly, the two GLSZM features extracted from original T1-Gd images, including Small 
Area Emphasis (SAE) and Size-Zone Non-Uniformity Normalized (SZNUN) showed the highest 
contributions to the model prediction. These two categories of features have been were found to have 
a good discrimination ability in glioma grading when using the Exponential filter [19] and our study 
indicated that SAE and SZNUN extracted from original T1-Gd images still had the good 
discrimination ability. GLSZM quantifies gray level zones in the image. The more uniform the image 
texture, the larger the GLSZM matrix width and the flatter. SAE quantifies the distribution of 
small-sized areas and SZNN measures the variability of the zone size volume across the image. 
Moreover, our method also identified other previously unrecognized features, including 
Gradient_GLRLM_RLNU, SquareRoot_GLDM_DE, Wavelet-HL_GLCM_IDM, 
Wavelet-HLL_first-order_RMS and LoG-sigma-2-0-mm-3D_GLDM_DNU. Together, our proposed 
MFMO method shows its great potential in searching for informative biomarkers and offers novel 
insights into the glioma grading, including signature features that were not previously identified. 

In this study, we employed LR classifier for feature selection in order to classify HGG and LGG. 
Interestingly, we found that SVM, RF and XGBoost have higher training AUC and lower test AUC 
compared to LR, suggesting the potential higher overfitting risk of SVM, RF and XGBoost (Figure 4). 
These observations are consistent with the well-known knowledge that overfitting often occurs when 
the model is too complex. The better performance of LR is also likely due to the fact that the 
distinction between HGG and LGG is a binary classification problem. In this scenario, it might be 
more appropriate to use a simple model, such as LR. However, when it comes to the 
multi-classification problem of distinguishing glioma subtypes, complex models such as RF and 
XGBoost are likely more effective, as observed in previous studies [34,37]. Overfitting is a common 
problem in machine learning methods. In addition to the simple LR model we used, the 
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aforementioned multi-filter-based feature extraction and multi-objective-based feature selection are 
likely helpful for reducing overfitting. These strategies lead to the observation that our method 
produced comparable AUC values between training and test datasets. Other strategies such as 
cross-validation during the training process may also reduce overfitting, which had been employed in 
previous studies [27]. 

Although our MFMO method exhibits its superior performance in predicting radiomic biomarkers 
for classifying HGG and LGG, as mentioned by the previous study [34], the final diagnosis is a 
combination of clinical symptoms, medical images and pathological results. Le et al. [37] and Lam et 
al. [34] addressed an important question on the subtype classification of glioblastoma and low-grade 
gliomas from MRI, which has not well addressed by other existing studies including our work. Kha 
et al. [27] proposed XGBoost-based model to identify the 1p/19q codeletion status in 
LGG-diagnosed patients, which addressed the drawbacks of invasive gold-standard tests in clinical 
practice. The further extension of our work could focus on these important aspects. Further research 
could also correlate prognostic gene signatures of glioma with radiomic features for better prediction. 

5. Conclusions 

In conclusion, our proposed MFMO method that combined multi-filter radiomic features with 
multi-objective optimization model exhibits good performance in glioma grading and has the 
potential to advance clinical decision-making by systematically analyzing medical images. The 
multi-filter feature extraction enables comprehensive characterizations of MRI images and the 
multi-objective optimization model allows the identification of important features with high diversity 
and prediction power. 
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