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Abstract: In this article, we will investigate a retarded van der Pol-Duffing oscillator with multiple
delays. At first, we will find conditions for which Bogdanov-Takens (B-T) bifurcation occurs
around the trivial equilibrium of the proposed system. The center manifold theory has been used
to extract second order normal form of the B-T bifurcation. After that, we derived third order
normal form. We also provide a few bifurcation diagrams, including those for the Hopf, double limit
cycle, homoclinic, saddle-node, and Bogdanov-Takens bifurcation. In order to meet the theoretical
requirements, extensive numerical simulations have been presented in the conclusion.
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1. Introduction

It is well known that the dynamics of harmonic oscillators has long been studied for numerous
applications in electrodynamics, engineering, electronics, neurology and biological systems.
Time-delayed feedback control has been used to a variety of disciplines of inquiry, including chaos
communication, electronic systems, and engineering. It is known that the amplitude of oscillations
always differs for the positional delayed feedback. The purpose of the present study is to investigate
the global dynamics of a retarded van der-Pol Duffing oscillator with retarded damping and delayed
position feedback, which is a new idea in the study of harmonic oscillators. Due to the numerous uses
of the harmonic oscillator, including in physics and many other disciplines, it has been discussed for a
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very long period. If the frictional force is proportional to the velocity, the harmonic oscillator is
referred to as a damped oscillator. In the case of damped oscillators, the vibration amplitude decreases
with time. Damping is important in realistic oscillatory systems, which can be positive or negative.

We get delay differential equation by introducing time delay into the ordinary differential equation.
Clearly it is more realistic. Following ground-breaking discovery done by Pyragas [1], time-delayed
feedback control has been applied to numerous areas of study, including chaos communication,
engineering and electronic systems. From the study of Atay [2], we know that positional delayed
feedback change the amplitude of oscillations. We can describe the damped harmonic oscillator with
delayed feedback by the following functional differential equation:

ẍ(t) + ϵ(1 − x2)ẋ(t) + ax(t) + bx3(t) = g(x(t − η)), (1.1)

where x(t) ∈ R denote the displacement from the point of oscillation, a > 0 denote the stiffness of
the spring element, g is a Cr (r ≥ 3) smooth function which narrates the delayed feedback, ϵ is the
damping coefficient, η denote the time delay, and b is the Duffing coefficient of order three. Equation
(1.1) has been analyzed by many authors (cf. Jiang and Song [3], Campbell et al. [4], Song et al. [5],
Song and Xu [6], Cao et al. [7], Campbell and Yuan [8]).

So far, there have been numerous research findings on Hopf bifurcation, Hopf-zero bifurcation and
triple-zero bifurcation of several oscillators studied by Cao and Yuan [9], Qiao et al. [10]. But, there
are limited number of research articles that described the B-T bifurcation of the harmonic oscillators
with multiple delay and retarded damping. Inspired from the discussions in [11–14] time delay is
incorporated in Eq (1.1), which then extended to the following retarded van der Pol-Duffing equation
with positional delayed feedback:

ẍ(t) + ϵ(1 − x2(t))ẋ(t − τ) + ax(t) + bx3(t) = g(x(t − η)). (1.2)

It is simple to verify that the system’s origin Eq (1.2) is a double-zero singularity subjected to some
parametric conditions. The primary target of this study is to discuss the B-T bifurcation and extract
the related normal form of the dynamical Eq (1.2). We know that B-T singularity is a critical point at
which the Jacobian matrix has double zero eigenvalue and geometric multiplicity one. Also, we know
that the order of the ordinary differential equation is at least two if it contains a B-T singularity, which
is not true for the delay differential equation.

The system of delay differential equations can be converted to a two-dimensional ordinary
differential equation centred on the B-T singular point, using the center manifold reduction and
normal form theory. In fact, a variety of dynamical systems, including chemical reaction and neural
network models, can accurately depict the B-T bifurcation under certain critical circumstances. This
paper will investigate the B-T bifurcation of a retarded delay differential equation with damping
effect.

The remaining part of this article is outlined as follows: The parametric restrictions under which the
origin is a B-T singularity are stated in Section 2. Section 3 provides a detailed description of the B-T
singularity as well as the second and third order normal forms corresponding bifurcation. In Section 4,
we carried out numerical simulations to verify the analytical findings made in this study. In Section 5,
the article concludes with a brief conclusion.
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2. Bogdanov-Takens bifurcation

The Bogdanov-Takens bifurcation is an unusual and fascinating bifurcation of continuous
dynamical systems, in which the Jacobian matrix has a double-zero eigenvalue. It’s a bit difficult to
explain what’s going on. For this type of bifurcation, there is a two dimensional parametric space,
wherein there exist a curve of saddle-node bifurcations; a curve of Hopf bifurcations; and a curve of
homoclinic bifurcations. The intersection of these three curves is know as Bogdanov-Takens
bifurcation point. One of the ways that limit cycles are created or annihilated is in the context of a
Bogdanov-Takens bifurcation. These global bifurcations are unlike anything we’ve yet seen in the
local bifurcations like Hopf, Saddle-node, Transcritical and Pitchfork bifurcations. Considering the
aforementioned discussion, the retarded van der Pol-Duffing oscillator with two delays can
represented mathematically with the following retarded delay differential system:

ẍ(t) + ϵ(1 − x2(t))ẋ(t − τ) + ax(t) + bx3(t) = g(x(t − η)), (2.1)

where τ and η represents the retarded delay on damping and positional feedback respectively. Let
x(t) = x1(t) and ẋ1(t) = x2(t). Then Eq (2.1) becomes{

ẋ1(t) = x2(t),
ẋ2(t) = −ax1(t) − bx3

1(t) − ϵ(1 − x2
1(t))x2(t − τ) + g(x1(t − η)).

(2.2)

We will study this Eq (2.1) theoretically and numerically for both the focus (ϵ > 0) and saddle
(b < 0) cases.

Let us consider a > 0, g(0) = 0, and g′(0) = d. Thus, the characteristic equation of the Jacobian
matrix of the Eq (2.2) around (0, 0) is given by

E(λ) = λ2 + ϵλe−λτ + a − de−λη = 0. (2.3)

Lemma 1. Let 2+ ϵ(η−2τ) > 0, d = a and ϵ = −aη. Then the Eq (2.3) has a double-zero root, namely
λ = 0.

Proof. Here, E(0) = a − d. E(0) = 0 as d = a. Clearly, E
′

(λ) = 2λ + ϵe−λτ − ϵτλe−λτ + dηe−λη,
consequently E

′

(0) = 0 as ϵ = −aη. Also, we have E′′(0) = 2 + ϵ(η − 2τ). Thus E′′(0) , 0, since
2 + ϵ(η − 2τ) > 0. Therefore, we conclude that 0 is a characteristic root of multiplicity two.

Lemma 2. If 2 + ϵ(η − 2τ) > 0, d = a and ϵ = −aη, and a ∈ (0,M), then all roots of Eq (2.3) except
λ = 0, have non-zero real parts, i.e., origin of the Eq (2.2) is B-T singularity, where M = {min a j : a j =

σ2
j

1−ησ j sin τσ j−cos ησ j
> 0, 1 ≤ j ≤ m, and σ j are the roots o f the equation σ2− (ϵ2+2a)+ 2aϵ sin(τ−η)σ

σ
= 0}.

Proof. The proof is carried out in the same technique adopted by Sarwardi et al. [15].

3. Normal forms of Bogdanov-Takens bifurcation of the Eq (2.2)

From Lemma 2, we see that the Eq (2.2) experiences B-T bifurcation around the origin, if ϵ = −aη
and d = a ∈ (0,M) hold. Hence, we assume d and ϵ as bifurcation parameters. Therefore, we may
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incorporate two small parameters ν1 and ν2 in the vicinity of origin and then discuss perturbation of
the Eq (2.2). Expanding the Eq (2.2) according to Taylor’s theorem, we have{

ẋ1(t) = x2(t),
ẋ2(t) = −ax1(t) − (ϵ + ν2)x2(t − τ) + (a + ν1)x1(t − η) + · · · .

(3.1)

After simplification, on the phase space C, we may write the Eq (3.1) as the following retarded
functional differential equation :

Ẋ(t) = L(ν)Xt + H(Xt, ν), (3.2)

where C is the Banach space of all continuous functions from [−τ, 0] to R2 with supremum norm
|ξ| = sup

θ∈[−τ,0]
|ξ(θ)|, Xt ∈ C is defined by Xt(θ) = X(t + θ) for θ ∈ [−τ, 0], and L(ν) : C → R2 is a

parameterized family of bounded linear operators defined as follows:

L(ν)(ξ) = L0(ξ) + L1(ν)(ξ)

=

(
ξ2(0)

−aξ1(0) − ϵξ2(−τ) + aξ1(−η)

)
+

(
0

ν1ξ1(−η) − ν2ξ2(−τ)

)
;

(3.3)

and H : C ×W → R2 is a Ck (k ≥ 2) function satisfying H(0, 0), DH(0, 0) = 0 with

H(ξ, ν) =
g
′′

(0)
2

(
0

ξ2
1(−η)

)
+

 0

−bξ3
1(0) + ϵξ2

1(0)ξ2(−τ) + g
′′′

(0)ξ3
1(−η)

3!

 + · · · . (3.4)

Now, we will linearize the Eq (3.2) around (Xt, ν) = (0, 0) and obtained the followings:

Ẋ(t) = L(0)Xt, (3.5)

where L(0)(ξ) = Aξ(0) + B1ξ(−τ) + B2ξ(−η),

A =
(

0 1
−a 0

)
, B1 =

(
0 0
0 −ϵ

)
, B2 =

(
0 0
a 0

)
.

The linear operator L1 may be defined in the similar fashion.
Now, we will use Riesz representation theorem on the bounded linear operator L0 and obtain a 2×2

matrix ρ(.) defined on [−τ, 0] whose entries are functions of bounded variation, such that

L0ξ =

∫ 0

−τ

[dρ(θ)]ξ(θ). (3.6)

From [16] and [17], we define the adjoint inner product on C∗ ×C as follows:

⟨ϕ, ψ⟩ = ϕ(0)ψ(0) −
∫ 0

−τ

∫ θ

0
ϕ(ξ − θ)[dρ(θ)]ψ(ξ)dξ, ψ ∈ C, ϕ ∈ C∗, (3.7)

where C∗ = C([0, τ],R2∗) be the adjoint space of C. Let A0 : C → C be the infinitesimal generator,
defined by A0(ψ) = ψ̇. Assuming Λ0 = {0, 0}, the set of eigenvalues with zero real part of A0, we define
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the invariant space of A0 associated with Λ0, and the dual of it by P and P∗ respectively. Now, we will
decompose C by the help of adjoint theory for a functional differential equation as follows:

C = P ⊕ Q, where Q = {ψ ∈ C : ⟨ϕ, ψ⟩ = 0, ∀ ϕ ∈ P∗}. (3.8)

Now, we define the bases for P and P∗ by Ψ and Φ respectively. We are assuming Ψ and Φ as
follows: Ψ = (ψ1(θ), ψ2(θ)) for −τ ≤ θ ≤ 0, and Φ = (ϕ1(s), ϕ2(s))T for 0 ≤ s ≤ τ. Then ⟨Φ,Ψ⟩ = I2,

and Ψ̇ = ΨB̄, −Φ̇ = B̄Φ, where B̄ =
(

0 1
0 0

)
. After using Lemma 3.1 of [18], we get

Ψ(θ) =
(

1 θ

0 1

)
, − τ ≤ θ ≤ 0

and

Φ(0) =

 2ϵ2(η2−3τ2)
3[2+ϵ(η−2τ)]2 +

2(1−ϵτ)
2+ϵ(η−2τ)

2ϵ(η2−3τ2)
3[2+ϵ(η−2τ)]2

2ϵ
2+ϵ(η−2τ)

2
2+ϵ(η−2τ)

 = (
ϕ11 ϕ12

ϕ21 ϕ22

)
(say).

In the next part of this section, B-T bifurcation of the Eq (3.2) will be discussed. For that we will
extend the phase space C by Banach space
BC = {ψ : [−τ, 0] → R2 : ψ is continuous on [−τ, 0), with a possible jump discontinuity at zero}. Any
element ψ of BC may be assumed as ψ = χ + Y0e and norm of the same is given by
||ψ|| = ||χ + Y0c|| = ||χ||C + |e|, where Y0 is a 2 × 2 matrix valued function defined as follows

Y0(θ) =
{

I2 if θ = 0,
O if − τ ≤ θ < 0.

(3.9)

Now, in BC, the Eq (3.2) may be transformed to the following form:

d
dt

w = Āw + X0G(w, ν), (3.10)

where G(w, ν) = (L(ν) − L0)w + H(w, ν) = L1(ν)w + H(w, ν), ν ∈ W and Ā : C1 → BC is the extension
of infinitesimal generator A0, it is defined by

Āχ = χ̇ + X0[L0χ − χ̇(0)] =
{
χ̇, −τ ≤ θ < 0
L0χ, θ = 0.

(3.11)

Now, we will use the result of [19] and letting w = ψ(θ)z(t) + y to decompose the Eq (3.10) as
follows: {

ż = B̄z + Φ(0)G(Ψz + y, µ),
d
dt y = AQ1y + (I − π)Y0G(Ψz + y, ν),

(3.12)

where π : BC → P is the projection operator and AQ1 : Q ∩C1 → ker π is the restriction of Ā.
Using Taylor series expansion for G(Ψz + y, ν) at (z, y, ν) = (0, 0, 0), above equation becomes

ż = B̄z + Φ(0)
∑
j≥2

1
j!

G j(Ψz + y, µ) = B̄z +
∑
j≥2

1
j!

g1
j(z, y, ν),

d
dt y = AQ1y + (I − π)Y0

∑
j≥2

1
j!

G j(Ψz + y, ν) = AQ1y +
∑
j≥2

1
j!

g2
j(z, y, ν);

(3.13)
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where

G2(Ψz + y, ν) =
(

0
2ν1[z1 − ηz2 + y1(−η)] − 2ν2[z2 + y2(−τ)] + g′′(0)[z1 − ηz2 + y1(−η)]2

)
,

G3(Ψz + y, ν) =
(

0
−6b[z1 + y1(0)]3 + 6ϵ[z1 + y1(0)]2[z2 + y2(−τ)] + g′′′(0)[z1 − ηz2 + y1(−η)]3

)
.

Now, we define the operator N1
j on V4

j (R
2), the vector space of homogeneous polynomials in

z1, z2, ν1, ν2 of degree j having coefficients in R2, by

N1
j

(
p1

p2

)
=

 ∂p1
∂z1

z2 − p2
∂p2
∂z1

z2

 . (3.14)

Using [18] and [20], we may decompose V4
j (R

2) as follows:

V4
j (R

2) = Im(N1
j ) ⊕ Im(N1

j )
c. (3.15)

Now, we consider a mapping from V4
j (R

2) to Im(N1
j ) ( j = 2, 3) denoted by P1

I, j which satisfies

q − r ∈ Im(N1
j )

c if P1
I, j(q) = r.

It is clearly visible that

PrIm(N1
j )cq =

{
q, if q ∈ Im(N1

j )
c

0 if q ∈ Im(N1
j ).

(3.16)

Using [19, 21], the normal form of Eq (2.2) on the center manifold associated to the space P can be
taken as

ż = B̄z +
∑
j≥2

1
j!

f 1
j (z, 0, ν), (3.17)

where f 1
2 (z, 0, ν) = PrIm(M1

2 )cg1
2(z, 0, ν)

=

(
0

2ϕ22ν1z1 + 2[(ϕ12 − ηϕ22)ν1 − ϕ22ν2]z2 + g′′(0)ϕ22z2
1 + 2g′′(0)(ϕ12 − ηϕ22)z1z2

)
.

The Eq (2.2) may be converted into the following normal form on the center manifold:{
ż1 = z2,

ż2 = λ1z1 + λ2z2 + c2z2
1 + d2z1z2 + h.o.t.,

(3.18)

where λ1 = ϕ22ν1, λ2 = (ϕ12 − ηϕ22)ν1 − ϕ22ν2, c2 =
g′′(0)ϕ22

2 , d2 = g′′(0)(ϕ12 − ηϕ22).
We can have a small a such that ϕ12 − ηϕ22 < 0 as 0 < a < M. Without loss of generality, we are

assuming that ϕ12 − ηϕ22 < 0. As per our assumption 2 + ϵ(η − 2τ) > 0 it is clear that ϕ22 > 0. Hence,
the sign of g′′(0) determines the sign of c2 and d2.

Case I: If g
′′

(0) > 0, then c2 > 0 and d2 < 0. After re-scaling the time and change the coordinates in
the following manner:
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t = −
d2

c2
t̄, z1 =

c2

d2
2

z̄1, z2 = −
c2

2

d3
2

z̄2.

The Eq (3.18) transforms to the following form on the center manifold{
ż1 = z2,

ż2 = α1z1 + α2z2 + z2
1 − z1z2 + h.o.t.,

(3.19)

where α1 =
4(ϕ12−ηϕ22)2

ϕ22
ν1 and α2 = −

2(ϕ12−ηϕ22)2

ϕ22
ν1 + 2(ϕ12 − ηϕ22)ν2 (dropping bars).

The following summarizes the bifurcation curves related to the perturbation parameters ν1, ν2 [3,6,
8, 20]:

(i) If ν1 = 0, then transcritical bifurcation occurs.
(ii) If ν1 < 0 and 3[2+ ϵ(η− 2τ)]ν2 + [6η+ ϵ(3τ2 + 2η2 − 6τη)]ν1 = 0, then Hopf bifurcation from the

zero equilibrium point (H0) occurs.
(iii) If ν1 > 0 and 3[2+ ϵ(η− 2τ)]ν2 − [6η+ ϵ(3τ2 + 2η2 − 6τη)]ν1 = 0, then Hopf bifurcation from the

non-zero equilibrium point (H1) occurs.
(iv) If ν1 > 0 and 21[2+ ϵ(η− 2τ)]ν2 − 5[6η+ ϵ(3τ2 + 2η2 − 6τη)]ν1 = 0, then Homoclinic bifurcation

from the zero equilibrium point (H0
C) occurs.

(v) If ν1 < 0 and 3[2 + ϵ(η − 2τ)]ν2 + [6η + ϵ(3τ2 + 2η2 − 6τη)]ν1 = 0, then Homoclinic bifurcation
from the non-zero equilibrium point (H1

C) occurs.

Case II: If g′′(0) < 0 then c2 < 0 and d2 > 0. After re-scaling the time and change the coordinates in
the following manner:

t = −
d2

c2
t̄, z1 = −

c2

d2
2

z̄1, z2 =
c2

2

d3
2

z̄2. (3.20)

The Eq (3.18) transforms to the following form on the center manifold (dropping the bars){
ż1 = z2,

ż2 = α1z1 + α2z2 − z2
1 + z1z2 + h.o.t.,

(3.21)

where α1, α2; and the corresponding bifurcation curves are the same as of Case I.
Case III: If g′′(0) = 0, then c2 = d2 = 0. We must compute higher order normal forms in order to talk
about the dynamics near the B-T singularity. From [19] and [20], we have

f 1
3 (z, 0, ν) = PrIm(N1

3 )c ḡ1
3(z, 0, ν), (3.22)

where ḡ1
3(z, 0, ν) = g1

3(z, 0, ν) + 3
2 [(Dzg1

2)(z, 0, ν)U1
2(z, ν) − (DzU1

2)(z, ν) f 1
2 (z, 0, ν) +

(Dyg1
2)(z, 0, ν)U2

2(z, ν)]. After computation, we have

g1
3(z, 0, ν) =

(
ϕ12[6(−bz3

1 + ϵz
2
1z2) + g′′′(0)(z1 − ηz2)3]

ϕ22[6(−bz3
1 + ϵz

2
1z2) + g′′′(0)(z1 − ηz2)3]

)
, (3.23)

where U1
2 and U2

2 are defined in [20].
To compute f 1

3 (z, 0, ν), we have used similar method as in our previous work [15].
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Using the same process as in [20], we have the followings:

PrIm(N1
3 )cg1

3(z, 0, ν) = ϕ22[−6b + g′′′(0)]
(

0
z3

1

)
+ 3[ϕ12(−6b + g′′′(0)) − ηϕ22g′′′(0)]

(
0

z2
1z2

)
,

PrIm(N1
3 )c DzU1

2(z, 0, ν)U1
2(z, ν) = 4ϕ12ϕ22

(
0

ν1ν2z1

)
+ 4ηϕ12ϕ22

(
0
ν2

1z1

)
+ 4ϕ12(ϕ12 − 2ηϕ22)

(
0

ν1ν2z2

)
+4ηϕ12(ϕ12 − ηϕ22)

(
0
ν2

1z2

)
− 4ϕ12ϕ22

(
0
ν2

2z2

)
,

PrIm(N1
3 )c DzU1

2(z, ν) f 1
2 (z, 0, ν) = 4ϕ12ϕ22

(
0

ν1ν2z2

)
+ 4ηϕ12ϕ22

(
0
ν2

1z1

)
+ 4ϕ12(ϕ12 − 2ηϕ22)

(
0

ν1ν2z2

)
−4ϕ12ϕ22

(
0
ν2

2z2

)
+ 4ηϕ12(ϕ12 − ηϕ22)

(
0
ν2

1z2

)
,

PrIm(N1
3 )c(Dyg1

2(z, 0, ν))U2
2(z, ν) = 2[ϕ12l1

21010(−η) + ϕ22l1
20110(−η)]

(
0
ν2

1z2

)
+ 2ϕ22l1

21010(−η)
(

0
ν2

1z1

)
−2ϕ22l2

21010(−τ)
(

0
ν1ν2z1

)
− 2ϕ22l2

20101(−τ)
(

0
ν2

2z2

)
+2[ϕ22l1

20101(−η) − ϕ22l2
20110(−τ) − ϕ12l2

21010(−τ)]
(

0
ν1ν2z2

)
;

where li
2(θ)(z1, z2, ν1, ν2) = li

22000(θ)z2
1 + li

20200(θ)z2
2 + li

20020(θ)ν2
1 + li

20002(θ)ν2
2 + li

21100(θ)z1z2 + li
21010(θ)ν1z1

+ li
21001(θ)ν2z1 + li

20110(θ)ν1z2 + li
20101(θ)ν2z2 + li

20011(θ)ν1ν2 for i = 1, 2.
From above equations, we have{

ż1 = z2,

ż2 = β1z1 + β2z2 + c3z3
1 + d3z2

1z2 + h.o.t.,
(3.24)

where β1 = ϕ22ν1+
1
2ϕ22l1

21010(−η)ν2
1−

1
2ϕ22l2

21010(−τ)ν1ν2, β2 = (ϕ12−ηϕ22)ν1−ϕ22ν2+
1
2 [ϕ22l1

20110(−η)+
ϕ12l1

21010(−η)]ν2
1 +

1
2 [ϕ22l1

20101(−η)− ϕ22l2
20110(−τ)− ϕ12l2

21010(−τ)]ν1ν2 − 3ϕ22l2
20101(−τ)ν2

2, c3 =
ϕ22
6 [−6b+

g′′′(0)], d3 =
1
2 [ϕ12(−6b + g′′′(0)) − ηϕ22g′′′(0)].

Utilizing the following time re-scaling and co-ordinate shifting :

t̄ = −
|c3|

d3
t, γ1 =

d3
√
|c3|

z1, γ2 = −
d2

3

c3
√
|c3|

z3, (3.25)

the Eq (3.24) converted to the following{
ζ̇1 = ζ2,

ζ̇2 = γ1ζ1 + γ2ζ2 + sζ3
1 − ζ

2
1ζ2 + h.o.t.,

(3.26)

where γ1 = (d3
c3

)2β1, γ2 = −
d3
|c3 |
β2, s = sgn(c3).

The sign of s determines the bifurcations of the Eq (3.26) [22, 23].
For s = 1, the bifurcations for the small perturbed parameters (ν1, ν2) are summarised as follows

[3, 8, 20]:
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(i) On the curve S = {(ν1, ν2) : ν1 = 0, ν2 ∈ R}, the Eq (3.26) possesses pitchfork bifurcation.
(ii) On the curve H = {(ν1, ν2) : ν2 = −

6η+ϵ(3τ2+2η2−6τη)
3[2+ϵ(η−2τ)] ν1 + O(ν2

1), ν1 < 0}, the Eq (3.26) possesses
Hopf bifurcation at the zero equilibrium point.

(iii) On the curve L = {(ν1, ν2) : ν2 = −
2[6η+ϵ(3τ2+2η2−6τη)]

15[2+ϵ(η−2τ)] ν1 +O(ν2
1), ν1 < 0}, the Eq (3.26) experiences

Heteroclinic bifurcation at the zero equilibrium point.

For s = −1, the bifurcation curves are concluded as follows [4, 5, 8]:

(i) On the curve S = {(ν1, ν2) : ν1 = 0, ν2 ∈ R}, the Eq (3.26) experiences Pitchfork bifurcation.
(ii) On the curve H1 = {(ν1, ν2) : ν2 = −

6η+ϵ(3τ2+2η2−6τη)
3[2+ϵ(η−2τ)] ν1 + O(ν2

1), ν1 < 0}, the Eq (3.26) experiences
Hopf bifurcation at the zero equilibrium point.

(iii) On the curve H2 = {(ν1, ν2) : ν2 = −
4[6η+ϵ(3τ2+2η2−6τη)]

3[2+ϵ(η−2τ)] ν1+O(ν2
1), ν1 > 0}, the Eq (3.26) experiences

Hopf bifurcation at the non-zero equilibrium point.
(iv) On the curve T = {(ν1, ν2) : ν2 = −

17[6η+ϵ(3τ2+2η2−6τη)]
15[2+ϵ(η−2τ)] ν1+O(ν2

1), ν1 > 0}, the Eq (3.26) experiences
Homoclinic bifurcation.

(v) On the curve Hd = {(ν1, ν2) : ν2 = −
3.256[6η+ϵ(3τ2+2η2−6τη)]

3[2+ϵ(η−2τ)] ν1 + O(ν2
1), ν1 > 0}, the Eq (3.26)

experiences fold bifurcation of the limit cycle.

4. Numerical results

We have only so far focused on the Eq (2.2)’s dynamical behaviour in terms of theoretical
observations. This section discusses some numerical instances to support the validity of our
theoretical conclusions and uncover other standout characteristics of the specified system. To show
the phase diagrams, Mathematica 7.0, Maple 18, and MATLAB-R2015a were utilized as the computer
programmes. The system parameter values are taken from the study done by Siewe et al. [24] with
slightest deviation. Let us consider the positional delayed feedback function g(x(t − η)) = sin x(t−η)

5 , we
have g(0) = 0, g′(0) = 0.2, g′′(0) = 0.0 and g′′′(0) = −0.2 < 0. For the purpose of the simulation, we
have selected the following set of parameters: a = d = 0.2, b = 0.05, ϵ = −0.1, τ = 0.5, η = 0.5, for
which the condition of double zero eigenvalues (i) ϵ = −aτ2 and (ii) [2 + ϵ(η − 2τ)] = 2.05 > 0 are
fulfilled. Moreover, it is calculated that the value of −6η+ϵ(3τ2+2η2−6τη)

3[2+ϵ(η−2τ)] = −0.4918699187.
Following numerical studies display an agreement with our analytical findings: The phase portraits

and the solution trajectory of Eq (2.2) with the critical B-T bifurcation parameter value
(d, ϵ) = (0.2,−0.1) is demonstrated by Figure 1. Figure 1(a) corresponds to unperturbed
Bogdanov-Takens bifurcation parameter (d, ϵ) = (0.2,−0.1) and Figure 1(b) is the phase diagram with
a small perturbation (ν1, ν2) = (−0.002, 0.00098). If we choose the initial point at (0.06364, 0.06861),
the system produce slowly converging diagram around the origin (see Figure 2).

We now take into account a minor alteration to the bifurcation parameters by letting (d, ϵ) = (0.2 +
ν1,−0.1 + ν2). If we consider the perturbation parameters (ν1, ν2) = (−0.01, 0.0), there exists a stable
limit cycle around the trivial equilibrium of Eq (2.2) (see intersection of blue and red solution curves
of Figure 3). From the bifurcation diagram (cf. Figure 4), one can be concluded that the the coefficient
of damping ϵ has a crucial impact on regulating the oscillatory nature of Eq (2.2).
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Figure 1. (a) Phase portraits of Eq (2.2) with unperturbed pair of parameters (d, ϵ) = (0.2,−0.1), with
f (x(t − η)) = 0.2 sin x(t − η)) corresponding to the parameter set : b = 0.05, ϵ = −0.1, τ = 0.5, η = 0.5.
(b) Phase diagram corresponding to the perturbation (ν1, ν2) = (−0.002, 0.00098) to the bifurcation parameters
(d, ϵ).
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Figure 2. For (ν1, ν2) = (0.00, 0.00), and a = 0.2, b = 0.05, ϵ = −0.1, d = 0.2, τ = 0.5, η = 0.5. The left
panel shows the phase diagram around the trivial equilibrium (0, 0). The right panel shows time series solution
of the Eq (2.2).
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Figure 3. For (ν1, ν2) = (−0.0,−0.01), and a = 0.2, b = 0.05, ϵ = −0.1, d = 0.2, τ = 0.5, η = 0.5. The left
panel demonstrate the existence of stable limit cycle the Eq (2.2) around the equilibrium point (0, 0). The right
panel shows the corresponding time series solution.
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Figure 4. Top panel indicating the Hopf bifurcation diagram for the displacement vector x(t) = x1(t) of the
Eq (2.2) with respect to the damping coefficient “ϵ”. Bottom panel indicating the same for the velocity vector
ẋ = x2(t).
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Figure 5. (a) Time series solution for the positional feedback function f (x(t − η)) = sin x(t − η) for the
parametric set : a = 0.02, b = 0.04, ϵ = 0.002, τ = 0.5, η = 0.0005 with starting position (−0.1, 0, 1). (b)
Phase diagram for the same set of parameters, used in Figure 5(a).
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Figure 6. (a) Largest Lyapunov exponent for the positional feedback function f (x(t−η)) = sin x(t − η) for the
parametric set : a = 0.02, b = 0.04, ϵ = 0.002, τ = 0.5, η = 0.0005 with no perturbation (ν1, ν2) = (0.0, 0.0).
(b) Largest Lyapunov exponent for the positional feedback function f (x(t − η)) = exp(x(t−η))−1

exp(x(t−η))+2 for the same set
of parameters, used in Figure 6(a).
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Figure 7. (a) Chaotic time series solution plot of the Eq (2.2) for f (x(t − η)) = sin x(t − η) for the parametric
set : a = 0.02, b = 0.04, ϵ = 0.002, τ = 0.5, η = 20.5 with no perturbation (ν1, ν2) = (0.0, 0.0) . (b) Phase
diagram of chaotic solution for the same set of parameters, used in Figure 7(a).

Next, we consider the parameter set a = 0.02, b = 0.04, ϵ = 0.002, τ = 0.5, η = 0.0005 and
the feedback function g(x) = sin x. A small perturbation (ν1, ν2) = (−0.1, 0.1) to (d, ϵ) produce two
homoclinic loop around the saddle point (0, 0). In Figure 5, there exists a left homoclinic loop, where
the trajectory started with the initial point (−0.1, 0.1). The right homoclinic loop is also formed if the
trajectory started with the initial point (0.1, 0.1) (Figure is not reported here).

In Figure 6(a),(b), the largest Lyapunov exponents are depicted for the delayed feedback functions
sin(x(t − η)) and ex(t−η)−1

ex(t−η)+2 respectively for η and other parameters remain the same as in Figure 5.
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Figure 8. End tail of the system plot Eq (2.2), for different starting positions (0.1, 0.1), (−0.1, 0.1) and
(1.5, 1.5) for the period solution with cyan, yellow and magenta colors respectively. The parameter values are
given in Figure 7.

Figure 7 describes the Eq (2.2)’s chaotic dynamics. Figure 8 illustrates the existence of two small
limit cycles covered by a larger limit cycle.
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5. Conclusions

In this present study, we have investigated the normal form for Bogdanov-Takens bifurcation
experienced by the proposed retarded van der Pol-Duffing equation with multiple delay having
possible degeneration. For the present system, we are aimed to study the dynamics with parametric
positional delayed feedback in relation with quasi-periodic solution near and quasi-periodic attractor
leading to chaotic solution. Analytically as well as numerically, we have found that the delayed Eq
(2.2) experiences a B-T bifurcation if the conditions ϵ = −aη and [2 + ϵ(η − 2τ)] > 0 are satisfied
simultaneosly. Utilizing the center manifold and normal form theories, we derived the canonical
forms of Bogdanov-Takens singularity. Moreover, the phase and bifurcation diagrams for different
positional delayed feedback functions are shown. It is shown that that the the coefficient of damping
plays an important function to regulate dynamics of the Eq (2.2) (cf. Figure 4). One of the most
crucial mechanisms for examining the chaotic behaviour of dynamical systems is the Lyapunov
exponent. The positivity of the computed values of Lyapunov exponents provide a definite conclusion
of chaotic dynamics. However, Lyapunov exponents are also notoriously difficult to estimate reliable
from experimental data. One should be cognizant of additional evidence proving Sensitive
Dependence on Initial Conditions (SDIC) before asserting that any system is chaotic. Growing
awareness of this challenge will undoubtedly continue to encourage the creation of newer and more
reliable algorithms for finding the Largest Lyapunov Exponents. From the Figure 6(a),(b), it is seen
that the Largest Lyapunov exponents are at the positive level for the positional feedback function
sin(x(t − η)) and ex(t−η)−1

ex(t−η)+2 respectively, when η is increased to 20.5 (other parameters remain the same as
in Figure 5). For the both cases, similar chaotic dynamics have been observed and shown in Figure 7.
Figure 8 shows three close limit cycles encircling the trivial equilibrium point and other two
symmetrically situated axial equilibria corresponding to very neighboring starting position, which
exists only for the end of the total time span of evolution of the trajectories. We employ the MatLab
version of the approach developed by Wolf et al. [25] to estimate the largest Lyapunov exponent for
the current study. Multiple delays, as is well known, make it difficult and tiresome to analyze the
distribution of the eigenvalues and cause the system to exhibit considerably deeper dynamical
characteristics. There are hardly any unfolding results about the double Hopf bifurcation,
quasi-periodic attractors and coexisting attractors enveloping. The engineers can use these results as a
guide for selecting the delay settings to obtain the desired dynamical effects. Therefore, there are less
number of results about the quasi-periodic solution leading to chaos due to multiple delays for
dynamical systems on oscillators. We’ll work about these realities in the next study.
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